CSES03: Software Engineering

David Notkin
University of Washington
Computer Science & Engineering
Spring 2006

A classic tool: slicing

+ Of interest by itself

+ And for the underlying representations
— Originally, data flow
— Later, program dependence graphs

Slicing, dicing, chopping

* Program slicing is an approach to selecting
semantically related statements from a program
[Weiser]

* In particular, a slice of a program with respect to a
program point is a projection of the program that
includes only the parts of the program that might
affect the values of the variables used at that point

— The slice consists of a set of statements that are usually
not contiguous

Basic ideas

* If you need to perform a software engineering
task, selecting a slice will reduce the size of the
code base that you need to consider

* Debugging was the first task considered

— Weiser even performed some basic user studies

» Claims have been made about how slicing might
aid program understanding, maintenance, testing,
differencing, specialization, reuse and merging

Example

read (n) read (n)

ii=1; i:=1;

sum := 0; sum := 0;

product := 1; product := 1;

while i <= n do bggin while i <= n do begin
sum := sum + i; sum := sum + i;
product := product :=

product * i; product * i;

i =1+ 1; i=i+1;

end; end;

write (sum); write (sum) ;

write (product); write (product) ;

Weiser’s approach

* For Weiser, a slice was a reduced, executable
program obtained by removing statements from a
program

— The new program had to share parts of the behavior of
the original

» Weiser computed slices using a dataflow
algorithm, given a program point (criterion)

— Using data flow and control dependences, iteratively

add sets of relevant statements until a fixpoint is
reached

Ottenstein & Ottenstein

* Build a program dependence graph (PDG)
representing a program

* Select node(s) that identify the slicing
criterion

* The slice for that criterion is the reachable
nodes in the PDG

+ Thick lines are control dependences
* Thin lines are (data) flow dependences

Real PDGs are a bit more
complicated

* Vertices in the graph represent (a) assi states and (b) predi in the
program
Edges represent control and data flow dependences
Control dependences always start at a predicate (or the entry node)
— They are labeled with a boolean
~ Intuitively, node w is control dependent on node v if the predicate of node v
evaluates to the label on the edge from v to w — that is, what happens at w controls
whether or not v executes
— An assignment statement followed immediately by another assignment statement
have no control dependence between them, since the second one always executes
when the first one does
« Data dependences represent the possible flow of values through the program
— (Roughly) there is a data dependence (edge) from node v to node w if v includes an
assignment to some variable x, and then w includes a use of (that specific) x.
« These can be separated into (at least) | loop-carried
which roughly distinguish whether the relationship is across iterations of a loop or not
« Def-order dependences can also be used; these aren't needed for all analyses,
but ensure that only equivalent programs have isomorphic PDGs.

Procedures

What happens when you have procedures and still
want to slice?
Weiser extended his dataflow algorithm to
interprocedural slicing
The PDG approach also extends to procedures
— But interprocedural PDGs are a bit hairy (Horwitz,
Reps, Binkley used SDGs)
— Representing conventional parameter passing is not
straightforward

The next slide...

* ..shows a fuzzy version of the SDG for a
version of the product/sum program
— Procedures Add and Multiply are defined

— They are invoked to compute the sum, the
product and to increment i in the loop

Context

+ A big issue in interprocedural slicing is
whether context is considered

+ In Weiser’s algorithm, every call to a
procedure could be considered as returning
to any call site

— This in general significantly increases the size
of a slice

Reps et al.

Reps and colleagues have a number of results for
handling contextual information for slices

These algorithms generally work to respect the
call-return structure of the original program

— This information is usually captured as summary edges
for call nodes

www.cs.wisc.edu/~reps/talks/PLDI00.tutorial. ppt
— General graph reachability for program analysis tutorial

Chopping

+ Given source S and target T, what program
points transmit effects from S to T?

Very roughly, intersect forward slice from S
with backward slice from T

+ Dicing: “dynamic chopping”

Technical 1ssues

How to slice in the face of unstructured
control flow?

Must slices be executable?
What about slicing in the face of pointers?

What about those pesky preprocessor
statements?

Size of slices

* Most optimistic study [Binkley & Harmon 2003]:
* A large-scale study of 43 C programs totaling just
over 1 million lines of code

Included the forward and backward static slice on
every executable statement -- 2,353,598 slices
constructed and analyzed

» Average slice size being just under 30% of the
original program.

Ignoring calling-context led to a 50% increase in
average slice size

Dynamic slicing

Conventional program slicing assumes
nothing about the inputs

Dynamic slicing [Agrawal & Horgan 1990]
[Korel & Laski 1990] is a variant that
considers slicing with respect to a given test
case (or suite) — increased precision for
debugging is the intent

Lackwit (O’Callahan & Jackson)

» Code-oriented tool that exploits type inference
* Answers queries about C programs
— e.g., “locate all potential assignments to this field”
— Accounts for aliasing, calls through function pointers,
type casts
« Efficient

— e.g., answers queries about a Linux kernel (157KLOC)
in under 10 minutes on a PC

Lackwit
Semantic * Sample queries
— Which integer variables
Scalable contain file handles?
Real language (C) — Can pointer foo in function
. bar be passed to free()? If
Static so, what paths in the call

graph are involved?
. 1 — Field f of variable v has an
ncomp ete programs incorrect value; where in
— Make assumptions the source might it have
about missing code, or changed?
Which functions modify the

Supply stubs cur_veh field of

map_manager_global?

Can work on

Lackwit analysis

+ Approximate (may return false positives)
+ Conservative (may not return false
negatives) under some conditions
— C’s type system has holes
— Lackwit makes assumptions similar to those
made by programmers (e.g., “no out-of-bounds
memory accesses”)
— Lackwit is unsound only for programs that
don’t satisfy these assumptions

Query commonalities

There are a huge number of names for storage
locations

— local and global variables; procedure parameters; for

records, etc., the sub-components

Values flow from location to location, which can
be associated with many different names
Archetypal query: Which other names identify
locations to which a value could flow to or from a
location with this given name?

— Answers can be given textually or graphically

An example

Query about the
cur_veh field of
map_manager_global
Shaded ovals are
functions extracting
fields from the global
Unshaded ovals pass
pointers to the structure
but don’t manipulate it

Edges between ovals are
calls

Rectangles are globals g sl s oy o o S5

Edges to rectangles are
variable accesses

Claim

This graph shows which functions would

have to be checked when changing the

invariants of the current vehicle object

— Requires semantics, since many of the
relationships are induced by aliasing over
pointers

Underlying technique

+ Use type inference, allowing type
information to be exploited to reduce
information about values flowing to
locations (and thus names)

 But what to do in programming languages
without rich type systems?

Trivial example

DollarAmt * int

getSalary (EmployeeNum e) getSalary(int e)
Relatively standard « Another, perhaps more
declaration common, way to declare the
Allows us to determine that same function

there is no way for the value * This doesn’t allow the direct
of e to flow to the result of inference that e’s value doesn’t

the function flow to the function return

— Because they have different
types

— Because they have the same
type
« Demands type inference
mechanism for precision

Lackwit’s type system

+ Lackwit ignores the C type declarations
+ Computes new types in a richer type system

* char* strcpy(char* dest,char* source)
e (num® reff, num® ref¥) =% num“ reff
* Implies

— Result may be aliased with dest (flow between pointers)

— Values may flow between the characters of the parameters

— No flow between source and dest arguments (no aliasing)

Incomplete type information

e void* returnlst (void* x,void* y)
{
return x; }
* (areff, b) =¢arefh

+ The type variable a indicates that the type of the contents
of the pointer x is unconstrained
— But it must be the same as the type of the contents of pointer y
 Increases the set of queries that Lackwit can answer with
precision

Polymorphism

* char* ptrl;
struct timeval* ptr2;
char** ptr3;

returnlst (ptrl,ptr2); returnlst (ptr2,ptr3)
* Both calls match the previous function declaration
* This is solved (basically) by giving returnlst a
richer type and instantiating it at every call site
- (c reff,d) =% c reff
- (e ref*, f) =% e ref"

Type stuff

* Modified form of Hindley-Milner algorithm “W”
+ Efforts made to handle

— Mutable types

— Recursive types

— Null pointers

— Uninitialized data

— Type casts

— Declaration order

void copy(char * from, char * to)

1

{

void copyS(char * fromarray, char *

int i
for (i = 0; i < 5; i+4) {

copy(from + i, to + i);

id) (

char froml[S] = { *h’, ‘e’, '1’

char tol(5];

. tol);

toarray) (

* *froml is not
compatible with
either * from?2 or
*to2

— But it is with
copy:*from,
copy:*to,
copy5:*from +
copy5:*to

, to2);

70 7B %o (num” rel, num” re) =7 ()
8.7 o (num’ ref”, num® rel®) —° ()
num’ ref®
num” ref”
aum' ref*
num" ref’

Morphin case study

Robot control program of about 17KLOC
Vehicle object contains two queue objects
— Client was investigating combining these two queues
into one
Queried each queue object to discover operations
performed and their contexts
The two graphs each contained 171 nodes

— But each graph had only five nodes highlighted as
“accessor” nodes

Example

* These five matches helped identify code to be

changed

+ grep would have returned false matches and
missed matches when parameters were passed to

functions

+ Context-sensitivity needed to distinguish the two

queue onjects

— Because both are passed as arguments to the same

queue functions

Recap

Helps find relationships among variables in
a C program

— Exploits type inference to understand values
flowing to locations and thus names

Approximate, although safe under many
(most?) conditions

Reasonably efficient

