
Lightweight Modelling and Automatic Analysis of

Multicast Key Management Schemes

by

Mana Taghdiri

Submitted to the Department of Electrical Engineering and Computer

Science
in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

December 2002

c© Massachusetts Institute of Technology 2002. All rights reserved.

Author .

Department of Electrical Engineering and Computer Science
December 20, 2002

Certified by. .
Daniel Jackson

Associate Professor

Thesis Supervisor

Accepted by .
Arthur Smith

Chairman, Department Committee on Graduate Students

Lightweight Modelling and Automatic Analysis of Multicast

Key Management Schemes

by

Mana Taghdiri

Submitted to the Department of Electrical Engineering and Computer Science
on December 20, 2002, in partial fulfillment of the

requirements for the degree of
Master of Science in Computer Science and Engineering

Abstract

Alloy, a lightweight modelling language based on relations, is used to construct a
framework for modelling a class of key management schemes used in secure multicast,
aimed at checking them against some critical correctness properties that should be
satisfied by all secure multicast protocols.

This framework is used to model pull-based Asynchronous Rekeying Framework
(ARF) and Iolus, two very different proposed schemes addressing the scalability issue
inherently involved in group key management problem. The models are analyzed
using the Alloy Analyzer, a fully automatic simulation and checking tool for Alloy
models.

These analyses exposed some flaws, including one serious security breach, in ARF,
previously unknown to its designers. To eliminate the most serious flaw, some fixes
are suggested and checked using the Alloy Analyzer.

The proposed framework introduces a novel idiom for modelling distributed sys-
tems. Compared to the conventional way of modelling these systems, our idiom is
simpler and more intuitive while supporting better modularity.

Thesis Supervisor: Daniel Jackson
Title: Associate Professor

Acknowledgments

I would like to thank my advisor professor Daniel Jackson for his valuable sugges-

tions and comments during this work. Also, I wish to thank Tina Nolte and Sarfraz

Khurshid for their helpful comments on the earlier drafts of this thesis.

But above all, I would like to thank my family: my parents Afsaneh and Hossein,

and my sisters Shiva and Sara, who always encouraged me to learn and supported

me with love throughout my life, and my husband Mehdi, for all his love, patience,

encouragement, and support without which this thesis would have never been possible.

This thesis is dedicated to all my family.

Contents

1 Introduction 8

2 Overview of Alloy 10

2.1 Language . 10

2.1.1 Expressions . 10

2.1.2 Formulas . 12

2.1.3 High-Level Constructs . 13

2.2 Ordering Relations . 17

2.3 Analyzer . 18

3 Tick-based Modelling vs. Global State Modelling 20

4 A Modelling Framework for Key Management Schemes 25

4.1 Multicast Key Management Problem 25

4.1.1 Secure Multicast . 26

4.1.2 Key Management . 26

4.2 Description of the Framework . 27

5 ARF 33

5.1 Description . 33

5.2 Model . 35

5.3 Analysis . 43

5.3.1 Verified Properties . 43

5.3.2 Flaws Found . 43

4

6 Iolus 48

6.1 Description . 48

6.2 Model . 50

6.3 Analysis . 59

7 Conclusions and Related Work 63

7.1 Summary . 63

7.2 Discussions and Related Work . 64

5

List of Figures

3-1 (a) Tick-based Model (b) Global State model of a Simple System . . 21

4-1 The Modelling Framework - Basic Structure 28

4-2 The Modelling Framework - Main Functions 30

4-3 Correctness Properties . 31

5-1 ARF Model - Added Signatures and Facts 36

5-2 ARF Model - Actions - Part 1 . 38

5-3 ARF Model - Actions - Part 2 . 40

5-4 ARF Model - Auxiliary Functions . 42

5-5 Changed Receiving Functions . 45

6-1 An Example of a Secure Distribution Tree – Each cloud represents a

subgroup of clients. 49

6-2 Iolus Model - Added Signatures and Facts 51

6-3 The Model of the Example Secure Distribution Tree 53

6-4 Iolus Model - Actions - Part 1 . 54

6-5 Iolus Model - Actions - Part 2 . 56

6-6 Iolus Model - Auxiliary Functions . 58

6-7 Iolus Model - Basic Properties . 60

6-8 Constraints Required to Check the Liveness Property 61

6

List of Tables

5.1 First Counterexample for OutsiderCantSend 44

5.2 Second Counterexample for OutsiderCantSend 44

5.3 First Counterexample for InsiderCanRead 46

5.4 Second Counterexample for InsiderCanRead 47

7

Chapter 1

Introduction

Multicast is a preferred way of communication when an identical message is to be

sent to a group of agents. It has become considerably more important due to the

growth of network applications in which data should be received only by the legiti-

mate members. Some of these applications are: teleconferencing, distributed games,

internet newscast, stock quotes, and any network application which requires people

to pay for the data.

In order to prevent unauthorized agents from receiving multicasted data, data

messages are encrypted using a key known only to the authorized agents. Managing

updates of this encrypting key efficiently is a challenging problem in large groups with

dynamic memberships.

We describe a framework aimed at checking the correctness properties for a class

of multicast key management schemes using a lightweight formal method. To our

knowledge, this is the first formal analysis of such schemes that exploits fully auto-

mated verification techniques.

Furthermore, in this framework, we introduce a new idiom of specification which

allows a rather natural and succinct expression of the dynamic systems. Compared

to the conventional way of specifying such systems, our idiom is simpler and supports

better modularity.

Our modelling language is Alloy [10, 12], a lightweight modelling language based

on relations. Since Alloy is merely a syntax for a rather conventional first-order logic,

8

we believe that our ideas could be applied straightforwardly in other languages as

well. These models can be analyzed with the Alloy Analyzer [9,11], a fully automatic

tool built on an underlying SAT engine to simulate and check the Alloy models.

The proposed framework is used to formally check the correctness properties of

two different key management schemes: Iolus [19] and pull-based ARF [26]. Iolus

was the first proposed scheme to address the scalability problem in multicast key

management, and its ideas form the basis of many subsequent schemes.

ARF, in contrast, is a recently proposed scheme for multicast key management

that introduces a thoroughly different approach to solving the scalability problem.

Our analysis of ARF exposed a kind of message loss in this asynchronous protocol

that does not exist in the synchronous schemes. More significantly, it has shown

that ARF violates one of the properties claimed by its own designers, resulting in a

security breach. We suggest a way to fix this breach and reduce it to a less important

kind of message loss.

Although the models of these protocols are abstract, we have been careful to

remain faithful enough to ensure that all the scenarios made by the Alloy Analyzer

are in fact real, so that flaws detected actually exist in the protocol.

Our experience supports the contention that lightweight formal methods are feasi-

ble and economical. Our model of ARF, for example, is less than 100 lines of code in

its entirety, and yet it exposed significant flaws previously unknown to its designers.

The outline of the thesis is as follows: Chapter 2 is an overview of the Alloy

language and its analyzer. Chapter 3 compares our proposed idiom with the conven-

tional one by a simple example. Chapter 4 explains the key management problem

in general and introduces our modelling framework. Chapter 5 describes the ARF

scheme, its model and its analysis. Chapter 6 describes Iolus and the analysis of its

model. Finally, Chapter 7 summarizes with conclusions and related work.

9

Chapter 2

Overview of Alloy

Alloy [10, 12] is a declarative modelling language for describing structural properties

of a system. The models written in Alloy are usually much smaller than the systems

they model but yet they can be used to check important properties of their underlying

systems.

Alloy models can be analyzed using the Alloy Analyzer (AA) [9,11], a fully auto-

matic tool built on a SAT solver to simulate models and check their properties.

2.1 Language

Alloy is a syntax for a first-order logic extended with relational operators. In this

section we first explain the legal expressions and formulas in the Alloy language and

then describe the language high-level constructs, i.e. signatures, facts, functions, and

assertions.

2.1.1 Expressions

Alloy is a strongly typed language that assumes a universe of atoms partitioned into

disjoint sets, each of which is associated with a basic type.

The value of any expression in Alloy is always a relation – that is a set of tuples

of atoms. Relations are typed and may have any arity. For example, if S, T and R are

10

three basic types, then a relation of type <S, T, R> is a set of tuples with the first

atom of type S, the second one of type T and the third one of type R.

Sets are expressed as unary relations, i.e. relations whose tuples have only one

element. Scalars are expressed as singleton unary relations, i.e. relations containing

only one tuple with only one element.

Relations are combined with a variety of operators to form expressions. These

operators are either set operators or relational operators. The standard set operators,

‘+’ for union, ‘&’ for intersection, and ‘-’ for difference, combine two relations of the

same type, viewed as sets of tuples, according to their standard definitions.

The main relational operator is the dot operator for join (relational composition).

If r and s are two relations, their composition r.s contains a tuple < r1, . . . , rm−1, s2,

. . . , s
n

> if and only if < r1, r2, . . . , rm
> is a tuple in r and < s1, s2, . . . , sn

> is a

tuple in s and r
m

= s1. When r is a unary relation (i.e. a set) and s is a binary

relation, the composition r.s is the standard relational image of r under s. The

expression r.s can be also written as s[r] with the same meaning but it binds more

loosely than the dot operator.

The product operator r -> s gives the cross product of the two relations r and

s. When r and s are unary relations, r -> s is just the Cartesian product of the two

sets.

The transpose ~r gives a new relation by reversing the order of atoms in each

tuple of r. The transitive closure operator ^r takes a binary relation r and gives the

smallest transitive relation containing r. The reflexive transitive closure *r is like ^r

but includes a mapping from every atom to itself, too.

There are also three relational constants: none[e], that represents the empty

relation with the same type as e, univ[e], that gives the universal relation with the

same type as e, and iden[e] that represents the identity relation with left and right

types the same as the type of e.

11

2.1.2 Formulas

Elementary formulas are formed from the subset operator ‘in’ and the equivalence

operator ‘=’. For two expressions p and q, the formula p in q is true when every

tuple in p is in q and the formula p = q is true when p in q and q in p are both

true.

Larger formulas can be obtained using the standard logical connectives: ‘&&’ for

conjunction, ‘||’ for disjunction, ‘!’ for negation, ‘=>’ for implication, and ‘<=>’

for bi-implication. Furthermore, the formula ‘p => q, t’ is short for: if p then q

else t (i.e. p => q && !p => t).

The formula ‘p: q’ has the same meaning as ‘p in q’, but when q is a set, adds

an implicit constraint that p be scalar (i.e. a singleton). This constraint is overridden

by writing ‘p :option q’ which lets p to be empty or scalar, or ‘p :set q’ which

eliminates the multiplicity constraint entirely.

Quantifications take their usual form. For example, ‘all x: e| F’ is true if and

only if the formula F holds under every binding of the variable x to a scalar from the

set denoted by e. Often used quantifiers are: all (universal), some (existential) and

no (i.e. there is no value for x for which F is true).

For a quantifier Q and an expression e, the formula ‘Q e’ is short for the formula

‘Q x: T| x in e’ where T is the type of e. So ‘no e’, for example, says that e is

empty.

Declaration ‘disj v1, v2, . . . , vn
: e’ is equivalent to a declaration for each of the

variables v1, v2, . . . , vn
, with an additional constraint that the relations denoted by

the variables are respectively disjoint (i.e., share no tuple).

Furthermore, within curly braces consecutive formulas are implicitly conjoined.

Thus, for example, ‘all x: e| {F G}’ means ‘all x: e| F && G’.

In order to make models simpler, a repeating expression within a formula can be

bound to an identifier using the let keyword. Then, in the formula, wherever the

identifier is used, its corresponding expression will be inlined. For example,

12

all q : Q | let q’ = q.r {

all x : q.s - q’.s | F

all x : q’.s - q.s | G

}

is equivalent to:

all q : Q {

all x : q.s - q.r.s | F

all x : q.r.s - q.s | G

}

2.1.3 High-Level Constructs

An Alloy model is a sequence of paragraphs that can be of two kinds: signatures

(sig), used for construction of new types, and a variety of formula paragraphs (fact,

fun, and assert), used to record constraints.

Signatures

In Alloy, the signature declaration introduces a type and a collection of fields in it

along with the types of the fields and constraints on their values. For example,

sig Tick {}

introduces Tick as a basic signature (or an uninterpreted type) with no fields while

the signature declaration

sig Key {

creator : KDS

}

declares Key as a basic signature with a field creator. The expression on the right

side of the colon after a field denotes the type of that field. Thus, the creator field

13

is of type KDS. Furthermore, each field introduces a new relation in which the type of

the first atom of each tuple is the signature type. For example creator is a relation

of type <Key, KDS>. The field is interpreted as functional (i.e. each atom of the

signature is mapped to exactly one atom by the field relation) unless constrained

otherwise using the option or set keywords.

A field can introduce a relation with the arity higher than two. For example,

sig KDS {

keys : Tick -> Key,

members : Tick -> Member

}

declares KDS as a basic signature with fields keys and members where for each KDS k,

k.keys, for example, is itself a relation of type <Tick, Key>. Thus, keys is a ternary

relation of type <KDS, Tick, Key>.

Some signatures inherit fields and constraints from another signature. The signa-

ture declaration

sig GSA extends KDS {

parent : option GSA

}

declares GSA as a subtype of KDS with an additional field parent of type GSA. As

mentioned before, the option keyword means the value of this field can be empty or

a singleton.

Functions

A function (fun) is a formula that can be invoked (that is, imported) elsewhere.

Given values of the arguments, the function returns true/false or a relational value.

For example, the function

14

fun InitKDS(t : Tick) {

no KDS.keys[t]

no KDS.members[t]

}

returns true if the argument t of type Tick satisfies the constraints in curly braces,

and false otherwise.

A function may be defined to return a value of a certain type. In that case, keyword

result stands for the returned value. If the value is defined non-deterministically,

the keyword det should be used in the function header. For example, the function

det fun NewestKey(keys : set Key) : option Key {

some keys <=> some result

result in keys

no OrdNexts(result) & keys

}

defines a function which can be also written as:

fun NewestKey(keys : set Key, k : option Key) {

some keys <=> some k

k in keys

no OrdNexts(k) & keys

}

It is also allowed to define polymorphic functions in Alloy. A polymorphic function

must be explicitly parameterized by any signature variable mentioned in its body. For

example,

fun Monotonic[T] (r : Tick -> T) {

all t : Tick | r[OrdPrev(t)] in r[t]

}

15

defines the monotonicity property for any Tick-based relation.

In order to use a polymorphic function, there is no need to instantiate the signature

variables explicitly; this is done automatically based on the types of the arguments.

For example,

fact {

for all kds : KDS | Monotonic(kds.keys)

}

instructs the analyzer to automatically instantiate the signature variable T of the

polymorphic function as the Key signature.

Facts

A fact (fact) is a formula that takes no arguments and need not be invoked explicitly;

it is always true. Furthermore, a formula F attached to a signature S is a fact over

all the atoms of the signature type. For example,

sig Message {

sender : Member,

sentTime : Tick,

key : Key

}{

SendMessage(sender, sentTime, this)

}

in addition to declaring the Message signature, introduces the following fact.

fact {

all msg : Message | SendMessage(msg.sender, msg.sentTime, msg)

}

The field names appeared in a fact following a signature refer to the values of

those fields in each atom of the signature. In order to refer to the whole relation

16

defined by a field, the prefix ‘signature name$’ should be used. Thus, for example,

while sender, in the above example, refers to the sender of a message (which has

the Member type), Message$sender should be used in order to refer to the relation

defined by this field (that has the Message -> Member type).

Assertions

An assertion (assert) is a formula that is intended to be true. An analyzer tool

tries to determine whether assertions follow from facts. A check command is used

to instruct the analyzer to check an assertion. It takes the name of the assertion and

the scope in which the analysis is to be performed. The scope defines the maximum

number of atoms for each basic signature. For example

check A for 5

causes the assertion A to be checked for all configurations in which no signature has

more than 5 atoms.

2.2 Ordering Relations

Ordering relations are defined in the Alloy library. The command line

open std/ord

allows using these relations in a model.

Using any of the ordering relations with a basic signature, defines a total order

over the atoms of the signature type. For example if an ordering relation is used with

signature S, a new relation next is instantiated as a relation that maps all the atoms

of S (except one that will be the last element of the order) to exactly one other atom

in S.

For an arbitrary signature S these relations are:

• Ord[S].first that gives the first element of the total order.

17

• Ord[S].last that gives the last element of the total order.

• Ord[S].next that gives the next relation – the total order instantiated over

the atoms of S.

• Ord[S].prev that gives the ~next relation.

There are also some functions to make orders easier to use. Some of these functions

that are used often are as follows. (x is a variable of type S.)

• OrdNext(x) that gives x.Ord[S].next

• OrdPrev(x) that gives x.Ord[S].prev

• OrdNexts(x) that gives x.^(Ord[S].next)

• OrdPrevs(x) that gives x.^(Ord[S].prev)

2.3 Analyzer

The Alloy Analyzer (AA) [9, 11] is an automatic tool for analyzing models created

in Alloy. Given a formula and a scope, AA determines whether there exists a model

of the formula (i.e. an assignment of values to the sets and relations that makes the

formula true) that uses no more atoms than the scope permits, and if so, returns it.

First-order logic is undecidable, so AA’s analysis cannot be a decision procedure.

That’s why AA limits its analysis to a finite scope that bounds the size of the carrier

sets of the basic types.

Clearly, if AA succeeds in finding a model to a formula, it has demonstrated the

formula’s consistency. Failure to find a model within a given scope, however, does

not prove that the formula is inconsistent. In practice, however, many errors can be

found by considering only a small scope (e.g. at most 5 elements of each type). This

small scope hypothesis is purely empirical of course, since the language is undecidable,

for any scope there is a formula whose smallest model occurs in a larger scope. But

Andoni et. al. [2] have shown that this hypothesis works well in practice.

18

AA provides two kinds of analysis: simulation in which the consistency of a fact or

function is demonstrated by generating a snapshot showing its invocation, and check-

ing, in which a consequence of the specification is tested by attempting to generate a

counterexample for an assertion. In both cases the tool produces graphical and also

textual output.

AA’s analysis is based on a translation to a boolean satisfaction problem, and

gains its power by exploiting state-of-the-art SAT solvers. The analysis algorithm is

described in [9].

One can use AA in the style of traditional model checking, in an attempt to find

subtle errors in existing designs. We use this strategy to check the properties of the

multicast key management protocols.

19

Chapter 3

Tick-based Modelling vs. Global

State Modelling

Tick-based modelling is a novel idiom for modelling distributed systems. In this

chapter, we explain this idiom and compare it to the more conventional idiom [23],

which we call global state modelling.

Figure 3-1 shows a simple distributed system based on message passing modelled

in the two idioms. A server sends some encrypted messages to all the agents in the

system. To provide security, whenever the server sends a message, it generates a fresh

key and encrypts the message with it. This key is then sent to some of the agents

authorized to decrypt the message. To simplify the example, we ignore the delay in

receiving the key.

In the tick-based model (Figure 3-1-a), signature Tick is defined to model the

dynamics of the system. This signature, which is used as a notion of time, introduces

a set of ticks which represent the time units. Any part of the system that may change

over time is modelled as a relational field based on Tick.

Alloy is a side-effect free declarative language. So instead of explicitly writing

that time advances, we define an order over all time ticks in order to be able to talk

about the order in which events happen. This total order can be defined by using

the ordering functions of the Alloy library with signature Tick as explained in the

previous chapter.

20

1 module tick_based

2 open std/ord

3 sig Tick {}

4 sig Key { generatedTime : Tick }

5 sig Message {

6 key : Key,

7 sentTime : Tick

8 }{

9 key.generatedTime = sentTime }

10 sig Agent {

11 knows : Tick -> Key

12 }{

13 all t : Tick | knows[t].generatedTime in OrdPrevs(t)+t }

14 assert NoReusedKey {

15 all m : Message, t : Tick |

16 m.sentTime in OrdNexts(t) => no m.key & Agent.knows[t] }

17 check NoReusedKey for 5

(a)

1 module global_state

2 open std/ord

3 sig State {

4 sentMsgs : set Message,

5 generatedKeys : set Key,

6 agentKnows : Agent -> Key

7 }{

8 all m : sentMsgs | m.key in generatedKeys

9 all a : Agent |

10 agentKnows[a] in (OrdPrevs(this)+this).State$generatedKeys

11 }

12 sig Key {}

13 sig Message { key : Key }

14 sig Agent {}

15 fact GeneratedOnce {

16 all disj s, s’ : State | no s.generatedKeys & s’.generatedKeys

17 }

18 assert NoReusedKey {

19 all m : Message, s : State |

20 m in OrdNexts(s).sentMsgs => no m.key & s.agentKnows[Agent] }

21 check NoReusedKey for 5

(b)

Figure 3-1: (a) Tick-based Model (b) Global State model of a Simple System

21

Signature Key in this model, represents the keys generated by the server. The

generatedTime field gives the time at which the key is generated.

Signature Message represents sent messages. Each Message has an encrypting

key (given by the key field) and a sent time (given by the sentTime field). Each

message should be encrypted with a fresh key. This property is stated in Line 9 by

constraining the time at which the encrypting key of a message is generated to be the

same as the time at which the message is sent.

Signature Agent models the agents of the system. Field knows gives the set of

keys known to an agent at a time tick. At each time t, an agent can only know the

keys generated at or before time t. Line 13 encodes this property.

Then we claim the trivial property that if a message is sent at some time after t,

then its encrypting key is not known to any of the agents at time t (Lines 14-16). No

counterexample is found by the Alloy Analyzer in the scope of 5.

In the model based on the global state (Figure 3-1-b), signature State models the

dynamics of the system. This signature defines a set of states which are some global

states, i.e. snapshots, of the whole system. In this idiom, any time-dependent part

of the system is modelled as a field of the State signature and the states are ordered

using the Alloy ordering functions.

As shown in Figure 3-1-b, the fields of the State signature are sentMsgs, i.e. the

messages sent in this state, generatedKeys, i.e. the keys generated in this state, and

agentKnows, which gives the keys known to each agent in this state of the system.

Lines 8-10 express the same properties as lines 9 and 13 in the previous model.

Signatures Key, Message, and Agent respectively give the set of keys (not nec-

essarily generated keys), messages (not necessarily sent messages), and the agents of

the system.

Fact GeneratedOnce (Lines 15-17) does not correspond to any explicit rule in the

previous model. It says none of the keys can be generated in two different states

s and s’. While in the previous model the field generatedTime in Key implicitly

encodes that a key has a single generated time, here this explicit fact is necessary to

outlaw situations in which a key is generated more than once. Without this rule, the

22

assertion would not hold.

The key difference of the two idioms is that in tick-based modelling, history is

maintained local to objects, while in global state modelling, global state is associated

with time ticks. For example in Figure 3-1, relation knows in the tick-based model

has type Agent -> Tick -> Key, while the agentKnows relation in the global state

model has type State -> Agent -> Key. In other words, by shifting the time notion,

in the tick-based models we are able to maintain all the attributes of an entity in a

single place, i.e. the declaration of that entity.

However, in the global state modelling, the entity declarations define only the

static parts of the system and all dynamic attributes are in one other place (i.e. the

State declaration). Thus, the tick-based idiom generally results in better modularity.

Furthermore, since the attributes related to an entity are all integrated in one

place while yet the dynamic attributes are easily distinguishable from the static ones

by their types, the tick-based models are more intuitive and easier to understand.

Although, according to the structures of the models, expressing time-independent

properties over time-dependent fields is generally easier in global state models, ex-

pressing time-dependent properties is easier in the tick-based idiom.

Furthermore, models based on global state may need more non-obvious rules (like

GeneratedOnce in this example) which makes them more error-prone. In general, a

time-varying property p of an entity S is represented in the tick-based idiom by

sig S {

p : Tick -> P

...

}

Since Tick appears explicitly in such a declaration, multiplicity symbols can be easily

used with it whenever necessary. On the other hand, in a global state model, the same

property is expressed by

23

Sig State {

p : S -> P

...

}

in which no multiplicity constraint can be used with State since p is a field in the

State signature. Thus, any such constraint should be expressed as an additional fact

in the model.

For example, in Figure 3-1-a, generatedTime defines a function Key ->! Tick

which maps each key to exactly one time tick. However, in Figure 3-1-b, this property

should be represented by a separate fact (GeneratedOnce) since the corresponding

relation (generatedKeys) is a field of the State signature and thus, multiplicity

symbols can’t be used with State.

So in general, the tick-based models are simpler, more succinct, and less error-

prone while providing better modularity.

24

Chapter 4

A Modelling Framework for Key

Management Schemes

Multicast key management protocols, in general, are very important and useful but

error-prone. A framework is constructed to model a class of these protocols in Alloy,

aimed at checking their correctness.

In this chapter, we first explain the multicast key management problem and then

describe the modelling framework and its general properties.

4.1 Multicast Key Management Problem

In many network applications such as teleconferencing, distributed games and inter-

net newscast, a group of authorized agents communicate via message passing. All

members of the group should be able to receive all the messages sent within the

group.

The conventional way of message passing, i.e. unicast, requires the sender to

transmit a separate copy of the data to each recipient. However, this mechanism

is inefficient in a group where the number of recipients is large. Thus, multicast is

introduced as an efficient group communication mechanism in which the sender sends

only one copy of data to a group address and the network is responsible for delivering

it to all receivers.

25

4.1.1 Secure Multicast

In comparison with point-to-point unicasts, multicast reduces the overhead of message

transmission considerably. At the same time, multicast introduces new problems:

messages should be secured from unauthorized users while all authorized ones should

be able to receive them. This is known as secure multicasting.

To provide security, group messages are encrypted using a key only known to the

members of the group, called the group key. In this way, everyone in the group can

decrypt the messages while no one else is able to decrypt them.

4.1.2 Key Management

In many applications, the group is very dynamic, i.e. membership changes often;

current members of the group leave and new members join. In order to provide com-

munication security in such groups, we have to make sure that the former members

do not have access to the current messages and the new members do not have access

to the previous communications of the group. So after each join or leave, a new group

key is generated and distributed to all current group members in order to send or

receive messages securely1.

Members who do not receive group key updates may cause security breaches [19]:

• Receivers failing to receive group key updates will not be able to decrypt new

messages, and may also accept messages from members that have been removed

from the group.

• Senders failing to receive group key updates will continue to encrypt messages

with an outdated group key so that some of the current members of the group

may be unable to decrypt the message while some of the previous members are

able to decrypt it.

1It is possible to generate new keys once a while rather than after each membership change, but

it should be guaranteed that a new key is used in later message transmissions.

26

Handling group key changes efficiently is a problem in large dynamic groups.

Many solutions are suggested to solve this problem, known as group key management,

addressing its different aspects of scalability and performance (e.g. [19,21,22,25–27]).

4.2 Description of the Framework

Figure 4-1 shows the main structure of the framework. This framework is most

suitable for checking group key management schemes in which security is achieved by

the policy taken for maintenance and distribution of keys rather than by specific key

properties. For example, the framework is not suitable for checking protocols with

group keys based on complicated numerical computations (e.g. [25]) since Alloy is a

first order logic without strong support for numerical properties.

This framework models only the basic entities that are used in key management

protocols. To use it as a model of a real protocol, it may be necessary to extend some

of the signatures to make them more specialized or introduce entirely new entities.

The basic signatures are as follows:

• Tick: As mentioned before, this framework is a tick-based model. Signature

Tick is the notion of time. It introduces a set of ticks which are ordered by the

ordering functions.

• Key: This signature represents the set of keys that can be used to encrypt

multicast messages.

• Message: This signature represents the multicasted messages. Each message

has a sender (which, in general, can be any group member), a sent time, and

an encrypting key.

• KDS: This signature represents the set of servers in the system. These servers,

called Key Distribution Servers (KDS), are the entities responsible for creating

new keys when necessary.

27

1 sig Tick {}

2 sig Key {}

3 sig Message {

4 sender : Member,

5 sentTime : Tick,

6 key : Key

7 }

8 sig KDS {

9 keys : Tick -> Key,

10 members : Tick -> Member

11 }{

12 Monotonic(keys)

13 all t : Tick | let t’ = OrdPrev(t) {

14 all m : members[t]-members[t’] | Join(m, t, this)

15 all m : members[t’]-members[t] | Leave(m, t)

16 }

17 }

18 sig Member {

19 ownedKeys : Tick -> Key,

20 receivedMessages : Tick -> Message

21 }{

22 Monotonic(ownedKeys)

23 Monotonic(receivedMessages)

24 }

25

26 fact MemberBehavior {

27 Init(OrdFirst(Tick))

28 all m : Member, t : Tick - OrdFirst(Tick) |

29 (some msg : Message |

30 SendMessage(m, t, msg) || ReceiveMessage(m, t, msg)) ||

31 (some kds : KDS | Join(m, t, kds)) ||

32 Leave(m, t) || MemberInactive(m, t)

33 }

34 fun Monotonic[T](r : Tick -> T) {

35 all t : Tick | OrdPrev(t).r in t.r

36 }

37 fun OrdFirst[T](s : set T) : T {

38 result = Ord[s].first

39 }

40 fun OrdLast[T](s : set T) : T {

41 result = Ord[s].last

42 }

Figure 4-1: The Modelling Framework - Basic Structure

28

In most key management schemes, to provide better scalability, the group is

divided into smaller subgroups called domains, each with a different KDS that

is responsible for managing key changes only in its corresponding domain. Thus,

the framework allows for a set of servers by default. However, some systems

may have only one KDS. In that case, it is better to add the following fact to

explicitly constrain the number of KDS’s to be one.

fact OneKDS { one KDS }

Field keys in signature KDS gives the keys known to this server by the end of

each time tick. As encoded in line 12, this field maintains a history of keys.

Since the group is assumed to be dynamic, each KDS keeps track of the set of

members present in its corresponding domain at each time tick. This is given

by field members. Lines 13-16 constrain all changes in this field over time to

either be because of members joining this domain or leaving it.

• Member: This signature gives all the agents of the system that can be group

members. Field ownedKeys gives all the keys known by a member by the end

of a time tick. Field receivedMessages gives the set of messages received by

the member by the end of a time tick. Similar to the keys relation, these two

fields keep histories. This is encoded in lines 22 and 23.

The main rule of the model is the MemberBehavior fact. It constrains the histories

associated with the tick-based relations to match the defined operations. Line 27

invokes the Init function to construct the initial configuration of the system. Lines

28-32 express the behavior of each member at any time after that: at each time tick,

each member can (if the necessary conditions hold) send a message, receive a message,

join a domain, leave the group or simply be inactive (i.e. do nothing). Each member

selects what to do nondeterministically.

The structure of this framework is based on local behavior. Different members

behave simultaneously but independently from each other. This flexibility in the

29

fun Init(t : Tick) {}

fun Join(m : Member, t : Tick, kds : KDS) {}

fun Leave(m : Member, t : Tick) {}

fun SendMessage(m : Member, t : Tick, msg : Message) {}

fun ReceiveMessage(m : Member, t : Tick, msg : Message) {}

fun MemberInactive(m : Member, t : Tick) {}

fun CanReceive(m : Member, t : Tick, msg : Message) {}

fun IsMember(m : Member, t : Tick) {

some kds : KDS | m in kds.members[t]

}

Figure 4-2: The Modelling Framework - Main Functions

model allows the analyzer to generate unusual scenarios that may be neglected in

manual verification of such a protocol. As a result, subtle bugs in the design of the

system can be exposed.

The main functions of this framework are given in Figure 4-2. The body of these

functions should be defined according to the rules of the underlying system. The

following is a brief overview of each function:

• Init: This function is used to outlaw undesired configurations at a specific

time tick. When invoked with the first time tick, it defines the constraints on

the initial values of the time dependent fields. For example, this function may

simply define a trivial initial configuration in which all the domains are empty

and nobody owns any keys.

• Join: This function encodes the conditions under which a particular member

can join the domain corresponding to a KDS at a given time tick, as well as the

effects of this action.

• Leave: Similar to the Join function, this function encodes conditions and effects

of a member leaving the group.

• SendMessage: This function encodes what conditions should hold and how

different relations are affected if a member sends a message at a specific time.

30

1 assert OutsiderCantRead {

2 no msg : Message, m : Member, t : Tick {

3 IsMember(msg.sender, msg.sentTime)

4 !IsMember(m, msg.sentTime)

5 CanReceive(m, t, msg)

6 }

7 }

8 assert OutsiderCantSend {

9 no msg : Message, m : Member, t : Tick {

10 !IsMember(msg.sender, msg.sentTime)

11 IsMember(m, t)

12 msg !in m.receivedMessages[OrdPrev(t)]

13 CanReceive(m, t, msg)

14 }

15 }

16 assert InsiderCanRead {

17 all msg : Message, m : Member |

18 some t : Tick - OrdLast(Tick) | all t’ : OrdNexts(t) |

19 (IsMember(msg.sender, msg.sentTime) &&

20 IsMember(m, msg.sentTime)) =>

21 CanReceive(m, t’, msg)

22 }

Figure 4-3: Correctness Properties

• ReceiveMessage: Similar to the SendMessage function, this function gives the

conditions and effects if a member receives a message at a given time.

• MemberInactive: This function says that the values of the relations relevant to

this member at the given time are the same as in the previous time tick.

• CanReceive: This function is later used in the assertions. Since each member

behaves nondeterministically at each time tick, there is no guarantee that it

receives a sent message. Thus, this function is defined to check if the conditions

necessary for a member to receive a message at a time tick hold, regardless of

whether or not the member actually receives the message at that time.

• IsMember: This function checks if a member is in the group at a given time tick

or not. It is used in the assertions.

31

Figure 4-3 shows the critical properties that should be satisfied by any secure

multicast scheme. Any feasible counterexample for any of these assertions shows an

error in the underlying system. The assertions are as follows:

• OutsiderCantRead: This assertion claims that no one outside the group has

access to the group communications.

This assertion is in fact expressing two different correctness properties: “A new

member of the group does not have access to the previous communications”

and “A former group member has no access to the current communications”.

OutsiderCantRead claims a more general statement than any of these two, yet

includes both of them.

• OutsiderCantSend: This assertion claims that a member from outside the

group can not influence group communications, i.e. by sending a message to

the group that can be interpreted as a group message by some members.

• InsiderCanRead: This assertion claims that all present members of the group

are able to decrypt the current group messages after a certain delay time is

passed.

This assertion claims something stronger than needed. It allows any amount

of delay more than a base amount in message passing which is not usually the

case. However, in practice, the scenarios violating this assertion can happen

even within a fixed amount of delay time.

32

Chapter 5

ARF

The Asynchronous Rekeying Framework [21, 26], which we call ARF for short, is

one of the recent proposed solutions to the multicast key management problem. It

tries to reduce the overhead caused by the synchronization of all members during

the changing of group keys in a large dynamic group. This is done by distributing

group keys to the members only on demand, i.e. asynchronously. To the best of our

knowledge, ARF is the only proposed rekeying scheme that is asynchronous. This

motivated us to formally check its correctness.

5.1 Description

The ARF designers argue that synchronizing all group members for agreement on

rekeying after each change in the group key, as in most other protocols, is costly and

unnecessary. It is only necessary to guarantee that each member is able to receive the

group key updates before sending or receiving group messages. Thus, they propose

to distribute the group key updates only on demand.

ARF was designed in two phases. The first phase was pull-based ARF. However,

since it is not scalable to large groups, it was combined with push-based ARF. In this

paper we focus on analyzing pull-based ARF [26].

In the ARF architecture, the group is partitioned into domains. Each domain has

a trusted Key Distribution Server (KDS) that has information about its domain mem-

33

bership and is responsible for processing the requests of the domain members. There

is a distinct individual key between each member of a domain and the corresponding

KDS. This key is used when it is necessary to send a message not decryptable by

others.

It is assumed that the KDS’s communicate with each other via a Reliable and

Totally Ordered Multicast Protocol (RTOMP). Reliable multicast protocols provide

retransmissions and ordering of messages from a source. Totally ordered multicast

protocols guarantee that all receivers receive the same messages, in the same order.

They are used to provide consistency of shared information.

When a group member decides to leave the group, it sends a leave request to the

KDS of its domain and waits for a confirmation. Subsequently, the KDS generates a

new group key, distributes it to the other KDS’s and then sends back the confirmation.

In some cases, a KDS may decide that a current member of its domain should leave,

and initiates the leaving process itself.

When an agent decides to join the group, it sends a join request to one of the KDS’s

and waits for a confirmation. The KDS authenticates it and sends the confirmation

if approved. The member then joins the corresponding domain. An individual key is

made between the KDS and the new member in this process. Furthermore, the KDS

creates a new group key and distributes it to other KDS’s. The KDS also sends the

new group key to the new member using its individual key.

Each group key carries a unique ID as well as the ID of the KDS that generated

it. All group keys are ordered by the RTOMP. As a result, although different KDS’s

may create different group keys simultaneously, there will still be a consistent order

of key updates.

When a member decides to send a message, it sends a sequence number request to

the KDS of its domain to check the newness of the group key it owns. The member

attaches the ID of its newest group key to this message. If the member’s key is older

than the newest group key, the KDS sends back all the keys newer than it. The

individual key of the member is used to encrypt this reply. Then, the member uses

the newest key to encrypt its message and multicasts the encrypted message.

34

When a member receives a message that is not encrypted by any of its keys, it

sends a request to the KDS of its domain asking for the newer keys. It attaches the

ID of its newest key to this request. The corresponding KDS replies to this request

in the same way as mentioned above.

In order to use less memory, group members and KDS’s do not maintain invalid

group keys. A KDS marks a group key as invalid if it is distributed to all the members

of its domain. A member marks a key as invalid t units of time after it receives a

message encrypted with a newer key, where t is the accepted delay of the network.

To prevent members from keeping very outdated keys, a KDS multicasts a dummy

message encrypted by the newest group key if there have been no messages for a while.

5.2 Model

The framework described in the previous chapter is used to model this scheme. Figure

5-1 shows the signatures and facts added to the framework.

Signature Client is an extension of the Member signature of the framework. Each

client is associated with a server that corresponds to the domain the client is allowed

to join. This field is not time-dependent; whenever the member wants to join the

group it should join the same domain. This relies on the observation that since

in ARF there is no domain-specific behavior, different domains are symmetric and

so there is no need to consider all combinations of domains for a member to join

over time. With this observation, without loss of generality, many possible cases are

pruned away and analysis time decreases.

Signature GroupKey is an extension of the Key signature. The creator field is

added to indicate the KDS that generated the key. To model the behavior of the

RTOMP, the ordering functions of Alloy are used with the signature Key. Thus, all

the generated keys are ordered. Furthermore, it is implicitly assumed that if key k2

follows key k1 in this ordering, then k2 was generated at some time not before k1.

With this assumption, there is no need to explicitly record the time at which a key

was generated. This makes the model simpler and easier to analyze.

35

1 sig Client extends Member {

2 server : KDS

3 }

4 sig GroupKey extends Key {

5 creator : KDS

6 }

7

8 fact ARFProperties {

9 all k1, k2 : KDS | k1.keys = k2.keys

10 all t : Tick - OrdFirst(Tick) | let t’ = OrdPrev(t) {

11 all disj k1, k2 : KDS.keys[t] - KDS.keys[t’] |

12 k1.creator != k2.creator

13 all kds: KDS, k: kds.keys[t]-kds.keys[t’] | some c: Client {

14 Join(c, t, c.server) || Leave(c, t)

15 k = GeneratedKey(c.server, t)

16 }

17 }

18 all m : Message | SendMessage(m.sender, m.sentTime, m)

19 }

Figure 5-1: ARF Model - Added Signatures and Facts

Fact ARFProperties represents the rules added to the framework to instruct the

Alloy Analyzer to only consider the scenarios feasible in the ARF scheme.

Since there is no notion of delay for the RTOMP in ARF, we assume that there is

no delay in communications via the RTOMP. Hence, if a KDS generates a new group

key, all other KDS’s receive it instantly. This is encoded in line 9 by saying: at each

time, all the KDS’s know the same set of keys.

Lines 10-12 say: for any two different keys generated at the same time, the gen-

erating KDS’s should differ. This encodes the fact that in the ARF scheme, a KDS

generates only one key at a time tick even if there are different members joining or

leaving the corresponding domain at that time.

Lines 13-16 outlaw any undesired changes in the set of keys known to a KDS over

time. This rule says for any key added to the set of known keys of a KDS, there

should have been a membership change that prompted generation of that key.

Line 18 constrains each message in the system to be a legal sent message.

36

Figures 5-2 and 5-3 show the functions necessary in the framework. Here is a brief

description of each function:

• init(t):

This function is used to construct the initial configuration. It constrains the

initial state to represent an empty group with no domain members where no

one knows any keys or messages.

• Join(m, t, kds):

As mentioned before, each member can only join the domain corresponding

to its assigned KDS. In order to join that domain, the member sends a join

request to the KDS. In the JoinRequest function, the KDS makes sure that

the member was not in the group in the previous time tick. It then generates

a new group key, sends it to this new member and adds the member to the set

of current domain members.

It should be noted that, in this function, in order to model that a member c is

added to the domain corresponding to a server kds, we have written:

c in kds.members[t]

rather than conventionally writing:

kds.members[t] = kds.members[OrdPrev(t)] + c

In this way we allow multiple members to join and leave the group simulta-

neously and thus, subtle scenarios can be generated by the Alloy Analyzer.

Undesired changes in the value of the members relation are outlawed by the

constraints discussed in the previous chapter.

• Leave(m, t):

To leave the group, a member sends a leave request to its KDS. In the LeaveRequest

function, it is checked that the member was a group member in the previous

37

fun Init(t : Tick) {

no Member.receivedMessages[t]

no Member.ownedKeys[t]

no KDS.keys[t]

no KDS.members[t]

}

fun Join(m : Member, t : Tick, kds : KDS) {

kds = m.server

JoinRequest(m, kds, t)

NoChange(m.receivedMessages, t)

}

fun JoinRequest(c : Client, kds : KDS, t : Tick) {

c !in kds.members[OrdPrev(t)]

some k : GeneratedKey(kds, t) {

c.ownedKeys[t] = c.ownedKeys[OrdPrev(t)] + k

k in kds.keys[t]

}

c in kds.members[t]

}

fun Leave(m : Member, t : Tick) {

LeaveRequest(m, m.server, t)

NoChange(m.receivedMessages, t)

}

fun LeaveRequest(c : Client, kds : KDS, t : Tick) {

c in kds.members[OrdPrev(t)]

GeneratedKey(kds, t) in kds.keys[t]

c !in kds.members[t]

NoChange(c.ownedKeys, t)

}

Figure 5-2: ARF Model - Actions - Part 1

38

time tick. A new key is generated but is not sent to the leaving member. Then

the member is omitted from the domain members.

• SendMessage(m, t, msg):

Without loss of generality, we assume a member sends only one message at each

time tick. To send a message, the member asks its KDS for the keys newer than

its own newest key. The member adds these keys to its set of owned keys and

sends the message encrypted with the newest key. This message is then added

to the member’s set of known messages.

• ReceiveMessage(m, t, msg):

Without loss of generality, we assume a member can receive only one message

at each time tick. Furthermore, we assume a member marks a key as invalid

when it receives a newer key1. Thus, a member can receive a message only if

it was encrypted with either the member’s newest owned key or a newer key

that can be obtained from the KDS. Also, the message should have been sent

before the given time and not received yet. These conditions are encoded in the

ReceiveConditions function.

When receiving a message, the member checks if the message was encrypted

with its newest owned key. If not, it asks the corresponding KDS for newer

keys and adds them to its set of keys and then accepts the message.

• MemberInactive(m, t):

If a member does nothing at a time tick, then there is no change in its set

of received messages or owned keys. Furthermore, its membership does not

change.

• CanReceive(m, msg, t):

1This will eliminate some trivial scenarios in which ARF does not work correctly only because of

the notion of t units of delay time in invalidating keys.

39

fun SendMessage(m : Member, t : Tick, msg : Message) {

m.ownedKeys[t] = m.ownedKeys[OrdPrev(t)] +

NewerKeys(m, m.server, t, NewestKey(m.ownedKeys[OrdPrev(t)]))

msg.sender = m

msg.sentTime = t

msg.key = NewestKey(m.ownedKeys[t])

m.receivedMessages[t] = m.receivedMessages[OrdPrev(t)] + msg

ConstantMembership(m, t)

}

fun ReceiveMessage(m : Member, t : Tick, msg : Message) {

ReceiveConditions(m, t, msg)

let newestKey = NewestKey(m.ownedKeys[OrdPrev(t)]) |

m.ownedKeys[t] = m.ownedKeys[OrdPrev(t)] +

if msg.key = newestKey then none[GroupKey]

else NewerKeys(m, m.server, t, newestKey)

m.receivedMessages[t] = m.receivedMessages[OrdPrev(t)] + msg

ConstantMembership(m, t)

}

fun ReceiveConditions(c : Client, t : Tick, msg : Message) {

let newestKey = NewestKey(c.ownedKeys[OrdPrev(t)]) |

msg.key in newestKey + NewerKeys(c, c.server, t, newestKey)

msg.sentTime in OrdPrevs(t)

msg !in c.receivedMessages[OrdPrev(t)]

}

fun MemberInactive(m : Member, t : Tick) {

NoChange(m.receivedMessages, t)

NoChange(m.ownedKeys, t)

ConstantMembership(m, t)

}

fun CanReceive(m : Member, t : Tick, msg : Message) {

msg in m.receivedMessages[OrdPrev(t)] ||

{ ReceiveConditions(m, t, msg)

ConstantMembership(m, t)

}

}

Figure 5-3: ARF Model - Actions - Part 2

40

This function, which is used in the assertions, returns true if the member re-

ceived the message before the given time or the conditions explained in the

ReceiveConditions function hold.

The auxiliary functions used in the model are shown in Figure 5-4. These functions

are as follows:

• NewerKeys:

This function determines the set of group keys returned by a KDS in reply to a

client’s request for newer keys. The client’s newest key is sent with this request.

If at the given time the client is not present in the domain corresponding to the

KDS, the KDS does not send any keys. Otherwise it sends all the keys newer

than the client’s key.

• NewestKey:

This function determines the newest key of a given set of keys by considering

the total order defined over the keys.

• GeneratedKey:

This function gives the key generated by a KDS at a given time. The generated

key should succeed the last generated key in the total order of the keys.

• ConstantMembership:

This function returns true if the status of the membership of a given member

at a given time has not changed compared to the previous time tick.

• NoChange:

This polymorphic function returns true if at the given time, the given tick-based

relation has the same value as the previous time tick.

41

det fun NewerKeys(c : Client, kds : KDS, t : Tick,

lastKey : GroupKey) : set GroupKey {

c !in kds.members[t] => no result,

result = kds.keys[t] & OrdNexts(lastKey)

}

det fun NewestKey(keys : set GroupKey) : option GroupKey {

some keys <=> some result

result in keys

no OrdNexts(result) & keys

}

det fun GeneratedKey(kds : KDS, t : Tick) : GroupKey {

some kds.keys[OrdPrev(t)] =>

result in OrdNexts(NewestKey(kds.keys[OrdPrev(t)])),

result in Key

result.creator = kds

}

fun ConstantMembership(m : Client, t : Tick) {

IsMember(m, t) <=> IsMember(m, OrdPrev(t))

}

fun NoChange[T](r : Tick -> T, t : Tick) {

r[OrdPrev(t)] = r[t]

}

Figure 5-4: ARF Model - Auxiliary Functions

42

5.3 Analysis

The Alloy Analyzer has been used to automatically check the model against the

generic correctness properties explained in the previous chapter.

5.3.1 Verified Properties

Assertion OutsiderCantRead was checked in a scope of 5 but with 2 KDS’s and 2

Members. The analysis took less than one minute on a 1.80 GHz Pentium 4 processor.

The Alloy Analyzer could not find any counterexamples for this assertion.

5.3.2 Flaws Found

OutsiderCantSend:

Assertion OutsiderCantSend was checked in the scope of 6 in less than two minutes

on the same processor. For this assertion, the Alloy Analyzer found two different

types of counterexamples shown in Tables 5.1 and 5.2.

In both scenarios, the group has only one domain and two members. The first

scenario illustrates the case when member m1 joins the group while member m0 is

already there. Thus, m1 receives a key (k4) which is newer than m0’s key (k3). Then,

m1 leaves the group and decides to send a message. Since it is not in the group any

more, the KDS does not send it newer keys. As a result, m1 encrypts the message

with its own newest key, k4. When m0 receives the message, since it is encrypted

with a key newer than its own, it asks the KDS for newer keys. The KDS sends it

both k4 and k5 according to the ARF scheme and m0 decrypts the message just like

an ordinary group message.

In the second scenario, two members m0 and m1 join the group at exactly the same

time and thus get the same group key (k1). Then m1 leaves the group and sends a

message encrypted with its newest key (i.e. k1). When m0 receives this message,

since it is encrypted with its own newest key, it does not contact the KDS for newer

keys. It accepts and decrypts the message without realizing that the message is sent

43

Table 5.1: First Counterexample for OutsiderCantSend

Time, KDS Newest Key Member m0, Newest Key Member m1, Newest Key
T1, k3 join, k3 -
T2, k4 - , k3 join, k4

T3, k5 - , k3 leave, k4

T4, k5 - , k3 send a message , k4

T5, k5 receive the message, k5 - , k4

Table 5.2: Second Counterexample for OutsiderCantSend

Time, KDS Newest Key Member m0, Newest Key Member m1, Newest Key
T1, k1 join, k1 join, k1

T2, k2 - , k1 leave, k1

T3, k2 - , k1 send a message, k1

T4, k2 receive the message , k1 - , k1

from outside the group.

These scenarios describe a serious security breach: a message from a former group

member can influence current communications of the group. We contacted the authors

of the original paper to ask about this problem. They were not previously aware of

this bug in the protocol and agreed that it suffers from this flaw.

To fix the bug, the model was changed so that in reply to the sequence number

request the KDS attaches only the newest key rather than a key vector. Function

NewerKeys2 reflects this change:

det fun NewerKeys2(c : Client, kds : KDS, t : Tick,

lastKey : GroupKey) : option GroupKey {

c !in kds.members[t] => no result,

result = NewestKey(kds.keys[t] & OrdNexts(lastKey))

}

Additionally, the behavior of each member was modified so that before receiving

any messages, the member would ask its KDS for the newest group key. If the message

is not encrypted with the newest group key, it is not accepted. The new functions

are shown in Figure 5-5.

After making these changes, no counterexample was found. It seems that these

44

fun ReceiveMessage2(m : Member, t : Tick, msg : Message){

ReceiveConditons2(m, t, msg)

m.ownedKeys[t] = m.ownedKeys[OrdPrev(t)] +

NewerKeys(m, m.server, t, NewestKey(m.ownedKeys[OrdPrev(t)]))

m.receivedMessages[t] = m.receivedMessages[OrdPrev(t)] + msg

ConstantMembership(m, t)

}

fun ReceiveConditions2(c : Client, t : Tick, msg : Message) {

let futureKeys =

NewerKeys(c, c.server, t, NewestKey(c.ownedKeys[OrdPrev(t)])) |

(some futureKeys) => msg.key in futureKeys,

msg.key = NewestKey(c.ownedKeys[OrdPrev(t)])

msg.sentTime in OrdPrevs(t)

msg !in c.receivedMessages[OrdPrev(t)]

}

fun CanReceive2(m : Member, t : Tick, msg : Message) {

msg in m.receivedMessages[OrdPrev(t)] ||

{ ReceiveConditions2(m, t, msg)

ConstantMembership(m, t)

}

}

Figure 5-5: Changed Receiving Functions

changes in the pull-based ARF eliminate this security breach. It should be noted that

both of these modifications are necessary to have a working protocol; neither alone is

enough.

InsiderCanRead:

Assertion InsiderCanRead is checked in the scope of 5 on the same processor in less

than 3 minutes. This assertion does not hold in the pull-based ARF.

The counterexample shown in Table 5.3 describes a scenario in which the group

has only one domain. A message is sent by member m1 when both m0 and m1 are

in the group, but only m1 has the latest key (i.e. k3), which was used to encrypt

the message. Then m0 leaves the group while it only has the outdated key k2. Thus,

45

Table 5.3: First Counterexample for InsiderCanRead

Time, Newest KDS Key Member m0, Newest Key Member m1, Newest Key
T1, k2 join, k2 -
T2, k3 - join, k3

T3, k3 - send message by k3

T4, k4 leave, k2 - , k3

although it was in the group when the message was sent, it can never receive the

message.

This problem is caused by the asynchronous nature of ARF. In a synchronous

approach, all receivers have the same key as the sender of a message. So even if

because of some delay a member leaves the group without being able to receive a

message, sooner or later it receives the message and is able to decrypt it. However, in

the asynchronous approach the member leaves without having the proper key. Thus,

it can’t decrypt the message even if it receives the message later.

To fix this kind of bug, the LeaveRequest function is changed so that the KDS

updates the member’s keys right before approving its leaving the group. (The KDS

does not send the new key generated because of the member’s leave to the leaving

member.) The following is the new function.

fun LeaveRequest2(c : Client, kds : KDS, t : Tick) {

c in kds.members[OrdPrev(t)]

c !in kds.members[t]

some k : GeneratedKey(kds, t) {

k in kds.keys[t]

c.ownedKeys[t] = c.ownedKeys[OrdPrev(t)] +

NewerKeys(c, kds, t, NewestKey(c.ownedKeys[OrdPrev(t)])) - k

}

}

Even after this change, the counterexample shown in Table 5.4 was found. Here, a

message is sent by m0 while m1 is in the group. Then m0 leaves the group. From now

46

Table 5.4: Second Counterexample for InsiderCanRead

Time, Newest KDS Key Member m0, Newest Key Member m1, Newest Key
T1, k0 join, k0 -
T2, k2 send a message , k2 join, k2

T3, k4 leave , k2 - , k2

T4, k4 - , k2 - , k2

on m1 is not able to accept that message because the group key has been changed to

one newer than the encrypting key of the message.

It can be seen that this counterexample is due to the changes in the receiving

functions shown in Figure 5-5. In the original model of pull-based ARF this particular

scenario did not exist because a member could receive any message encrypted with

its newest key without having to contact the KDS first.

In other words, the analysis of the pull-based ARF shows that in this protocol

a member can’t distinguish between a message from outside the group and a late

message. It seems that if we want to keep the asynchronous nature of the protocol,

we must either allow this kind of message loss or the security breach mentioned before.

This kind of message loss is not as significant as the previous problems. It is

inevitable in most proposed secure key management schemes. If a message is sent at

some time but received after the group key is changed because of any changes in the

group membership, the key encrypting the message will be considered invalid. Thus,

the message can’t be accepted.

This kind of message loss can occur with any amount of accepted delay in the

network because membership changes might occur right after the message is sent.

So although we have allowed any amount of delay in our model, which may seem

unrealistic, the counterexamples show scenarios that are feasible in reality.

47

Chapter 6

Iolus

Iolus [19] was the first multicast key management scheme proposed to address the

inherent scalability problem associated with frequent key changes in a large dynamic

group. It reduces the overhead of key changes by avoiding the use of a common

group key. Instead, the group is divided into small subgroups each with its own

session key. This idea formed the basis of many subsequent schemes which motivated

us to formally check its correctness.

6.1 Description

As mentioned before, in order to provide security in group communications, the group

key is changed due to any change in the group membership. Since all the members

using this key should be informed of the key updates, there is an inherent scalability

problem associated with the group key management [19].

In order to improve the scalability, Iolus’s designers proposed to divide the group

into small subgroups that are relatively independent (i.e. each of them has its own

local key) and avoid using a global group key. Thus, after each membership change,

only the local key of the corresponding subgroup should be changed and the other

subgroups are not affected.

In this scheme, the small subgroups are arranged in a hierarchy to form a secure

distribution tree (see Figure 6-1). The top-level subgroup (the root of the tree) has a

48

GSC

GSI

GSI

GSI

GSI

GSI
GSI

Figure 6-1: An Example of a Secure Distribution Tree – Each cloud represents a
subgroup of clients.

trusted Group Security Controller (GSC) responsible for controlling that subgroup.

Furthermore, there is a set of trusted Group Security Intermediaries (GSI’s) con-

necting the subgroups in the secure distribution tree. Each GSI is responsible for

controlling its child subgroup as well as delivering group messages from its child sub-

group to its parent subgroup or vice-versa. The term GSA for Group Security Agent

is used to refer to both GSC and the GSI’s.

When a member decides to join the group, it sends a join request to one of the

GSA’s. The GSA authenticates the member using its previously provided Access

Control List (ACL). If approved, it generates an individual key to be shared only

with this member, and sends it to the member. The GSA then generates a new local

key and sends it to the previous subgroup members using the previous local key. It

sends this new key to the new member using its individual key.

Leaves may occur either when a member wants to leave the subgroup, in which

case the member sends a leave request to the corresponding GSA, or when a GSA

decides that a member should leave, in which case it sends the member a notification.

In either case, the GSA generates a new local key and sends it to all remaining

members of the subgroup using their individual keys.

49

If a member decides to send a message, it unicasts the data to the GSA of its

subgroup, encrypted with its individual key. The GSA then re-encrypts the data using

the local key of the subgroup, signs it, and multicasts it to its subgroup. Furthermore,

it multicasts another copy of the data to its parent subgroup (if any) encrypted with

the local key of its parent.

A GSA listens for multicasted data in both its parent and child subgroups. If it

receives a message in any of them, it decrypts the message, re-encrypts it with the

local key of the other subgroup, and re-multicasts it to that subgroup. Because of the

connectivity of the underlying tree, the data will eventually reach all the subgroups.

The tree structure of the group guarantees that none of the messages are multicasted

more than once in a subgroup.

Since all group messages are multicasted by a GSA, there is no possibility for a

message to be encrypted using an outdated key. Furthermore, the receivers see the

GSA’s signature as proof that the message is from a valid source.

6.2 Model

The proposed framework is used to model the Iolus behavior in order to check its

correctness. Figure 6-2 shows how the framework signatures are extended to model

the necessary entities of Iolus. The following is a brief explanation of these extensions.

• GroupKey:

This signature is an extension of the Key signature. Each group key has a

generator field, that gives the GSA that generated the key, and a generatedTime

field, that gives the time tick at which the key is generated.

Lines 5-7 say that each group key should be generated because of a membership

change in the corresponding subgroup.

• DataMessage:

This signature is an extension of the Message signature. For each data message,

the previously defined fields of the Message signature, i.e. sender, sentTime

50

1 sig GroupKey extends Key {

2 generator : GSA,

3 generatedTime : Tick

4 }{

5 some c : Client |

6 (Join(c, generatedTime, c.server) || Leave(c, generatedTime)) &&

7 c.server = generator

8 }

9 sig DataMessage extends Message {

10 gsaID : GSA,

11 retransmitTime : Tick

12 }{

13 SendMessage(sender, sentTime, this) ||

14 (some msg’ : DataMessage |

15 this = Remulticast(gsaID, msg’, retransmitTime))

16 }

17 sig GSA extends KDS {

18 parent : option GSA

19 }{

20 keys[Tick].generator = this

21 all t : Tick, k: keys[t]-keys[OrdPrev(t)] | k.generatedTime = t

22 }

23 sig Client extends Member {

24 server : GSA

25 }{

26 all t : Tick, k : ownedKeys[t] - ownedKeys[OrdPrev(t)] |

27 k.generator = server && k.generatedTime = t

28 }

29

30 fact IolusProperties {

31 no disj k, k’ : GroupKey |

32 k.generator = k’.generator &&

33 k.generatedTime = k’.generatedTime

34 all g : GSA, msg : DataMessage, t : Tick |

35 RemulticastConditions(g, msg, t) => some Remulticast(g, msg, t)

36 }

37 fact GSATree {

38 let root = {g : GSA | no g.parent} {

39 one root

40 GSA in root.*~parent

41 }

42 }

Figure 6-2: Iolus Model - Added Signatures and Facts

51

and key, respectively give the group member who initiated sending the message,

the original sending time of the message and the key by which the message

was encrypted. Furthermore, the gsaID field gives the GSA that signed the

message (i.e. the GSA that re-multicasted this message – or multicasted if it

is the original message), and retransmitTime gives the time tick at which the

message was re-multicasted.

Lines 13-15 say that each data message should be either the original message

multicasted in the sender’s subgroup, or a re-multicasting of another message.

It should be noted that the Message type is only used for multicasted messages;

the possible delay associated with sending and processing unicasted messages

is not modelled. Thus, the model is abstract in this sense.

• GSA:

This signature is an extension of the KDS signature. For each GSA, the parent

field gives the GSA corresponding to the parent subgroup of that GSA in the

secure distribution tree. Lines 20 and 21 outlaw the infeasible values of the

keys field of the KDS signature.

It should be noted that in order to make the model simpler, a GSA is not

modelled as a bridge between two subgroups. Instead, each GSA is associated

with a subgroup and has an additional parent field that gives the subgroup

associated with the parent GSA. The example shown in Figure 6-1 is modelled

as the tree shown in Figure 6-3.

• Client:

This signature is an extension of the Member signature. The server field gives

the GSA of the subgroup that the member is allowed to join. Similar to the

ARF model, because of the symmetry of the different subgroups, this field is

not time-dependent to reduce the analysis time.

Furthermore, to make the model simpler, we ignore the delay in receiving the

keys generated by a GSA. Thus, whenever a key is generated, all the members of

52

GSA

GSA

GSA

GSA

GSA

GSA
GSA

Figure 6-3: The Model of the Example Secure Distribution Tree

the corresponding subgroup receive it immediately. Lines 26 and 27 encode that

at each time tick, a client receives only the keys generated by its corresponding

GSA at that time.

The IolusProperties fact defines two more rules: lines 31-33 express the fact

that a GSA does not generate more than one key per time tick (although there

might be different members joining and leaving the corresponding subgroup at the

same time), and lines 34 and 35 encode the rule that whenever a GSA is able to

remulticast a message, it should remulticast it which decreases the analysis time of

the model.

The GSATree fact constrains the topology defined by the parent relation to be a

tree by encoding that there is exactly one node without a parent, i.e. the root, and

any node is reachable from the root by following the child mapping, i.e. the transpose

of the parent relation.

Figures 6-4 and 6-5 show the necessary functions of the framework. Here is a brief

description of each function:

• Init:

This function is used to define the initial values of the time-dependent fields. It

constructs a group with no members where no one knows any keys or messages.

53

fun Init(t : Tick) {

no Member.receivedMessages[t]

no Member.ownedKeys[t]

no KDS.keys[t]

no KDS.members[t]

}

fun Join(m : Member, t : Tick, kds : KDS) {

kds = m.server

JoinRequest(m, kds, t)

NoChange(m.receivedMessages, t)

}

fun JoinRequest(c : Client, gsa : GSA, t : Tick) {

c !in gsa.members[OrdPrev(t)]

KeyUpdate(gsa, t)

c in gsa.members[t]

}

fun Leave(m : Member, t : Tick) {

LeaveRequest(m, m.server, t)

NoChange(m.receivedMessages,t)

}

fun LeaveRequest(c : Client, gsa : GSA, t : Tick) {

c in gsa.members[OrdPrev(t)]

KeyUpdate(gsa, t)

c !in gsa.members[t]

}

Figure 6-4: Iolus Model - Actions - Part 1

54

• Join:

This function constrains a member to only join the subgroup associated with its

server. To join the group, the member sends a join request. In the JoinRequest

function, the corresponding GSA makes sure that the member was not in the

group at the previous time tick, updates the subgroup key, and adds the member

to the subgroup.

• Leave:

In order to leave the group, a member sends a leave request to its server. In the

LeaveRequest function, if the member was in the group in the previous time

tick, the subgroup key gets updated and then the member leaves.

• SendMessage:

If a member wants to send a message at a time tick, it sends the data to its

server in the form of a request. In reply, the member gets the actual multicasted

message, and adds it to its set of known messages.

In the SendRequest function, the corresponding GSA creates a data message

with the requesting member and the time tick as its sender and sent time.

Furthermore, the GSA encrypts the message with the newest subgroup key and

signs the message. This message is considered the original message which is

multicasted in the GSA’s subgroup. Also, the GSA remulticasts the message in

its parent subgroup if it has any members.

• ReceiveMessage:

If the receive conditions hold, that is, if the member is not leaving the group or

joining it at the same time, it has not received the message before, the message

has been remulticasted (and sent) some time before, and the member has the

necessary key, the member receives the message and adds it to its set of received

messages.

• MemberInactive:

55

fun SendMessage(m : Member, t : Tick, msg : Message) {

msg = SendRequest(m, m.server, t)

m.receivedMessages[t] = m.receivedMessages[OrdPrev(t)] + msg

ConstantMembership(m, t)

}

det fun SendRequest(c : Client, gsa : GSA, t : Tick) : DataMessage {

c in gsa.members[t]

result.sender = c

result.sentTime = t

result.key = NewestKey(gsa.keys[t])

result.gsaID = gsa

result.retransmitTime = t

(some gsa.parent.members[t]) => some Remulticast(gsa, result, t)

}

fun ReceiveMessage(m : Member, t : Tick, msg : Message) {

ReceiveConditions(m, t, msg)

m.receivedMessages[t] = m.receivedMessages[OrdPrev(t)] + msg

}

fun ReceiveConditions(m : Member, t : Tick, msg : Message) {

ConstantMembership(m, t)

msg !in m.receivedMessages[OrdPrev(t)]

msg.retransmitTime in OrdPrevs(t)

msg.key in m.ownedKeys[t]

}

fun MemberInactive(m : Member, t : Tick) {

NoChange(m.receivedMessages, t)

ConstantMembership(m, t)

}

fun CanReceive(m : Member, t : Tick, msg : Message) {

some msg’ : DataMessage {

msg’.sentTime = msg.sentTime

msg’.sender = msg.sender

msg’ in m.receivedMessages[OrdPrev(t)] ||

ReceiveConditions(m, t, msg’)

}

}

Figure 6-5: Iolus Model - Actions - Part 2

56

If a member does nothing at a time tick, then its set of received messages as

well as its membership does not change. It should be noted that the member’s

known keys are not required to stay the same as in the previous time tick. That

is because if a new key is generated in the subgroup because of a membership

change at the same time, the server will send the new key to all the members

regardless of whether they were active or inactive at that time.

• CanReceive:

The semantics of this function, which is used in the assertions, is a bit different

from what is suggested in the framework. This function returns true if at the

given time, the given member can receive the piece of data encrypted in the

given message, not necessarily the given message itself. That is because in

Iolus, a member can receive only the messages multicasted in its own subgroup

rather than all the messages. But since data is re-multicasted in all subgroups,

any piece of data sent should be received by all the group members.

Thus, CanReceive returns true if and only if there exists a message encrypting

the same piece of data (i.e. a message with the same sender and sent time) that

was either previously received by the given member or is receivable at the given

time (i.e. the ReceiveConditions function holds).

The auxiliary functions used in the model are shown in Figure 6-6. These functions

are as follows:

• RemulticastConditions:

A GSA listens to the messages sent in both its own subgroup and its parent’s

subgroup (if any). If the GSA receives a message in any of these subgroups, it

remulticasts the message to the other subgroup (if any).

A GSA can remulticast a message if it has been sent (multicasted) at some

previous time tick, the encrypting key of the message is either the GSA’s key or

its parent’s key, and there is some other adjacent subgroup to remulticast the

message to.

57

fun RemulticastConditions(g : GSA, msg : DataMessage, t : Tick) {

msg.retransmitTime in OrdPrevs(t)

msg.key in g.keys[t] + g.parent.keys[t]

some g.parent + g - msg.gsaID

}

det fun Remulticast(g : GSA, msg : DataMessage, t : Tick) :

option DataMessage {

RemulticastConditions(g, msg, t)

let g’ = g.parent + g - msg.gsaID |

result.key = NewestKey(g’.keys[msg.sentTime])

result.sender = msg.sender

result.sentTime = msg.sentTime

result.retransmitTime = t

result.gsaID = g

}

fun KeyUpdate(g : GSA, t : Tick) {

some k : GeneratedKey(g, t) {

all c : Client | c in g.members[t] <=> k in c.ownedKeys[t]

k in g.keys[t]

}

}

det fun NewestKey(keys : set GroupKey) : option GroupKey {

some keys <=> some result

result in keys

no OrdNexts(result.generatedTime) & keys.generatedTime

}

det fun GeneratedKey(g : GSA, t : Tick) : GroupKey {

result.generator = g

result.generatedTime = t

}

fun ConstantMembership(c : Client, t : Tick) {

IsMember(c, t) <=> IsMember(c, OrdPrev(t))

}

fun NoChange[T](r : Tick -> T, t : Tick) {

r[OrdPrev(t)] = r[t]

}

Figure 6-6: Iolus Model - Auxiliary Functions

58

• Remulticast:

If the conditions for remulticasting a message hold, the GSA creates another

message with the same sender and sent time, encrypts it with the local key of

the destination subgroup at the time the original message was sent, and signs

it.

In order to simplify the model, we assume that a GSA has access to the entire

set of keys known to its parent. In reality, the GSA may have to send a request

to its parent and ask for the necessary key.

• KeyUpdate:

A GSA updates the local key of its subgroup by generating a new key and

sending it to all the current members of its subgroup.

• NewestKey:

This function takes a set of keys and determines the most recently generated

key.

• GeneratedKey:

This function returns a key generated by the given GSA at the given time tick.

• ConstantMembership:

This function return true if a given member does not join or leave the group at

a given time.

• NoChange:

This polymorphic function returns true if the value of the given relation at a

given time is the same as the previous time tick.

6.3 Analysis

In order to reduce the analysis time, the EasierAnalysis fact (shown in Figure 6-7

was added. Without loss of generality, it constrains any element of the super-type

59

fact EasierAnalysis {

Member = Client

KDS = GSA

Message = DataMessage

Key = GroupKey

no disj m, m’ : DataMessage {

m.sender = m’.sender

m.sentTime = m’.sentTime

m.key = m’.key

m.gsaID = m’.gsaID

m.retransmitTime = m’.retransmitTime

}

}

assert Acyclic {

all g : GSA | g !in g.^parent

}

assert Connected {

all g, g’ : GSA | g in g’.*(parent + ~parent)

}

assert TimeProceeds {

no msg : DataMessage | msg.retransmitTime in OrdPrevs(msg.sentTime)

}

Figure 6-7: Iolus Model - Basic Properties

sets to be an element of the sub-type sets. Furthermore, it outlaws any cases with

two different messages with exactly the same fields.

The basic assertions shown in Figure 6-7 were checked to make sure the model has

the required properties. All of these claims were checked in the scope of 6 in less than

one minutes in a 1.80 GHz Pentium 4 processor and no counterexample was found.

Furthermore, assertions OutsiderCantRead and OutsiderCantSend were checked,

both in the scope of 5 but with 2 members. The analyses took less than 3 minutes

and no counterexamples were found.

The InsiderCanRead assertion did not hold in this model but none of the coun-

terexamples showed an error in the underlying system. This is not surprising because

this assertion expresses a liveness property: a message sent by a member can be even-

tually received by all other members given enough time. For any scope specified for

60

fun LoopFree() {

no disj t, t’ : Tick {

all k : KDS | k.members[t] = k.members[t’]

all m : Member | m.receivedMessages[t] = m.receivedMessages[t’]

all m : DataMessage | m.retransmitTime = t =>

some m’ : DataMessage {

m’.retransmitTime = t’

m.sender = m’.sender

m.sentTime = m’.sentTime

m.gsaID = m’.gsaID

m.key = m’.key

}

}

}

assert Loop { !LoopFree() }

Figure 6-8: Constraints Required to Check the Liveness Property

the Tick signature, there exists a scenario in which more time is needed to achieve

this property.

A trick to check such properties in Alloy was recently presented by Shlyakhter et.

al. [23]. As explained in that paper, for a given specification, checking a property for

traces of length up to the recurrence diameter is equivalent to proving the property for

traces of any length, while the recurrence diameter of a state machine is the smallest

number r such that all traces of length r + 1 must contain a loop, i.e. have two

equivalent states.

Using the proposed method, we define the LoopFree function shown in Figure

6-8. This function returns true if there are not two different time ticks at which the

group configurations are the same. Two configurations of our model are considered

the same if the sets of present subgroup members in both configurations are the same,

all the members have the same set of received messages in both configurations, and

the sets of multicasted messages in both configurations are the same.

To find the recurrence diameter, the Loop assertion was checked for a fixed number

of members, KDS’s, and messages and the number of ticks was incremented by one

61

whenever a counterexample was found. A counterexample to this assertion represents

a scenario in which there is no loop in the trace. Thus, if k is the smallest scope of Tick

for which the analyzer can’t find any counterexamples, then k − 1 is the recurrence

diameter.

The recurrence diameter of this model with 2 members, 1 KDS and 1 Message is

12 and the InsiderCanRead assertion holds in that scope. Checking this assertion

with more KDS’s, members or messages requires a larger number of time ticks which

can’t be processed by the current version of the Alloy Analyzer in a reasonable time.

62

Chapter 7

Conclusions and Related Work

7.1 Summary

We constructed a framework in Alloy for modelling a class of multicast key manage-

ment schemes. The framework aims at checking the underlying schemes against the

critical correctness properties that should be satisfied by all secure multicast proto-

cols.

This framework was then used to verify two very different protocols addressing

the scalability problem inherently involved in multicast key management. These

protocols are Iolus, which was the first protocol addressing scalability and formed

the basis of many subsequent proposed protocols, and pull-based ARF, which is a

recently proposed protocol with an entirely different approach.

Checking pull-based ARF using the Alloy Analyzer uncovered a serious security

breach in this scheme previously unknown to its designers. We suggested some mod-

ifications to the protocol to resolve the problem. Furthermore, the analysis exposed

a kind of message loss in this asynchronous protocol which does not exist in the

synchronous ones.

The framework proposed here introduces a novel idiom, called tick-based modelling,

for modelling dynamic systems. Compared to the more conventional way of modelling

such systems, our idiom is simpler, more intuitive and provides better modularity.

63

7.2 Discussions and Related Work

Global state modelling is the idiom used in most specification languages such as Z [24],

VDM [1], and Larch [7]. Compared to that, tick-based idiom introduced here, can be

viewed as defining local states for any individual entity of the underlying system. This

idea is similar to the Spin model checker [8] in which each process has its own local

state. However, unlike Promela (the input language of Spin), the Alloy language is a

first-order logic which allows for declarative specification of a system in an arbitrary

level of details.

Group key management protocols are very important and useful but their design

is error-prone. Although verification of security-based protocols is an old topic in

formal verification [5, 6, 14–16], to our knowledge, none of the secure multicast key

management protocols has been formally verified with a fully automatic tool before.

Meadows et. al. [18] have constructed a formal model of GDOI Group Key Man-

agement Protocol [3] using the NPATRL language, i.e. a temporal requirement spec-

ification language to be used with the NRL Protocol Analyzer [17]. NRL Protocol

Analyzer is a prototype special-purpose verification tool, written in Prolog, for the

analysis of cryptographic protocols that are used to authenticate principals and ser-

vices and distribute keys in a network. To our knowledge, this work is the only

attempt to formally verify a group key management protocol.

However, the NRL Protocol Analyzer, which combines model checking and theorem-

proving techniques, works automatically only when the state space of the problem

is small enough for an exhaustive search. Thus, in checking most real protocols, it

heavily depends on the user’s interaction to terminate. More precisely, in order to

find a feasible path from an initial state to a goal state, the analyzer performs a

breadth-first search and in each level it asks the user to prune the states. Although,

it can use some user provided as well as some built-in rules to detect unreachable

states, the search can be done automatically only in very small state spaces.

On the other hand, fully automatic checking of formal specifications is not a new

concept. Model checking applied to a finite state machine is well known. The Alloy

64

Analyzer is an analog, based on a systematic search of bindings for specifications in

the setting of first-order logic and set theory. Such a framework is especially well-

suited to modelling complex structures.

Khurshid and Jackson [13] managed to find some serious flaws in the design and

implementation of an intentional naming scheme using Alloy. Also, using the Alloy

Analyzer, they were able to establish conditions under which that version of the INS

algorithm works.

Nolte [20] used the Alloy Analyzer to explore the behavior of some filesystem

synchronizers aiming at exploring the policies these tools employ and what they

guarantee in the subtle situations with conflicting updates made to multiple filesystem

replicas.

Recently Alloy has been used for model-checking of some distributed algorithms

[23] which involved checking liveness and safety properties of the algorithms running

in any arbitrary topology. In this paper, it is explained how to embed Biere et.al’s

idea [4] in Alloy in order to use the Alloy Analyzer for checking liveness properties

despite its finite-scope analysis.

We believe that checking the design of systems using lightweight modelling is

very useful since it can result in considerable savings by detecting errors prior to

implementation.

Group key management schemes are especially important because of their com-

plexity yet increasing number of applications. Thus, verifying their expected prop-

erties before implementing them can be considerably helpful. This work might be

further extended by constructing a domain-specific modelling library to make check-

ing various properties of these schemes easier.

65

Bibliography

[1] Sten Agerholm and Peter Gorm Larsen. The IFAD VDM tools: Lightweight

formal methods. In proc. International Workshop on Current Trends in Applied

Formal Methods (FM-Trends98), pages 326–329, Boppard, October 1998.

[2] Alexandr Andoni, Dumitru Daniliuc, Sarfraz Khurshid, and Darko Marinov.

Evaluating the small scope hypothesis. submitted for publication.

[3] Mark Baugher, Thomas Hardjono, Hugh Harney, and Brian Weis. Group domain

of interpretation for ISAKMP. In http://search.ietf.org/internet-drafts/draft-irtf-

smug-gdoi-01.txt, January 2001.

[4] Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu. Symbolic

model checking wihout BDDs. Technical Report CS-99-101, Carnegie Mellon

University, January 1999.

[5] Edmund Clarke and Will Marrero. Using formal methods for analyzing security.

In Information Survivability Workshop, 1998.

[6] Ernie Cohen. TAPS: A first-order verifier for cryptographic protocols. In Proc.

13th IEEE Computer Security Foundations Workshop, pages 144–158, Cam-

bridge, July 2000.

[7] John V. Guttag, James J. Horning, and Andres Modet. Report on the larch

shared language: Version 2.3. Technical Report TR58, Compaq Systems Re-

search Center, April 1990.

66

[8] Gerard J. Holzmann. The model checker SPIN. IEEE Transactions on Software

Engineering, 23(5), May 1997.

[9] Daniel Jackson. Automating first-order relational logic. In Proc. 8th ACM

SIGSOFT Symposium on the Foundations of Software Engineering, San Diego,

November 2000.

[10] Daniel Jackson. Alloy: A lightweight object modelling notation. ACM Transac-

tions on Software Engineering and Methodology (TOSEM), 11(2):256–290, April

2002.

[11] Daniel Jackson, Ian Schechter, and Ilya Shlyakhter. Alcoa: the alloy constraint

analyzer. In Proc. 22nd International Conference on Software Engineering, Lim-

erick, June 2000.

[12] Daniel Jackson, Ilya Shlyakhter, and Manu Sridharan. A micromodularity mech-

anism. In Proc. 9th ACM SIGSOFT Symposium on the Foundations of Soft-

ware Engineering/European Software Engineering Conference (FSE/ESEC’01),

Vienna, September 2001.

[13] Sarfraz Khurshid and Daniel Jackson. Exploring the design of an intentional

naming scheme with an automatic constraint analyzer. In 15th IEEE Internation

Conference on Automated Software Engineering, Grenoble, September 2000.

[14] Will Marrero, Edmund Clarke, and Somesh Jha. A model checker for authenti-

cation protocols. In DIMACS Workshop on Design and Formal Verification of

Security Protocols, Piscataway, September 1997.

[15] Catherine Meadows. A system for the specification and analysis of key manage-

ment protocols. In Proc. 1991 IEEE Computer Society Symposium on Research

in Security and Privacy, pages 182–195, Los Alamitos, 1991.

[16] Catherine Meadows. Formal verification of cryptographic protocols: A survey. In

Advances in Cryptology – ASIACRYPT’94: 4th International Conference on the

67

Theory and Application of Cryptology, pages 135–150, Wollongong, November

1994.

[17] Catherine Meadows. The NRL protocol analyzer: An overview. Journal of Logic

Programming, 26(2):113–131, 1996.

[18] Catherine Meadows, Paul Syverson, and Iliano Cervesato. Formalizing GDOI

group key management requirements in npatrl. In Proc. 8th ACM Conference on

Computer and Communications Security, pages 235–244, Philadelphia, Novem-

ber 2001.

[19] Suvo Mittra. Iolus: A framework for scalable secure multicasting. In Proc. ACM

SIGCOMM’97, pages 277–288, Cannes, September 1997.

[20] Tina Nolte. Exploring filesystem synchronization with lightweight modeling and

analysis. Master’s thesis, Massachusettes Institute of Technology, September

2002.

[21] Fumiaki Sato and Shinya Tanaka. A push-based key distribution and rekey-

ing protocol for secure multicasting. In Proc. 8th International Conference on

Parallel and Distributed Systems (ICPADS), pages 214–219, 2000.

[22] Sanjeev Setia, Samir Koussih, Sushil Jajodia, and Eric Harder. Kronos: A

scalable group rekeying approach for secure multicast. In Proc. IEEE Symposium

on Security and Privacy, pages 215–228, 2000.

[23] Ilya Shlyakhter, Manu Sridharan, and Daniel Jackson. Analyzing distributed

algorithms with first-order logic. submitted for publication.

[24] J. Michael Spivey. The Z Notation: A Reference Manual. Prentice Hall, second

edition, 1992.

[25] Michael Steiner, Gene Tsudik, and Michael Waidner. Cliques: A new approach

to group key agreement. In Proc. 18th International Conference on Distributed

Computing Systems, pages 380–387, Amsterdam, May 1998.

68

[26] Shinya Tanaka and Fumiaki Sato. A key distribution and rekeying framework

with totally ordered multicast protocols. In Proc. 15th International Conference

on Information Networking, pages 831–838, 2001.

[27] Chung Kei Wong, Mohammad Gouda, and Simon S. Lam. Secure group commu-

nications using key graphs. IEEE/ACM Transactions on Networking, 8(1):16–30,

February 2000.

69

