
Crosscutting Concerns
CSE 503 – Software Engineering

Miryung Kim

16 May 2006

Recap of “Information Hiding” Principle

• What is the “Information Hiding
Principle?”
– hide design decisions that are likely to

change.
– separating interface from implementation.
– hierarchical design decisions.

Recap of “Information Hiding” Principle

• What is the “Information Hiding Principle?”
– using C++ instead of C?
– using private instead of public?
– abstract the behavior and data?
– reduce dependencies between modules?

Parnas[72]
Hide design decisions that
are likely to change.
≈ Identify design decisions that are unlikely to change and

fixate them.

Any Problems with IHP?

• you don’t know what to hide
• increase complexity by adding more layers.
• performance cost
• how can we anticipate what are likely to

change.
Parnas[72]
Hide design decisions that are likely to
change.
≈ Identify design decisions that are unlikely to change and fixate them.

Any Problems with IHP?

• How can you anticipate which design
decisions are likely to change?

• What if there are multiple design
decisions?

Primary vs. Secondary Design
Decisions?

• Primary design decisions
– Decisions that architects consider as the

most important decisions
– Decisions that are very unlikely to change

• Examples?
– What creates data and who’s reading the

data.
– Scope design decisions.
– Layered architecture.

Primary vs. Secondary Design
Decisions?

• Primary design decisions
– Decisions that architects consider as the

most important decisions
– Decisions that are very unlikely to change

• Examples?
– architectural design decisions (e.g. pipeline

architecture, layered architecture)
– class hierarchy in OO programs

Primary vs. Secondary Design
Decisions?

• Secondary design decisions
– Less important than primary decisions
– Decisions that architects did not anticipate

in the beginning of system design.

• Examples?
– dependency that are added later given a layered architecture.

– performance (indirection)

– data format, security,

Primary vs. Secondary Design
Decisions?

• Secondary design decisions
– Less important than primary decisions
– Decisions that architects did not anticipate

in the beginning of system design.

• Examples?
– insertion of additional features or operations
– system performance improvement
– logging or tracing system execution

Primary Design Decisions
+ Secondary Design Decisions

design decisions that
are likely to change

design decisions that
are likely to changedesign decisions that

are likely to change

Decisions that cro
sscut the primary design decisi

ons

dependency between modules

interface that hides design decisions

Crosscutting Concerns

• Problem space:
– What are the examples of crosscutting

concerns?

• Solution space:
– To deal with crosscutting concerns, what

kinds of approaches do we have?

Functional vs. Data Concerns

• Example: Operations on Abstract
Syntax Tree

Statement Expression Method

Invocation

Assignment ….

Typecheck

Evaluate

….

….

How would you write this in ML?

• Any problems with changeability?
– you cannot change AST.
– it’s difficult to add more datatype.
– it’s easy to add more operations.

Datatype
type ASTnode =
Statement| Expression | FunctionCall| Assignment..
Operation
let rec typecheck ctxt n =
 match n with
 Statement -> ….
 | Expression -> ….
 | MethodInvocation -> …
 | Assignment ->…

Operation
let rec evaluate env n =
 match n with
 Statement -> ….
 | Expression -> ….
 | MethodInvocation -> …
 | Assignment ->…

How would you write this in Java?

• Any problems with changeability?
– inverse of the other one.
– difficult to add operations easy to add data type

Datatype
class ASTnode {
 Operation
 boolean typecheck(Context c){
 …}
 int evaluate(Context c){
 …}
 void setParent(ASTnode n) {
 …}
 ASTnode getParent() {
 …}
}

class Expression extends ASTnode {
 boolean typecheck(Context c) {
 …}
 int evaluate(Context c) {
 …}
}
class FunctionCall extends ASTnode{
 boolean typecheck(Context c) {
 …}
 int evaluate(Context c) {
 …}
}
…

Example: Logging Concern

• Where do you have to change to add the
logging concern?

• How can you modularize logging
concerns?
– Log4J?

Other Crosscutting Concerns

• Runtime checking of invariants
• Tracing executions
• Serializing
• Database transaction
• Security
• Performance enhancement, etc.

Crosscutting Concerns

• Problem space:
– What are the examples of crosscutting

concerns?

• Solution space:
– To deal with crosscutting concerns, what

kinds of approaches do we have?

Solution Space

• OO Design technique and methodology
– Role-based modeling

• Programming language tweaking
– Mixin

• Programming language approach
– AspectJ

• Software engineering tool approach
– FEAT, AspectBrowser, CME, etc.

Recap of OO Design
• Language constructs

– methods, inheritances, packages, types
(classes and interfaces), access modifiers, etc.

• Good at supporting for ADT
– separate a particular data

representation choice from other parts
of a program in a source file

– hide the representation choice behind an
interface

Role-based Model
[Anderson et al. 92]

• OO design technique to achieve
separation of concerns
– Also called as “responsibility-driven” design

and “collaboration-based” design.
– Behavioral requirement is implemented by a

set of communicating objects.
– For each behavior requirement, separate

the role of each object from irrelevant
details.

Role-based Model

• What is a role?
– A particular responsibility of an object

• What is a role model?
– The unit of collaboration
– The concept of communicating objects

(roles)

Role-based Model
Design Methods:

– Identify collaboration among objects
– Assign a role to each object in the

collaboration that you model
– Synthesize roles in several role models

Object OA Object OB Object OC

Collaboration
c1
Collaboration
c2
Collaboration
c3
Collaboration
c4

 Role A1 Role B1 Role C1

 Role A2 Role B2

 Role B3 Role C3

 Role A4 Role B4 Role C4

Solution Space

• OO Design technique and methodology
– Role-based modeling

• Programming language tweaking
– Mixin

• Programming language approach
– AspectJ

• Software engineering tool approach
– FEAT, AspectBrowser, CME, etc.

Recap of Java Style Inheritance

• Support reuse of the implementation
provided by a superclass.

• A subclass has a control.

Problem 1.
Difficulty of Adding Roles

• Change Scenario:
– Add an additional role in A

– Do some extra operations on the existing role m1.

class A {
 method m1() {
 …
 }
 method m2() {
 m1();
 …
 }
}

client C {
A a = new A();
a.m1();
a.m2();
}

Problem 1.
Difficulty of Adding Roles

• Any problems?
– made changes to m2()

– class hierarchy no longer reflect what design you wanted to
have.

– brittle

class A1 inherits A {
 method m1() {
 … // override m1.
 }
 method m3() {
 … // extra role
 }
}

client C {
A a = new A1();
a.m1();
a.m2();
}

class A {
 method m1() {
 …
 }
 method m2() {
 m1();
 …
 }
}

client C {
A a = new A();
a.m1();
a.m2();
}

Problem 2.
Fragile Class Hierarchy

• Change Scenario:
– Change the behavior

of m3().

• Any problems?
• m4, m5

class A0{
method m1 () { }
method m2 () { }
}

class A1 inherits A0{
method m1 () { }
method m3 () { m1() }
}

class A2 inherits A1{
method m4 () { m3()}
}

class A3 inherits A2{
method m5 () { m4()}
}

client C {
A3 a = new A3();
a.m5();
}

Mixin [Bracha, Cook 90]

• Template<T> class C inherits T {…}

• Implementation technique for role
models
– A mixin is an abstract subclass whose

superclass is not determined.

Mixin for Role-based Model
[VanHilst, Notkin 96]

• Implementation technique for role models
– A mixin is an abstract subclass whose

superclass is not determined.
– A role as a class, including all the relevant

variables and methods
– Roles are composed by inheritance
– To make roles reusable, the superclass of a

role is specified in a template argument of C++.

Mixin using C++ template
Class A Class B Class C

Collaboration
c1

Collaboration
c2

 Role A1 Role B1 Role C1

 Role A2 Role B2

template <class ST>
class A1: public ST {
}

template <class ST>
class A2: public ST {
}

template <class ST>
class B1: public ST {
}

template <class ST>
class B2: public ST {
}

template <class ST>
class B2: public ST {
}

Composition Statement
class a1: public A1<empty> {};
class A: public A2<a1> {};
class b1: public B1<emtpy> {};
class B: public B2<b1> {};
class C: public C1<empty> {};

Role based model via
inheritance, static binding, and
type parameterization

Example
template <class SuperType>
class Shifter: public SuperType {
 public :
 void shiftLine (int l) {
 int num_words=words(l);
 for (int w=0; w<num_words; w++)
 addShift(l,w,num_words);
 }
 void initializeShift() {
 int num_lines = lines ();
 resetShift();
 for (int l=0; l<num_lines; l++)
 shiftLine(l);
 }
};

Evaluation of Mixin Approach

Evaluation of Mixin Approach

+ Roles can be added to a single base class
incrementally.

Evaluation of Mixin Approach

+ Roles can be added to a single base class
incrementally.

+ Fine grained decomposition/ flexible composition

Evaluation of Mixin Approach

+ Roles can be added to a single base class
incrementally.

+ Fine grained decomposition/ flexible composition
+ No run time overhead

Evaluation of Mixin Approach

+ Roles can be added to a single base class
incrementally.

+ Fine grained decomposition/ flexible composition
+ No run time overhead
- There is NO direct support for adding a set of roles

to multiple base classes together.

Evaluation of Mixin Approach

+ Roles can be added to a single base class
incrementally.

+ Fine grained decomposition/ flexible composition
+ No run time overhead
- There is NO direct support for adding a set of roles

to multiple base classes together.
- Composition orders matter. Classes composed later can

only use classes composed earlier.

Evaluation of Mixin Approach

+ Roles can be added to a single base class
incrementally.

+ Fine grained decomposition/ flexible composition
+ No run time overhead
- There is NO direct support for adding a set of roles

to multiple base classes together.
- Composition orders matter. Classes composed later can

only use classes composed earlier.
- Relying on C++ type safety – not a good idea

Evaluation of Mixin Approach

+ Roles can be added to a single base class
incrementally.

+ Fine grained decomposition/ flexible composition
+ No run time overhead
- There is NO direct support for adding a set of roles

to multiple base classes together.
- Composition orders matter. Classes composed later can

only use classes composed earlier.
- Relying on C++ type safety – not a good idea
- Reduced understandability

Solution Space

• OO Design technique and methodology
– Role-based modeling

• Programming language tweaking
– Mixin

• Programming language approach
– AspectJ

• Software engineering tool approach
– FEAT, AspectBrowser, CME, etc.

AspectJ [Kiczales et al.]
• Extension of Java that supports crosscutting

concerns
• An aspect is a module that encapsulates a

crosscutting concern.
– Joint point: the moment of method calls and

field references, etc.
– Point cut: a mean of referring to a set of joint

point
– Advice: a method like constructs used to define

additional behavior at join points

Join point and Pointcut
• Name based
pointcut move ():
 call (void FigureElment.moveBy(int,int)) ||
 call (void Point.setX(int) ||
 call (void Point.setY(int) ||
 call (void Line.setP1(Point) ||
 call (void Line.setP2(Point));
• Pattern based
pointcut move () :
 call (void Figure.make*.(…))
 // starting with “make,” and which take any number of parameters
 call (public * Display.*(…))
 // any call to a public method defined on Display

Advice

• after: the moment the method of a joint point
has run and before the control is returned

• before: the moment a join point is reached
• around: the moment a join point is reached

and has explicit control over whether the
method itself is allowed to run at all

Aspect Code: Tracing
aspect SimpleTracing {
 pointcut traced():
 call (void Display.update()) ||
 call (void Display.repaint());
 before () : traced() {
 println(“Entering:” + thisJointPoint);
 }
 after () : traced() {
 println(“Exiting:” + thisJointPoint);
 }

 void println(String str) {
 …// write to the appropriate stream
 }
}

How to Retrieve Execution
Context

• pointcut parameters
– advice declaration values can be passed

from the pointcut designator to the advice.

• access to return value

before (Point p, int val) : call (void p.setX(val)) {
 System.out.println(“x value of”+p+ “will be set to” + val+”.”;
}
pointcut gets(Object caller) : instanceof (caller) && (call(int Point.getX()));

after (Point p) returning (int x) : call(int p.getX()) {
 System.out.println(p+ “returned” + x + “from getX().”; }

Aspect Code:
Runtime Invariant Checking

aspect PointBoundsInvariantChecking {
 before (Point p, int x) : call (void p.setX(x)) {
 checkX(p,x);
 }
 before (Point p, int y) : call (void p.setY(y)) {
 checkY(p,x);
 }
 before (Point p, int x, int y) : call (void p.moveBy(x,y)) {
 checkX(p,p.getX()+x);
 checkY(p,p.getY()+y);
 }
 void checkX(Point p, int x) {…//check an invariant}
 void checkY(Point p, int y) {…//check an invariant}
}

Evaluation of AspectJ

Evaluation of AspectJ
+ Dynamic crosscutting mechanism helps aspect code to be

invoked implicitly

Evaluation of AspectJ
+ Dynamic crosscutting mechanism helps aspect code to be

invoked implicitly
+ Reduce code duplication

Evaluation of AspectJ
+ Dynamic crosscutting mechanism helps aspect code to be

invoked implicitly
+ Reduce code duplication

- AspectJ style differentiates the base code from aspect
code.

Evaluation of AspectJ
+ Dynamic crosscutting mechanism helps aspect code to be

invoked implicitly
+ Reduce code duplication

- AspectJ style differentiates the base code from aspect
code.

- Unidirectional reference from AspectJ code to base code

Evaluation of AspectJ
+ Dynamic crosscutting mechanism helps aspect code to be

invoked implicitly
+ Reduce code duplication

- AspectJ style differentiates the base code from aspect
code.

- Unidirectional reference from AspectJ code to base code

- AspectJ code may end up reflecting the base class
hierarchy.

Evaluation of AspectJ
+ Dynamic crosscutting mechanism helps aspect code to be

invoked implicitly
+ Reduce code duplication

- AspectJ style differentiates the base code from aspect
code.

- Unidirectional reference from AspectJ code to base code

- AspectJ code may end up reflecting the base class
hierarchy.

- Base code sometimes needs to be restructured to expose
suitable join points.

Solution Space

• OO Design technique and methodology
– Role-based modeling

• Programming language tweaking
– Mixin

• Programming language approach
– AspectJ

• Software engineering tool approach
– FEAT, AspectBrowser, CME, etc.

Lightweight Tool Support

• Finding aspects and managing
crosscutting concerns
– FEAT (Concern Graph) [Robillard et al.03]

• Lexical search tools
– grep, STAR tool
– Aspect Browser [Griswold et al.01]

FEAT [Robillard et al. 03]

Aspect Browser
[Griswold et al. 01]

Other Lightweight Tools

• Navigation and Management
– CME: Crosscutting Concern Modeling

Environment [IBM]
– JQuery [De Volder 03]

• Crosscutting Concern Mining Tool
– Based on topology of structural dependencies

[Robillard 05]
– Based on code clones [Shepherd et al. 05]
– Based on event traces [Breu et al. 04]

Recap of Today’s Lecture

• Mixin
+ good at adding functional concerns that cross-cut the boundary

between classes
- complex PL tweaking -> difficulty in program understanding

• AspectJ
+ good at adding functional concerns
+ good at intercepting control flow
- difficulty in program understanding

• Lightweight tool approaches
+ can be easily integrated into development practices
- only good at discovering code with particular symptoms
- human in the loop

If you are interested in more,

• Good news! a lot more interesting research
out there
– design patterns
– open implementation, meta object protocol,

composition filters, hyperslices, etc
– programming languages
– many light-weight tools
– many design methodologies
– validation of existing approaches and tools

