
1

CSE503: Software Engineering

David Notkin
University of Washington

Computer Science & Engineering
Spring 2006

A classic tool: slicing

• Of interest by itself
• And for the underlying representations

– Originally, data flow
– Later, program dependence graphs

Slicing, dicing, chopping

• Program slicing is an approach to selecting
semantically related statements from a program
[Weiser]

• In particular, a slice of a program with respect to a
program point is a projection of the program that
includes only the parts of the program that might
affect the values of the variables used at that point
– The slice consists of a set of statements that are usually

not contiguous

Basic ideas

• If you need to perform a software engineering
task, selecting a slice will reduce the size of the
code base that you need to consider

• Debugging was the first task considered
– Weiser even performed some basic user studies

• Claims have been made about how slicing might
aid program understanding, maintenance, testing,
differencing, specialization, reuse and merging

Example
read(n)
i := 1;
sum := 0;
product := 1;
while i <= n do begin
 sum := sum + i;
 product :=
 product * i;
 i := i + 1;
end;
write(sum);
write(product);

read(n)
i := 1;
sum := 0;
product := 1;
while i <= n do begin
 sum := sum + i;
 product :=
 product * i;
 i := i + 1;
end;
write(sum);
write(product);

Weiser’s approach

• For Weiser, a slice was a reduced, executable
program obtained by removing statements from a
program
– The new program had to share parts of the behavior of

the original
• Weiser computed slices using a dataflow

algorithm, given a program point (criterion)
– Using data flow and control dependences, iteratively

add sets of relevant statements until a fixpoint is
reached

2

Ottenstein & Ottenstein

• Build a program dependence graph (PDG)
representing a program

• Select node(s) that identify the slicing
criterion

• The slice for that criterion is the reachable
nodes in the PDG

PDG for the exampleEntry

read(n) i:=1 sum:=0 prod:=1
write

(sum)

write

(prod)

sum :=

sum + i

prod :=

prod * i
i := i + 1

while

i <=n

• Thick lines are control dependences
• Thin lines are (data) flow dependences

Real PDGs are a bit more
complicated

• Vertices in the graph represent (a) assignment states and (b) predicates in the
program

• Edges represent control and data flow dependences
• Control dependences always start at a predicate (or the entry node)

– They are labeled with a boolean
– Intuitively, node w is control dependent on node v if the predicate of node v

evaluates to the label on the edge from v to w – that is, what happens at w controls
whether or not v executes

– An assignment statement followed immediately by another assignment statement
have no control dependence between them, since the second one always executes
when the first one does

• Data dependences represent the possible flow of values through the program
– (Roughly) there is a data dependence (edge) from node v to node w if v includes an

assignment to some variable x, and then w includes a use of (that specific) x.
• These can be separated into (at least) loop-independent and loop-carried dependences,

which roughly distinguish whether the relationship is across iterations of a loop or not
• Def-order dependences can also be used; these aren't needed for all analyses,

but ensure that only equivalent programs have isomorphic PDGs.

Procedures

• What happens when you have procedures and still
want to slice?

• Weiser extended his dataflow algorithm to
interprocedural slicing

• The PDG approach also extends to procedures
– But interprocedural PDGs are a bit hairy (Horwitz,

Reps, Binkley used SDGs)
– Representing conventional parameter passing is not

straightforward

The next slide...

• ..shows a fuzzy version of the SDG for a
version of the product/sum program
– Procedures Add and Multiply are defined
– They are invoked to compute the sum, the
product and to increment i in the loop

3

Context

• A big issue in interprocedural slicing is
whether context is considered

• In Weiser’s algorithm, every call to a
procedure could be considered as returning
to any call site
– This in general significantly increases the size

of a slice

Reps et al.

• Reps and colleagues have a number of results for
handling contextual information for slices

• These algorithms generally work to respect the
call-return structure of the original program
– This information is usually captured as summary edges

for call nodes
• www.cs.wisc.edu/~reps/talks/PLDI00.tutorial.ppt

– General graph reachability for program analysis tutorial

Chopping

• Given source S and target T, what program
points transmit effects from S to T?

• Very roughly, intersect forward slice from S
with backward slice from T

• Dicing: “dynamic chopping”

Technical issues

• How to slice in the face of unstructured
control flow?

• Must slices be executable?
• What about slicing in the face of pointers?
• What about those pesky preprocessor

statements?

Size of slices
• Most optimistic study [Binkley & Harmon 2003]:
• A large-scale study of 43 C programs totaling just

over 1 million lines of code
• Included the forward and backward static slice on

every executable statement -- 2,353,598 slices
constructed and analyzed

• Average slice size being just under 30% of the
original program.

• Ignoring calling-context led to a 50% increase in
average slice size

Dynamic slicing

• Conventional program slicing assumes
nothing about the inputs

• Dynamic slicing [Agrawal & Horgan 1990]
[Korel & Laski 1990] is a variant that
considers slicing with respect to a given test
case (or suite) – increased precision for
debugging is the intent

4

Lackwit (O’Callahan & Jackson)

• Code-oriented tool that exploits type inference
• Answers queries about C programs

– e.g., “locate all potential assignments to this field”
– Accounts for aliasing, calls through function pointers,

type casts
• Efficient

– e.g., answers queries about a Linux kernel (157KLOC)
in under 10 minutes on a PC

Lackwit

• Semantic
• Scalable
• Real language (C)
• Static
• Can work on

incomplete programs
– Make assumptions

about missing code, or
supply stubs

• Sample queries
– Which integer variables

contain file handles?
– Can pointer foo in function

bar be passed to free()? If
so, what paths in the call
graph are involved?

– Field f of variable v has an
incorrect value; where in
the source might it have
changed?

– Which functions modify the
cur_veh field of
map_manager_global?

Lackwit analysis

• Approximate (may return false positives)
• Conservative (may not return false

negatives) under some conditions
– C’s type system has holes
– Lackwit makes assumptions similar to those

made by programmers (e.g., “no out-of-bounds
memory accesses”)

– Lackwit is unsound only for programs that
don’t satisfy these assumptions

Query commonalities

• There are a huge number of names for storage
locations
– local and global variables; procedure parameters; for

records, etc., the sub-components
• Values flow from location to location, which can

be associated with many different names
• Archetypal query: Which other names identify

locations to which a value could flow to or from a
location with this given name?
– Answers can be given textually or graphically

An example
• Query about the

cur_veh field of
map_manager_global

• Shaded ovals are
functions extracting
fields from the global

• Unshaded ovals pass
pointers to the structure
but don’t manipulate it

• Edges between ovals are
calls

• Rectangles are globals
• Edges to rectangles are

variable accesses

Claim

• This graph shows which functions would
have to be checked when changing the
invariants of the current vehicle object
– Requires semantics, since many of the

relationships are induced by aliasing over
pointers

5

Underlying technique

• Use type inference, allowing type
information to be exploited to reduce
information about values flowing to
locations (and thus names)

• But what to do in programming languages
without rich type systems?

Trivial example
• DollarAmt

getSalary(EmployeeNum e)

• Relatively standard
declaration

• Allows us to determine that
there is no way for the value
of e to flow to the result of
the function
– Because they have different

types

• int
getSalary(int e)

• Another, perhaps more
common, way to declare the
same function

• This doesn’t allow the direct
inference that e’s value doesn’t
flow to the function return
– Because they have the same

type
• Demands type inference

mechanism for precision

Lackwit’s type system
• Lackwit ignores the C type declarations
• Computes new types in a richer type system

• char* strcpy(char* dest,char* source)

• (numα refβ, num α refγ) →φ num α refβ

• Implies
– Result may be aliased with dest (flow between pointers)
– Values may flow between the characters of the parameters
– No flow between source and dest arguments (no aliasing)

Incomplete type information

• void* return1st(void* x,void* y)
{
 return x; }

• (a refβ, b) →φ a refβ

• The type variable a indicates that the type of the contents
of the pointer x is unconstrained
– But it must be the same as the type of the contents of pointer y

• Increases the set of queries that Lackwit can answer with
precision

Polymorphism

• char* ptr1;
struct timeval* ptr2;
char** ptr3;
…
return1st(ptr1,ptr2); return1st(ptr2,ptr3)

• Both calls match the previous function declaration
• This is solved (basically) by giving return1st a

richer type and instantiating it at every call site
– (c refβ, d) →δ c refβ
– (e refα, f) →χ e refα

Type stuff

• Modified form of Hindley-Milner algorithm “W”
• Efforts made to handle

– Mutable types
– Recursive types
– Null pointers
– Uninitialized data
– Type casts
– Declaration order

6

• *from1 is not
compatible with
either *from2 or
*to2
– But it is with
copy:*from,
copy:*to,
copy5:*from +
copy5:*to

Morphin case study

• Robot control program of about 17KLOC
• Vehicle object contains two queue objects

– Client was investigating combining these two queues
into one

• Queried each queue object to discover operations
performed and their contexts

• The two graphs each contained 171 nodes
– But each graph had only five nodes highlighted as

“accessor” nodes

Example

• These five matches helped identify code to be
changed

• grep would have returned false matches and
missed matches when parameters were passed to
functions

• Context-sensitivity needed to distinguish the two
queue onjects
– Because both are passed as arguments to the same

queue functions

Recap

• Helps find relationships among variables in
a C program
– Exploits type inference to understand values

flowing to locations and thus names
• Approximate, although safe under many

(most?) conditions
• Reasonably efficient

