
Reasoning about implicit invocation*

J. D i n g e l D. G a r l a n S. J h a

School of C o m p u t e r Sc ience

C a r n e g i e M e l l o n U n i v e r s i t y

P i t t s b u r g h , P A 15213

{ j u r g e n d l g a r l a n l s j h a } Q c s . c m u . e d u

D. N o t k i n

D e p t . of C o m p u t e r Sc ience a n d E n g i n e e r i n g

U n i v e r s i t y of W a s h i n g t o n

Sea t t l e , W A 98195

n o t k i n @ c s . w a s h i n g t o n . e d u

A b s t r a c t

Implicit invocation [SN92, GN91] has become an important
architectural style for large-scale system design and evolu-
tion. This paper addresses the lack of specification and ver-
ification formalisms for such systems. Based on standard
notions from process algebra and trace semantics, we define
a formal computational model for impficit invocation. A
verification methodology is presented that supports linear
time temporal logic and compositional reasoning. First, the
entire system is partioned into groups of components (meth-
ods) that behave independently. Then, local properties are
proved for each of the groups. A precise description of the
cause and the effect of an event supports this step. Using
local correctness, independence of groups, and properties of
the delivery of events, we infer the desired property of the
overall system. Two detailed examples illustrate the use of
our framework.

1 I n t r o d u c t i o n

A critical issue for large-scale systems design and evolution
is the choice of an architectural style that permits the inte-
gration of separately-developed components into larger sys-
tems. Familiar styles include those based on remote pro-
cedure call [BN84], shared variables, asynchronous message
passing, etc.

One key factor determining the effectiveness of an ar-
chitectural style is the ability to reason effectively about
properties of a system from properties of its components.
As a result, considerable effort has gone into techniques for
composition based on procedure invocation [Dij76, Hoa69],

*Effort sponsored by the Defense Advanced Research Projects
Agency and Rome Laboratory, Air Force Materiel Command, USAF,
under agreement numbers F30602-96-1-0299 and F30602-96-1-0301,
and the National Science Foundation under Grant No. CCR-9633532
and No. CCR-9633462. The U.S. Government is authorized to re-
produce and distribute reprints for Governmental purposes notwith-
standing any copyright annotation thereon. D i s c l a i m e r : The views
and conclusions contained herein are those of the authors and should -
not be interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of the Defense Advanced
Research Projects Agency, Rome Laboratory or the U.S. Government.

Permission to make digital or hard copies of all or part of this work for
personal or classroom usa is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or s fee.
SIGSOFT '98 11/98 Florida, USA
© 1998 ACM 1-58113-108-9/9810010. . .¢5.00

shared data [CM88, OG76], and message passing [Hoa85,
Mil80, ISO87]. Even though practitioners rarely carry out
formal reasoning throughout the full design and implemen-
tation process, they can both use the techniques as needed
and also apply intuition that has been built up during de-
velopment of the supporting techniques.

One increasingly important architectural style for system
composition is implicit invocation (II) [SN92, GNgl]. 1 At its
heart, II is based on the idea that a component A can invoke
another component B without A being required to know B's
name. Components such as B "register" interest in particu-
lar "events" that components such as A "announce." When
A announces such an event, the II mechanism is responsible
for invoking component B, even though A doesn't know that
B or any other components are registered?

One of the simplest examples of II is when an operat-
ing system allows user code to register a callback procedure.
For example, user code might register a procedure that is in-
voked when a particular signal is raised by the kernel. This
allows the user code added control without compromising
the kernel. A somewhat more complicated example arises in
broadcast message-based programming environments (such
as those derived from Reiss' Field [Rei90] system). A col-
lection of tools, such as a compiler, a debugger, an editor,
a program visualization tool, etc., execute together. Rather
than calling one another directly, at appropriate times they
each announce potentially interesting activities. For exam-
ple, the editor might announce, "procedure f was saved",
while the debugger might announce, "the breakpoint in file
x.c at line 173 was reached." Other tools might decide to lis-
ten for particular kinds of announcements. For example, the
editor might listen for "breakpoint" announcements, so that
it can move the cursor to the appropriate file and line. A
centralized message server is used to deliver announcements
to the tools that have registered interest.

There are a number of benefits of using the II architec-
tural style, and it has been used in diverse settings such
as programming environments and operating systems and
others. Mechanisms to support II are found in commer-
cial toolkits (e.g., Softbench [Ger89], ToolWalk [Sun93], Dec-
Fuse), communication standards (e.g., Corba [Cor91]), in-
tegration frameworks (e.g., OLE, JavaBeans [Jub98]), and
programming environments like Smalltalk [Go184].

However, there is currently no established methodology
for reasoning about II systems. In particular it is difficult to

l In other contexts "implicit invocation" is referred to by other
names, such as "publish-subscribe" and "event multicast".

2In this paper, a "component" is just a procedure or method.

209

answer questions like: What will be the effect of announcing
a given event? Have enough event bindings been declared
to achieve the desired system behaviour? Does a given com-
ponent announce sufficient events to permit effective inte-
gration? If a new component is added to an existing sys-
tem, will it break the existing system? Are there the right
components to produce desired overall system behaviour?
Moreover, to fully support the intent of II, the reasoning
should be compositional. More precisely, the verification of
a given component should as much as possible be decoupled
from the verification of the system in which its events are
bound to other components. This is because changing any
binding requires reanalysis of the components that announce
the events in the changed bindings.

This paper presents a formal model for systems designed
using the II architectural style. The model combines stan-
dard notions from process algebra and trace semantics [Mil80,
Hoa85] and allows the development of a compositional ver-
ification methodology for II systems. Informally, an II sys-
tem $ consists of a set of methods mi and a distinguished
dispatcher method disp which explicitly models the deliv-
ery and storage of events E. An event-method binding B
determines which methods are triggered by which events.
Each event e E E has a semantics associated with it that
gives precise meaning to the generation and consumption of
events. The cause of an event captures the state change that
caused the generation of the event. The effect of an event
captures the state change that the event will give rise to.

Suppose system S with methods

M = { m l , . . . , m,~,disp}

is to be verified with respect to some specification ~. Our
methodology consists of the following three phases.

• P h a s e 1 (Decomposition)
The set of methods M is partitioned into groups

{al,..., a~}
with 1 _< k _< n. For each group Gi we find a loca l
property ~oi. Groups are independent in the follow-
ing sense: if Gi satisfies ~i, then the entire system
also satisfies ~i. We also prove a local property ~ai~p
about the dispatcher method disp. The property ~oalsp
captures the minimal requirements on the binding and
the dispatch policy of events. For instance, in all non-
trivial cases the binding needs to be non-empty and
the dispatcher is required not to lose certain or even
all events.

• P h a s e 2 (Local reasoning)
Each group Gi is verified with respect to the local
property ~i. Moreover, the dispatcher is verified with
respect to ~Paisp. Typically, this step uses both the
event-method binding B and the semantics of the events
used by group Gi.

• Phase 3 (Global reasoning)
We show that the local correctness of each of the groups
and the dispatcher implies the correctness of S with
respect to ~0. Independence ensures soundness of this
phase.

In general, the tractability of this methodology depends on
the number of independent groups that the system can be
split into. We believe that the loosely-coupled nature of II
systems naturally supports the formation of a large number
of independent groups; that is, we expect the number of
groups k to be linear in the number of methods n rather
than a small constant.

1.1 Related Work

There are two general areas of related work. The first is
research on implicit invocation systems. Most of the work
on such systems has centered around developing practical
mechanisms for exploiting the paradigm in real systems,
such as programming environments like Field and Softbench
[Rei90, Ger89]. Our work is inspired by the practical success
of this work, and hopes to make engineering efforts based
on it more effective by providing a more principled basis for
reasoning about II systems.

Within the general area of II research several researchers
have attempted to provide precise characterizations of im-
plicit invocation systems. An early survey of applications
of the technique appeared in [GKN92] in which the authors
illustrated how and why the ideas of II systems are perva-
sive in software systems. Sullivan and Notkin showed how a
particular style of use of II, which they call mediators, sim-
plifies some specific classes of system change [SN92]. More
recently, [BCTW96] produced a taxonomic survey of event-
based mechanisms, together with a generic object model for
comparison of them. By providing a general framework for
all systems that use events as a communication mechanism
(including, for example, remote procedure call) their work
is concerned with a much broader class of systems than is
our research. By focusing on the more specialized domain
of implicit invocation systems, our models need not include
all of the taxonomic entities that they propose, but are tai-
lored to provide a more substantial analytic basis for formal
reasoning about the behavior of such systems.

Closer to our line of research, some efforts have attempted
to provide a formal characterization of certain aspects of II
systems. An early characterization of II in Z captured struc-
tural and basic behavioural aspects, but no fundamentals of
semantics [GN91]. More recently, researchers in software
architecture have looked at some of the formal properties
of II architectural styles [AAG95], but this research has fo-
cussed on taxonomic issues, and does not provide an explicit
computational model that permits compositional reasoning
about the behaviour of such systems.

In an earlier paper [DGJN98], we investigated the use
of Jones' rely-guarantee framework [Jon83]. Here, composi-
tionality is achieved by restricting the behaviour of the en-
vironment with a single logical formula, called environment
assumption or invariant. To discharge this assumption the
environment then has to be shown to satisfy this invariant.
Since the invariant has to be preserved by every transition,
this is a very strong requirement that typically can only be
met after weakening the invariant with location predicates
that describe the value of the program counter. A weakened
invariant thus typically expresses that either the invariant
already holds or certain statements are about to be executed
which reestablish it. Consequently, the reasoning becomes
unnecessarily detailed. We are forced to explicitly keep track
and expose the number and identity of intermediate states
even if this information is completely irrelevant to the cor-
rectness of the system. In the present paper we strive to
overcome this deficiency with the help of temporal logic.

Other researchers have investigated at formal aspects
of event-multicast and process groups as a mechanism for
achieving fault tolerance through replication [BJ89]. This
work differs from that on implicit invocation in that multiple
recipients of an event typically perform the same computa-
tions. This leads to very different requirements for underly-
ing theory, since the main issue is how to add and remove
replicated servers correctly to a running system.

As we will see, this paper uses the UNITY program-

210

ming language [CM88] augmented with a few communica-
tion primitives to provide a semantic base for implicit in-
vocation. One possible a l ternat ive would have been to use
Linda 's tuple space [GZ97] as the underlying model. How-
ever, the match between tuple spaces and implicit invocat ion
did not appear to be a natura l one: II systems are sensitive
to the relative order in which events are communicated, and
a tuple space's inherent non-determinism would thus have
to be restricted.

In the remainder of this paper we describe a formaliza-
tion of implicit invocat ion systems. The next section intro-
duces a formal model for II systems. Section 3 describes the
specification formalism. Section 4 presents the verification
methodology. Section 5 concludes and outlines fur ther work.

2 Modeling implicit invocation systems

An implicit invocation system will be modeled as a col-
lection of methods tha t anonymously exchange messages
(events) by means of a dispatcher and an event -method bind-
ing. A method is a U N I T Y program augmented with com-
municat ion primit ives for sending and receiving messages.
We employ a notion of communicat ion similar to Milner 's
CCS [Mil80]. There are three types of actions a. a is ei ther

• the s i lent ac t ion r,

• an inpu t act ion (m, z)? or (m, e)?, or

• an ou tpu t act ion (re, e)!,

where m is some method, e is some event in E, and z is some
variable ranging over events. An input action al - (ml , z)?
or al ~ (ml , e)? and an ou tpu t act ion a2 - (m2, e)! are said
to match, if ml = m~. Synchronizat ion is achieved through
matching actions. Intuitively, if a me thod ml announces
an event e meant for a me thod m2, it performs the out-
put action (m2,e)! . Method m2 consumes the event e by
synchronizing with the above action by performing one of
the input actions (m~, z)? or (m2, e)?. The synchronization
then gives rise to the silent action r and also assigns e to z
in case (m2, e)! is matched with (m2, z)?.

To allow for a "selective receipt" of events, input actions
could be augmented with a predicate p, such that (m, z ,p)?
matches (m, e)! only if e satisfies p. As in Field [Rei90],
different methods could thus "listen" for different sets of
actions.

D e f i n i t i o n 2.1 A me thod m is a 4- tuple

m - (V , E , P , S)

where

• V is the se t o f variables that m accesses. Each variable
x has a domain Dom~ associated with it,

• E is a se t o f events that m announces ,

• P is a boolean express ion over V describing the se t o f
in i t ia l states,

• S is a se t o f s ta tements of the f o r m

g a)x :~ exp

where

- g is a boolean express ion over V called guard,

- a is an action,

- x := exp is an a s s i g n m e n t where x E V and exp
is an express ion over V . []

The semantics of a me thod is similar to that of a U N I T Y
program [CM88]. The me thod executes the s ta tements in an
infinite loop using the following strategy. First, a s ta tement

g a) x : = e x p E S

is chosen non-determinist ical ly. If g holds in the current
state, the action a is carried out. If a = (re, z)?, then
we input the next event addressed to me thod m and as-
sign it to z. Next , the assignment x := exp is executed
by evaluat ing the expression exp in the current s tate and
then updat ing variable x. If the environment of m does not
offer a matching ou tpu t action, we get a s tut ter ing step,
that is, the assignment is not carried out and the execution
of the s ta tement te rminates in the same state. The case
a = (m, e)?, is similar except tha t no variable update takes
place. The communica t ion thus only has a synchronizing
effect. If a = (re, e)!, we ou tpu t the event e to method m
and then evaluate the assignment. Again, if the environ-
ment does not offer a matching input action, the s ta tement
te rminates with a s tu t te r ing step. Finally, if a = r, we im-
mediately evaluate the assignment. Note that execution of
an assignment is assumed to be atomic. If the guard is not
t rue in the current state, the execution of the s ta tement ter-
minates immediate ly in the same state. Jus t like in UNITY,
we adopt the fairness constraint that every s ta tement will
be executed infinitely often.

The recipients of an event are de termined by the binding.

D e f i n i t i o n 2.2 Let E be a se t o f events and M a set of
methods. A (possibly emp ty) se t B C_ E × M is called a
binding over E and M. []

A binding associates each event e wi th zero or more methods
that are to be tr iggered when tha t event is announced. Note
that an event need not be bound to any methods and that
several methods can be bound to the same event.

Given a binding B, the delivery of events is modeled ex-
plicitly through a dist inguished dispatcher method dispB,
frequently also denoted by disp if the binding is unders tood
or irrelevant. A me thod announces an event e by sending it
to the dispatcher. In practice, the number of events that a
dispatcher can handle at a given t ime is bounded by some
number m a x . If the dispatcher is not filled to its capac-
ity m a x , it consumes the event, looks up which methods e
is bound to and then stores all result ing pairs (e, m) in a
pend ing events da tas t ruc ture D tha t keeps the events that
are yet to be delivered. Concurrently, the dispatcher can
retrieve a pending event from D and send it to a method it
is bound to. The dispatcher is given in Figure 1. For no-
ta t ional convenience and wi thout loss of generality, we will
always represent the list of s ta tements S in terms of a sim-
ple, imperat ive, shared-variable concurrent language aug-
mented with two communica t ion primit ives for sending and
receiving messages. The t ranslat ion from this representat ion
to the one in Definition 2.1 is s t raightforward [CM88]. To
model sequential execution, for instance, a program counter
pc is in t roduced for each me thod m tha t always points to
the next s ta tement in m to be executed. Moreover, we use
the following abbreviations. (m, z)? and (m, e)? s tand for

t r u e (T - ~ ? s k l p

211

dispB : {D, z, rn)
O

empty(D)
[if size(D) < max t h e n

consume(z) ;
for (z,m) 6 B do

D := store(z, m, D) II
i f -~empty(D) t h e n

(z, m) : = next(D);
(re, z)!;
D := remove(z, m, D)]

V
E
P
S

Figure 1: The dispatcher method dispB

and
true(m'--~?skip

respectively. (re, e)! abbreviates

t (m,~)! . . rue) SKIp.

An occurrence of c o n s u m e (z) in method m abbreviates
(m, z)? and a n n o u n c e (e) abbreviates (dispB, e)!. The state-
ment store(e, m, D) stores the pair (m, e) i n D and returns
the updated D; if D is not empty, next(D) returns the next
element stored in D; if (e, m) is in D, remove(e, m, D) re-
moves it from D and returns the updated D. size(D) yields
the number of elements stored in D and empty(D) returns
true if and only if D is empty. For the sake of generality, we
intentionally make as few assumptions about an implicit in-
vocation system as possible. For example, the storage policy
of pending events in D is left unspecified. An example for
a policy would be a first-in-first-out discipline that does not
remove duplicate occurrences of pairs. In other words, the
model is supposed to abstract from specific event storage
policies so that any possible policy can be plugged in easily.

For the dispatcher to fulfill its purpose, all communica-
tion needs to be forced through it. In other words, whereas
the dispatcher must be able to communicate with every
method (except itself), all other methods must be prevented
from communicating with each other directly. We thus im-
pose the following topology constraint: All methods except
the dispatcher must use a n n o u n c e (e) and consume(z) to
send and receive messages. In other words, every output
action and every input action in a method m except the
dispatcher must be of the form (disp, e)! and (m, z)? respec-
tively.

A set of methods ml that satisfy the topology constraint
together with a binding B and a dispatcher dispB form a
system. Given a method

mi ~ (V i ,E i ,P i ,S i) ,

let E(mi) and P(mi) denote Ei and Pi respectively.

D e f i n i t i o n 2.3 An implicit invocation system S, or system
for short, is a 4-tuple

S = _ (M , P , E , B)

where

• M is a set of methods mi together with a distinguished
dispatcher method dispB, that is,

M ~ {ml , . . . ,m ,~ ,d i spB}

with n > 1, where ml through m,, satisfy the topology
constraint,

• P describes the initial states of the system. It must be
consistent with the initial states of each of the methods,
that is, P ~ A,,~eM P(m) ,

• E = mmeM E(m) , is the set of all events,

• B is a binding over E and { m l , . . . , m n } .

The actions of a system are collected in

InOut =_ { (m, e>?, (m, e>! I m e M, e E E}
Act =_ InOutU {r}.

[]

Note that the same variable can be accessed by more
than one method. Methods thus can also communicate
through shared variables.

From an implementation point of view, we can think of
a system as a network of processes (methods) that are con-
nected through input ports as shown in Figure 2. p,, de-

Figure 2: Implicit invocation system as network

notes the input port of process (method) m. Note how the
dispatcher controls the flow of events.

2.1 Modeling the environment

Typically, a system is triggered directly by some "top-level"
(or "external") events that are provided by the user. The
environment model represents all allowed sequences of input
and output actions that may be presented to some set of
methods.

D e f i n i t i o n 2.4 Given a system with input and output ac-
tions InOut, an environment model Env is a (possibly empty}
set of finite sequences of input and output actions, that is,
Env C InOut* . []

Although the above definition is a lot more general, we will
only employ two kinds of environment models in this paper.

• To define the semantics of an event we will need en-
vironments that can only execute a single action a E
InOut. The corresponding model thus is of the form
{a}.

• Moreover, to model an arbitrary but finite stream of
"top-level" actions supplied by a user, we will use envi-
ronment models of the form { a l , . . . , an}* where ai E
InOut for all i < i < n.

212

The behaviour of an environment model Env will be imple-
mented by the me thod mEnv. The me thod corresponding to
Env ~ {a, , a , }* is given in Figure 3 where the execution
of

n := c h o o s e (l ~)

assigns a random natura l number to n and

c h o o s e (a t , . . . , am)

non-determinist ical ly chooses an act ion ai with 1 < i < m.

m E n v : @ V

{at , a , . } E
true P

n := c h o o s e (N) ; S
f o r i = 1 t o n d o

c h o o s e (a t , . . . , am)

Figure 3: The me thod mEn~ corresponding to Env
{a , , , , , ,am}"

2.2 Example: Sets and counters

We show how the above model of an implicit invocat ion sys-
tem can be ins tant ia ted by a specific example. Consider a
system SC which maintains a set S of elements over some do-
main Dora= and a counter C. Initially, S = @ and C = 0. Be-
sides the dispatcher the system contains two methods which
are given in Figure 4. An element x can be inserted into or

set: i x , Zl, S}
{ins, del} U {insert(v), delete(v)lv E Dom=}

S = O
c o n s u m e (z 1) ;
i f zt = insert(x) t h e n

i f x ~ S t h e n
S : = S u {x};
a n n o u n c e (i n s)

e l s i f zt = delete(x) t h e n
i f x E S t h e n

s : = s\{x};
announce(del)

cnt : i t , z~ }
{ins, del}

C = 0
e o n s u m e (z 2) ;
i f z2 = ins t h e n

C : = C + I
e l s i f z2 = del t h e n

C:=C-I

Figure 4: Methods set and cnt

deleted from the set S using the me thod set. Analogously,
the counter C can be incremented or decremented using cnt.
The binding is

Thus,

B =_ {(ins, cnt), (del, cnt)} .

M =_ {set, cnt, dispB}

and

E - {ins, de[} U {insert(v) , delete(v) I v E Dora=}.

Execut ion is t r iggered by a finite sequence of insert or delete
actions addressed to the set method. We define

Env - {(set , insert(v)>!, (set, delete(v))! [v 6 Dom=}*.

Given one of the actions

(set, inserffv))!

or
(set, delete(v))!,

t h e method set is invoked. If necessary, the set S is upda ted
by inserting or deleting the element v and the corresponding
event is announced. This in tu rn triggers cnt. B provides
the necessary bindings for events tha t announce the update
of the set, so tha t the counter can also be upda ted corre-
spondingly.

Note tha t we do not assume that , for instance, the inser-
t ion and the increment occur simultaneously. Consequently,
it is not the case tha t the size of the set is always equal to
the counter. However, if every announced event has been
consumed and "serviced" with the corresponding counter
update , then we should have ISl = c . As we win see, this
paper develops the theory necessary to formally express and
prove this kind of property.

2.3 Trace-theoretlc model

Before we can present the trace semantics of an II system,
we need to show how a me thod and a system can be modeled
as a u t o m a t a (labeled t ransi t ion systems). We first describe
how a single me thod is mapped to an au tomaton .

D e f i n i t i o n 2.5 Given a method m =-- (V, E, P, S) we define
a me thod au toma ton as

Am - (V, E, I , P ,6)

t0here

• E : V --+ U=ev Dorn= is the set of states of m, that is,
mappings assigning values to the variables in m,

• I C_ E is the set of initial s tates of the automaton Am,
that is, states in which the program counter of m points
to the f irst s ta tement of m, that is, pc = 1. Note that
not every state in I has to satisfy P ,

• 6 C_ ~ × Act× E is the t ransi t ion relation and is defined
as the smallest relation satisfying

- {(s, a, s), (s, r, [slx = v])} C 6 if there exists a
s tatement

a
g---+x := exp

in S such that g is true in s and exp evaluates to
v in S,

- (s , r , s) E 6 ifg is not true in s. []

Given a s ta te s over variables VI and a set of variables
V2 C V1, let s[V2 be the projection of s to V2.

213

D e f i n i t i o n 2.6 Given method automata

Ai -- (Vi ,~ i , I i ,Pi ,S i)

for 1 < i < n their parallel composi t ion is given by

a l [[. . . IIA, -= (V, ~, I , P, 8)

where

• v = U " v;, i = l

• ~ : V -+ U ~ e v Dom~ is the set of states over V,

• s T I i f f s I V i • h f o r a l l l < i < n ,

n
• P = Ai=l Pi, and

• 6 C ~ x Act x ~ is the smallest relation satisfying

1. (s,~-,s ') • 8 if there exists i < i < n such that
(sIV~,r ,s ' [Vi) • 6i and all variables in V but not
in ~ remain unchanged, that is, s I (V - V i) =
s' l ' (V - v;) , and

2. (s, r ,s) • ~ if there exist 1 < i , j <_ n such that
i # j and

and

and

(srV,, (m, e)?, sW,) • 8,

(4v~, (m, e)!, srVj) • 8.

s. (s, ~, [sl~ = el) • 8 q there exist I < i, j <_ n such
that i # j and

and
(sIVi, (~, e)!, slV~) ~ 8 .

and

4. (s , r , s) 6 ~ if there exist 1 < i < n, m andz such
that

(s r ~ , (~,.~)~, sty;) ~ 8,

and
(s rv,., (m, ~)!, sr~) ¢ ,%

for all e and l <_ j <_ n with j # i, and

5. (s , r , s) 6 8 if there exist I < i < n, m and e such
that

(srV,, (m, e) ?, sIV,) • 6,

and
(siva, (m, e)t, s l v j) ¢ 8~

for all l <_ j <_ n with j # i, and

6. (s, z, s) • 6 if there exists 1 < i < n such that

(sIV,, (m, e)~, slV,) • ,~,

and

and

(srVi, (. . , z)?, sfvi) ¢ ~

(s f ~ , (re, e)?, s r~) ¢ ~j

for all z and l < j < n with j • i. []

The intui t ion behind the definition of 8 is as follows. The
first clause covers the case where one of the components
moves independent ly by execut ing an assignment for in-
stance. The next two clauses model synchronous commu-
nication. While the second clause captures synchronization
wi thout a da ta exchange, the third clause defines commu-
nication with upda te of some variable z. The final three
clauses allow a component to s tu t t e r if the environment does
not offer a match ing action. Note tha t only the communi-
cat ion case requires synchronization. In all o ther cases a
component can move independently.

We are now ready to define the trace semantics.

D e f i n i t i o n 2.7 Let

A = - (V , E , I , P , ~)

be an automaton corresponding to some system S. A trace
a of A is an infinite sequence of the form

r 1" r
S o - - - - - + S l - - - - - - f s 2 - .-----~ . • •

where

• so 6 I ,

• so ~ P, and

• (si, r, s i+ ,) 6 8 for all i > O, and

• every statement o r s gets executed infinitely often along
0 : .

The set of all traces of A is denoted by T[A]. []

The traces of a set of me thods are never considered in iso-
lation, but always in the context of an environment.

D e f i n i t i o n 2.8 Let S be a system and let

G - { m , , m . }

be a set of methods (including possibly the dispatcher) of S.
Given an environment model Env, the automaton AG,Env
modeling the behaviour of G in the environment Env, is
given by the parallel composition of all method automatons
Ami .and the environment automaton Amm,~, that is,

AG,Env = A, , I[[. . . IlA-~,llAmm.~ •

The traces of G in Env are the traces of AG.Env, that is,
T[G, Env] = T~AG,Env]. []

3 Specifying implicit invocation systems

To specify the ongoing behaviour of an II system, we use
first-order l inear t ime tempora l logic wi thout the next t ime
opera tor X, denoted by L T L - x . 3

D e f i n i t i o n 3.1 Given some set A P of atomic propositions
and assumingp 6 AP , the set of L T L - x formulas is induc-
tively defined as:

¢ ::= v I -,4, I ~,. ^ ~'=' I V x . ~ I ~ , u ~

Other formulas can be introduced as abbreviations in the
usual way: ~l v ~ abbreviates -~ (-~ , A - ~ 2) , ~ 1 = ~ 2 ab-
breviates - ~ i V ~2, true abbreviates p v -~p, false abbreviates

3Our model allows for arbitrary, but finite stuttering to be added
between two transitions which renders the next time operator useless.

214

-,true and 3x.~ abbreviates "~Vx.-~. The temporal operator
F4p abbreviates true U ~p and G~ abbreviates -~F-~¢. Given

a 0 a i - - 1
Ol ~-- 8 0 - - - ' ~ S l . . . ------)'8i • • • 1

let a[i] denote the state si. Let ~[i..] denote the infinite suf-
a i

fix si)si+l The satisfaction relation ~ of a LTL - x
formula with respect to a trace ~ is inductively defined over
the structure of the formula.

a ~ - ~ if not (~ ~
Ol ~ qO 1 A ~D 2 i f Ol ~ ~D 1 and a ~ qo~
cr ~ Vx.V if a ~ v[vlx] for all v e Dora=

~ ~ , u ~ if 3o < i.~[i..] ~ ~ and
~[j..] ~ ~, Sot all 0 < j < i.

U

Initial, terminated and quiescent states

Typically, events are used to mainta in some kind of system
invariant. However, jus t like loop invariants in sequential
programming, they usually will not be preserved along ev-
ery t ransi t ion of the system. The following scenario seems
typical for II systems: The execution of a s ta tement in
some method ml results in the violation of the invariant.
m l will then announce an event which will tr igger some
other method m2. The execution of m2 will then eventu-
ally reestablish the invariant. Note tha t the invariant might
be violated until m2 has completed. The next defmition
presents three predicates init, term, and quiescent tha t al-
low us to single out certain states along a trace in which the
invariant should hold.

D e f i n i t i o n 3.2 Let a be a trace of a set of methods G in
some environment Env and let s be a state along ce.

1. The proposition init holds in s iff it is an initial state
of the automaton AG,E~, , that is, the program counter
of all methods in G point to the first statement.

"2. The proposition term holds in s iff s is a fixed point,
that is, a does not exhibit any state changes after s.

3. If G contains the dispatcher, that is, disp E G, then
proposition quiescent holds in s iff it is an initial state
of A~,e,~ and the pending events datastructure D is
empty. []

In Example 2.2, for instance, the system invariant is
IS] = C, the size of the set S is equal to the value of the
counter C. This invariant is not maintained along every
transition. For instance, while an ins event is pending in
the dispatcher, the counter will lag behind. Let a be a
trace of me thod set in some environment Env and let s be a
s ta te along a . Then, if init holds in s, tha t is, the program
counter of set points to the first s ta tement of set, then the
size of S in s is the number of (disp, ins)! actions issued so
far minus the number of (disp, del)! actions issued so far.
Also, we expect the counter to have caught up whenever all
events have been delivered and the system is back in one of
its initial states, tha t is, if s is quiescent. Note that every
te rminated s ta te also is quiescent.

Propert ies of the behaviour of a set of methods G in
some environment Env can be described using the following
not ion of specification.

D e f i n i t i o n 3.3 Given a set of methods G and an environ-
ment model Env, a specification is a 4-tuple

{p} (G, Env) {~}

where p is the pre-condition given as a boolean expression,
and q~ is a L T L - x formula. The specification

{p} (G, Env) {~}

is satisfied, if

Va e TIG, Env].if ~[O] ~ p then a ~ ~.

[]

3.1 Event semantics

The key feature of II systems is tha t the not ion of events al-
lows for a tempora l and spatial separat ion of the cause and
the effect of cer ta in designated s ta te changes. For instance,
consider a set of source and executable files. Suppose we
want our II system to automat ica l ly maintain consistency of
the executables with respect to the source files. The modifi-
cat ion of one of the source files causes the editor to announce
a modified event. Assuming tha t this event is bound to the
compiler, the effect of this event will be the invocation of
the compiler at some la ter point in t ime and in some possi-
bly remote location. This kind of separat ion between cause
and effect seems essential to the easy integrat ion of loosely-
coupled software components . However, it also makes formal
reasoning about II systems very difficult.

We will now define causes and effects more formally. We
say tha t an event e is announcedby method m whenever it is
passed to the dispatcher, tha t is, m executes a n n o u n c e (e) .
Remember tha t in this case m performs a transi t ion la-
beled with (disp, e)!. The cause of an event, cause(e) for
short, characterizes the s ta te change tha t gave rise to the
announcement of e.

D e f i n i t i o n 3 .4 cause(e, m) is the strongest LTL - x formula
that validates the specification

{true} ({m}, {(disp, e)?}) {~}.

cause(e) is
cause(e)- V cause(e,m)

m E G

where G is the set of all methods that announce e. []

In the above definition m is run in an environment that
can accept event e if it is addressed to the dispatcher, that
is, it offers the act ion (disp, e)?. Let c~ be a trace of m
in tha t environment . Due to the restr ic ted shape of the
environment, the only communica t ion that m can engage in
along ~ is sending e to the dispatcher. Moreover, it can do
so at most once. Due to the fairness assumption tha t every
s ta tement is executed infinitely often, m will thus announce
e exactly once along a . Note tha t m can still pei 'form an
infinite number of internal r-act ions.

The effect of e, effect(e), describes the state change with
which the rest of the system will react. An event invokes the
methods it is bound to. Suppose e is bound to m, that is,
(e, m) E B. We say tha t an event e is consumedby m when-
ever m receives e from the dispatcher, that is, m executes
c o n s u m e (z) after which z is bound to e for some variable z.
Remember tha t in this case m performs a transi t ion labeled
with (m, z)?. Note tha t in contrast to the cause, effect(e)
depends on the methods tha t e is bound to and thus on the
binding. An unbound event will not have any effect.

215

D e f i n i t i o n 3.5 effect(e,m) describes the state change by
m that the consumption of e will give rise to. Formally,
effect(e, m) is the strongest LTL - x formula ~o such that

{tr.e) ({m), {(m, e)!}) {~}.

The effect of the event is then given by

effect(e)-- A effect(e,m)
(~,m)eB

Cause and effect of an event are referred to as its semantics.
[]

The intuit ion behind the definition of the effect is analogous
to tha t of the cause, m is run in an environment tha t can
send the event e to m once, tha t is, it offers the act ion
(m, e)I. Let a be a t race of m in that environment. The only
communica t ion tha t m can engage in along a is receiving
e. Moreover, it can do so at most once. Due to the fairness
assumption tha t every s ta tement is executed infinitely often,
m will thus consume e exactly once along a .

For instance, consider the set-counter example of Sec-
t ion 2.2. Whenever an element x is added to the set S wi th
x ~ S, then the act ion (disp, ins)! announces the event ins
by communica t ing it to the dispatcher. The consumption
of ins subsequently causes the counter C to be incremented.
Similarly for the event del. For specification purposes we
need logical variables. A logical variable is never ment ioned
in a program and its value can thus be assumed to remain
unchanged across program transitions. 4 Let T and w be log-
ical variables. Also, let follows(tp, ¢) abbrevia te ¢ U (G ~) .
Informally, follows(co, ¢) holds for a if there exists a s ta te si
along a up to which ¢ holds and from which qo holds forever.
The reason for announcing ins is that there is some value
x 6 Dom~ such tha t x ~ S and the value of S changes from
T to T to {x} for some T. Note tha t only the me thod set
announces ins.

cause(ins)
= cause(ins, set)

VT E Doms .S = T ~ 3 x E Dom~.x q~ TA
foUows(S = T U {x}, S = T)

The effect of ins is an increment of C. Remember that ins
is bound to cnt.

effect(ins)
= effect(ins, cnt)

Vw 6 D o m c . C = w~fol lows(C = w + 1, C = w).

Similarly, for the del event we get

cause(del)
= cause(del, set)

VT 6 Doms.S = T~3x 6 Dom~.x 6 TA
follows(S = T - {x}, S = T)

and

effect(del)
= effect(del, cnt)

Vw 6 Domc.C = w=kfollows(C = w - 1, C = w).

Note tha t in the above formalizat ion the event semantics
can only express s ta te changes. More precisely, given an
event e, nei ther the announcement nor the consumpt ion of
some other event can be par t of the semantics of e. In other
words, an event cannot cause the announcement of some
other event, for instance.

4Sometimes also called rigid variables.

4 Verifying implicit invocation systems

Before we can introduce our verification methodology, we
need to define the not ion of independence.

D e f i n i t i o n 4.1 Let S be a system with methods M and en-
vironment model Env. Let G be a set of methods of S with
environment model EnvG. We say that (G, Envc) is inde-
pendent with respect to p and ~o, if

implies

{p) (G, EnvG) {~}

{p) (M, Env) {~}.
[]

Independence thus allows us to "lift" a specification from
a subset of methods to the entire system. It a t t empt s to
reconcile concurrency and composit ionali ty, which is a cen-
tral problem in concurrency theory: Under what circum-
stances can a proper ty of a composi te system be obtained
from propert ies of its components despite the presence of
concurrency [dR85]? Unfortunately , our methodology cru-
cially depends on our ability to prove independence. To ease
this task, we will now isolate a few syntact ic conditions that
guarantee independence.

Let G be the envi ronment (complement) of G, tha t is,
the set of methods in M but not in G. Firs t of all, we need to
prevent the environment from interfering with the compu-
ta t ion of G via shared variables. More precisely, we assume
tha t G and G do not share any variables. Moreover, we
need to prevent the envi ronment from chan_~_ing the t ru th
value of ei ther p or ~o, tha t is, we require G to not men-
t ion any of the variables in p or ~o. However, the absence
of variable conflicts implied by the above two conditions is
not sufficient. The reason is tha t an enlarged environment
Env may offer communica t ion actions that Envc did not of-
fer. These addit ional actions may allow G in Env to exhibit
traces tha t were impossible for G in Enva. We say that
an environment model Enva complements a set of methods
G, if every act ion ment ioned in G has a matching action in
EnvG. Consequently, a complement ing environment will al-
low G to engage in all communica t ions it could be interested
in.

We thus arrive at the following lemma.

L e m m a 4.1 Let G C_ M be a non-empty set of methods
and let "G be the methods in M but not in G. (G, Envy) is
independent with respect to p and ~o, if

* all methods in G do not mention any of the variables
used in G, and

• all methods in -G do not mention any of the variables
used in p or qo, and

• EnvG complements G. []

Let M =_ { m , , . . . , m n , d i s p } be the set of methods of
some system S with environment model Env. Suppose we
want to show tha t

{p} (M, Env) {~}.

Our verification methodology consists of the following three
phases.

216

D e c o m p o s i t i o n Partition M into groups G1,. •., Gk with
1 < k < n. Typically, the dispatcher is analyzed in
isolation and forms a singleton group. For each group
Gi find an environment model Envi and subspecifica-
tions pl and ~i such that (Gi, Envi) is independent
with respect to pi and ~i.

Local reasoning Prove subspecifications

{pi} (Gi, Envi) {~i}

for each 1 < i < n. Typically, this step uses both the
event-method binding and the semantics of the events.

Global reasoning Lift the subspecifications to the entire
system using independence, and prove

{p} (M, Env) {~}.

4.1 Example: Sets and counters

As indicated at the end of Section 2.2, we would like to
show that after an arbitrary but finite number of insert and
delete events have been passed to the system, the size of the
set is equal to the value of counter in every quiescent state.
Formally,

{ s = O ̂ c = 0}
(M, Env)
{ G(quiescent~lS I = C)}

where

Env = {(set, insert(v))!, (set, delete(v)>! [v • Dome}' .

4.1.1 Decomposition

Each method in SC forms a group.
shown later.

Independence will be

4.1.2 Local reasoning

Let #(re, e)? stand for the number of times that event e
was received by m so far along the current trace. Also, let
(m , e)! stand for the number of times that event e was sent
to m so far along the current trace. Formally, this operator
can be implemented using auxiliary variables.

Due to our synchronous notion of communication, a com-
munication action cannot occur without a matching action.
We thus get the following lemma.

L e m m a 4.2 Along every trace (~ of some system S, the
number of matching input and output actions must be equal,
that is, we must have # (m , e) ? = # (m,e) ! . []

Set method set

Given the cause(ins) and cause(del), we can see that when-
ever an element is added to the set, an ins event is announced
and that whenever an element is removed from the set, a del
event is announced. Thus, in initial states, the size of S is
the number of ins events sent to the dispatcher so far minus
the number of del events sent to the dispatcher so far. The
validity of this correspondence is limited to initial states,
because it does not hold when control is between updating
the set and posting the appropriate event. Formally,

{ s = o}
(set, En%et)
{G(ini t~[S I = #(disp, ins)! -- #(disp, de/)!)}

where

Env~t -- {(set, insert(v))!, (set, delete(v))! I v 6 Dome) ' .

Counter method cnt

The local specification of the counter is analogous. Given
the effect(ins) and effect(del), we can see that whenever an
ins event is consumed, the counter is incremented and that
whenever an del event is consumed, the counter is decre-
mented. Thus, in initial states, the value of C is the number
of ins actions received from the dispatcher so far minus the
number of del actions received from the dispatcher so far.
Formally,

{ c = o}
(cnt, Envc,u)
{ G (i n i t ~ C = #(cnt , ins)? - #(cnt, de/)?)}

where Envcnt = { (cnt, ins)!, (cnt, del)! } *.

Dispatcher method disp

Note that no assumptions about the binding B or the stor-
age policy of the dispatcher have been made yet. For in-
stance, we have not yet required B to be non-empty or the
dispatcher not to lose every message. However, it is clear
that for the verification to go through, certain minimal re-
quirements have to be imposed. The following specification
captures these requirements.

Every ins event input by the dispatcher is first stored
in D and then passed on to the counter. Similarly for del
events. In other words, the dispatcher must eventually pass
on every ins and del event received. More precisely, in every
initial state, the number of (disp, ins)? actions performed
by the dispatcher is the sum of the number of (cnt, ins)!
actions performed by cnt plus the number of ins events still
pending in D. A similar correspondence holds for the del
event. Formally,

{true}
(disp, Envdisv)
{ G (i n i t ~

(#(disp, ins)? = #(cnt , ins)! + #(cnt, ins, D)/X
#(disp, de/)? = #(cnt , del)! + #(cnt, del, D)))}

where

Envdi~p =-- { (disp, ins)!, (disp, del)!, (cnt, ins)?, (cnt, del) ? }*

and #(re ,e , D) denotes the number of occurrences of the
pair (m, e) in D. Note that the above specification would
fail, if, for instance, the binding was empty, or the dispatcher
simply discarded some of the incoming events.

4.1.3 Global reasoning

Note that set, cnt and disp do not share any variables and
that Envs~t, Envcnt and Envdi~,p complement set, cnt and
disp respectively. Due to Lemma 4.1, the three group and
environment pairs above are independent with respect to
their respective specifications. Thus,

{ s = 0}
(M, Env)
(G(in i t~[S I = #(disp, ins)! - •(disp, de/)!)}

and

{C = O}
(M, Env)
{ G (i n i t ~ C = #(cnt , ins>? - #(cnt, de/>?)}

217

and

{ true)
(M, Env)
{ G(in i t~

(disp, ins)? = # (cnt, ins)! + #(ins , cnt, D)A
(disp, del) ? = # (cnt, del) ! + # (del, cnt, D))}.

Let cr be a trace of (M, Env) tha t s tar ts in a s ta te satisfying
S = @ A C = 0 and let si be a quiescent s ta te along a . si
satisfies the implicat ion

i n i t~ ISl = #(disp, ins)! - #(disp, del)!A
C = #(ent , ins)? - # ¢ n t , del)?^
(disp, ins)? = # (cnt, ins)! + #(ins , cnt, D) A
#(disp, del)? = #(cnt , del)! + #(del , cnt, D).

Moreover, quiescence implies init and empty(D) which im-
plies that the number of (cnt, ins) and (cnt, del) pairs in D
is zero, tha t is,

#(ins , cnt, D) = #(del, cnt, D) = O.

Thus, si satisfies

ISl = #(disp, i n s) ! - #(disp, del)!A
C = #(cnt , ins)? - #(cnt , del)?^
#(disp, ins)? = #(cnt , ins)!A
#(disp, del)? = #(cnt , del)!.

Using Lemma 4.2 we get

#(disp, ins)? = #(disp, ins)!

and
#(disp, de/)? = #(disp, del)!.

Consequently, si ~ IS[= C which allows us to conclude

{S = 0 A C = 0} (M, Env) {G(quiescent~lS I = C)) .

4.2 Example: File system

We now consider an example inspired by the common ap-
plication of implicit invocat ion to software development en-
vironments, such as Field [Rei90]. Previously, a s ta te was
a mapping from variables to values. We now consider a
slightly different scenario, in which the s ta te is given by the
contents and the a t t r ibu tes of.a file system ~ S . Suppose Src
is a set of source files. We assume tha t the files in Src cor-
respond to an executable file exe and tha t make(Sre, exe)
creates a new executable wi th respect to the current con-
tents of Src. In the following, the variable f will range over
files in ~r,5, that is, D o m f = {v I v is a file in ~ 'S}. The
system ~ 'S contains the events

E -- {modified) U {ed(v) [v E Domf},

and the methods

M =_ {edit, cmpl, dispB}

where
B = {(modified, cmpl)}.

Let fresh denote the fact tha t the last modificat ion date of
exe is more recent than tha t of all files in Src, that is, for all
f E Src,

datedast_modified(exe) > date_last_modified(f).

The modified event gets announced, whenever the file sys-
t em is not fresh. Moreover, whenever the modified event
is consumed the file system will eventual ly be fresh. The
semantics of the modified event thus is

cause(modified) ~ FG-~fresh
effect(modified) ~ FGfresh.

The methods are given in Figure 5. An ed(v) event trig-

edit :

cmpl :

Dora I U { f }
{modified} U {ed(v)lv E Dotal}

fresh
l o c a l bur= @ in

consume(ed(f));
r e a d (f , bu¢);
edit Loop(buf);
s a v e (bur, f) ;
i f f E Src t h e n

a n n o u n c e (m o d i f i e d)

Src u {exe}
{modified}

fresh
c o n s u m e (m o d i f i e d) ;
m a k e (Src, exe)

V
E
P
S

V
E
P
S

Figure 5: The methods edit and cmpl

gers the edit method. Method edit copies the contents of v
into a local buffer bur and at the end of the edit session, v
is upda ted with bur. If v also is a source file relevant to exe,
the modified event is announced. The modified event trig-
gers the compile me thod cmpl which updates the executable.
We would like to show tha t af ter a fmite but arbi t rary se-
quence of ed(v) events the file system will always be fresh
upon terminat ion. Formally,

{fresh) (M, Env) { G(t erm~ fresh) }

where E n v - {(edit, ed(v))! l v e Dotal} ' .

4.2.1 Decomposition

Like in the se t -counter example, each m e t h o d forms a group.
An independence a rgument is given later.

4.2.2 Local reasoning

We abuse nota t ion slightly and use an input or ou tpu t action
a also as an a tomic proposit ion. A s ta te s along some trace
c~ satisfies (m, e)? if e has jus t been received by m. Also, s
satisfies (m, e)! if e has jus t been sent to m.

Edit method edit

The fact tha t one of the source files in Src is to be edited, is
abbrevia ted by update(Src), tha t is,

update(Src) = 3 f E Src.(edit, ed(f))?.

We will also need a weak until operator ~0Uw¢ which ex-
presses tha t e i ther ~ holds forever or at least until ¢ holds,
that is,

~ u ~ ¢ = G ~ v (~ u ¢).

218

Whenever the executable is fresh, it will either remain so
forever or until a source file is edited, that is, update(Src)
holds.

{fresh}
(edit, Env~dit) (1)

{ G(fresh~(fresh Uw update(Src))) }

where Env~ait =- {(edit, ed(v))! [v E Doml}*. Also, ev-
ery update eventually leads to the modified event being an-
nounced.

{true}
(edit, Env~ait)
{ G(update(Src)~ F (disp, moaifiea) ~) }

This step uses cause(modified).

(2)

Compiler method cmpl

The receipt of a modified event triggers recompilation and
thus eventually creates a fresh executable. The semantics
modified allows us to conclude that the file system eventually
stays fresh forever.

{true}
(cmpl, Envcmv,) (3)

{ G((cmpl, modified) e ~ FG fresh) }

where Envcmpt =__ {(cmpl, modified)!}*. This step uses the
effect of modified. The above specification is too strong for
our purposes, because it cannot be rifted to the entire sys-
tem. We thus employ the following weaker specification.

{true}
(cmpZ, Envomp,) (4)
{ G((cmpl, modified) ? ~ F fresh) }

Dispatcher method disp

The requirements for the binding and storage policy are as
follows. An arriving modified event eventually leads to a
pending event (cmpl, modified) being stored in D.

{true}
(disp, Envaisv)
{ G((disp, modified) ? ~ F(cmpl, modified) • O)}

where Envaisv =- { (disp, modified)!, (cmpl, modified)?}*. An
event pending in D eventually is delivered.

{true}
(disp, Envdisv)
{G((cmpl, modified) E D~F(cmpl, modified)])}.

This implies

{true}
(disp, Envai,v) (5)

{ G((disp, modified) ?=~, F (cmpl, modified)!)}.

Note that in contrast to the set-counter example, the dis-
patcher now is allowed to lose some (but not all) incoming
events. More precisely, suppose a non-empty sequence of
(disp, modified)! actions are passed to the dispatcher. Then,
only at least one (cmpl, modified)! action needs to be passed
to the compiler.

4.2.3 Global reasoning

In contrast to the set-counter example, the ~ 'S system con-
thins two methods (edit and cmpl) that share variables (files).
Obviously, this complicates the verification since Lemma 4.1
cannot be applied as readily. However, since the dispatcher
does not share any variables with edit or cmpl, Lemma 4.1
can still be used to lift (5), the local specification of the dis-
patcher. Moreover, the sharing is limited enough such that
the remaining specifications can still be lifted. (edit, Env~d,t)
is independent with respect to the specification (1) because
the environment (the compiler and the dispatcher) can never
change the value of fresh from true to false (only from false
to true) nor can it change the value of update(Src). Also,
(edit, Env~dit) is independent with respect to the specifica-
tion (2) because the environment (the compiler and the dis-
patcher) cannot prevent edit from eventually announcing
modified. Moreover, (cmpl, Env~,,~vt) is independent with
respect to (4), because the environment (the editor and
the dispatcher) cannot prevent the compiler from creating a
fresh executable once it has received a modified event. Note,
however, that the environment can prevent an executable
from staying fresh forever and thus the original specifica-
tion (3) cannot be lifted.

Using the lifted versions of (2), (5), and (4) we get

{fresh} (M, Env) {G(update(Src)~Ffresh)}. (6)

Let a be a trace of (M, Env) that starts in a state satisfying
fresh. There are two cases.

Case 1: No state along a satisfies update(Src). Then, the
executable is always fresh and thus

~ G(term~fresh).

Case 2: There is at least one state along a that satisfies
update(Src). Since the environment Env issues only a
finite number of ed(f) events, there must be a state si
that is the last such state, that is,

Vj.i < j.'~update(Src).

By (6), there exists k > i such that a[k] ~ fresh. Since
there are no more updates after si, we also have with
(1),

~[k..] ~ Gfresh.
Thus, every terminated state along ~ must also be
fresh.

Thus,
{fresh} (M, Env) { G(term~ fresh) }.

5 Conclusion and future work

We have presented a formal framework for reasoning about
implicit invocation systems. The framework rests on a for-
mal semantics that combines s tandard notions from process
algebra and trace semantics. It formally captures the cause
and the effect of an event and thus offers a useful abstrac-
tion mechanism and reasoning tool. A three-phase verifi-
cation methodology supporting linear time temporal logic
properties is presented. In the decomposition phase the en-
tire system is part i t ioned into groups of components and for
each group a suitable subspecification is found. In the local
reasoning phase, each group is verified with respect to its
respective subspecification. The global reasoning phase lifts
the local properties to the entire system and uses them to
show the overall specification. The notion of independence
ensures soundness of this step.

219

Future work

The weakness of this work clearly lies in decomposition phase.
Little support is offered for parti t ioning the system into suit-
able groups, finding subspecifications for them and proving
independence. Future work will a t tempt to identify more
heuristics and sufficient conditions to aid this phase. Com-
positionality is achieved through independence. In the pres-
ence of concurrency, however, compositionality has proven
to be a difficult goal which most of concurrency theory has
been concerned with for a long time [dR85]. Hopefully, we
will be able to make use of the existing work here.

While the present paper is aimed at a rather general
modeling of II systems, an approach to find support for
verification is to analyze existing II systems and to distill
constraints which can safely be imposed on the construc-
tion of II systems without overly compromising expressive-
ness [BG99]. For instance, the examples used in this paper
seem to be representative of two important classes of oper-
ations.

* The first class is probably best described as reset or up-
date operations. An operation falls into this class if it
establishes its postcondition from any initial state and
in any environment. An example is the m a k e opera-
tion of the file system example. Another example is the
update operation on multiple (possibly distributed)
views in the model-view-controller paradigm [KP88,
GHJV95].

• The second class is characterized as follows. Suppose
two operations f and g act on disjoint sets of variables
V I and V 9 respectively. Suppose the invariant I ex-
presses some kind of relationship between the values
of V l and V 9 that behaves as follows. A single appli-
cation of either f or g leaves I violated. However, the
application of the second, corresponding operation (g
or f) reestablishes I. Consider the set-counter exam-
ple, for instance. The two operations are the insert
operation S := S tO {x} and the increment operation
C : = C + I .

As we have seen, both, the independence of operations from
initial states and environment interference on the one hand,
and the disjointness of variables on the other, can greatly
aid the verification process. More work needs to be done to
identify more classes of operations and investigate how the
inherent constraints can support the verification. Ideally,
this would lead to lemmas and proof rules that would make
the global reasoning phase more mechanic.

Moreover, the size and complexity of the independent
groups that arise during the decomposition phase determine
the tractabili ty of the methodology for large-scale systems.
In general, there seems to be a tradeoff between the size
of a group and the ease of proving its independence. Large
groups are more likely to be independent, but also tend to be
more complex. However, we believe that the loosely-coupled
nature of II systems naturally supports the formation of
small independent groups. More experience on large-scale
examples is needed before we can support this claim more
formally.

We also intend to investigate the hierarchical (or recur-
sive) use of our methodology. This would allow us to view
an entire system as a component of yet another system and
would thus allow for the development of a stepwise refine-
ment strategy. Previous work on refinement for UNITY
(e.g., [CM88, San90, Din97]) may be helpful here.

References

[AAG95]

[BCTW96]

[BG99]

[BJ89]

[BN84]

[CM88]

[Cor91]

[DGJN98]

[Dij76]

[Din97]

[dR85]

[Ger89]

[GHJV95]

[GKN92]

G. Abowd, R. Allen, and D. Garlan. Formaliz-
ing style to understand descriptions of software
architecture. A CM Transactions on Software
Engineering and Methodology, October 1995.

D.J. Barret t , L.A. Clarke, P.L. Tarr, and A.E.
Wise. A framework for event-based software in-
tegration. A C M Transactions on Software En-
gineering and Methodology, 5(4):378-421, Octo-
ber 1996.

A. Berry and D. Garlan. Making architectural
analysis reasonable. In Proceedings of First
Working IFIP Conference on Software Archite-
ture (WICSA1) , February 1999. To appear.

K. Birman and Th. Joseph. Exploiting replica-
tion in distr ibuted systems. In Mullender and
Sape, editors, Distributed Systems, pages 319 -
365. Addison Wesley, 1989.

A. Birrel and B. Nelson. Implementing remote
procedure calls. A C M Transactions on Com-
puter Systems, 2(1):356-372, February 1984.

K.M. Chandy and J. Misra. Parallel program
design: a foundation. Addison Wesley, 1988.

The Common Object Request Broker: Architec-
ture and specification. OMG Document Num-
ber 91.12.1, December 1991. Revision 1.1 (Draft
10).

J. Dingel, D. Garlan, S. Jha, and D. Notkin. To-
wards a formal t reatment of implicit invocation
using rely/guarantee reasoning. Formal Aspects
of Computing, 1998. To appear.

E.W. Dijkstra. A Discipline of Programming.
Prentice-Hall, Englewood Cliffs, N J, 1976.

J. Dingel. Approximating UNITY. In Second
International Conference on Coordination Mod-
els and Languages, LNCS 1282, pages 320-337.
Springer Verlag, September 1997.

W.P. de Roever. The quest for composition-
ality - - a survey of assertion-based proof sys-
tems for concurrent programs. Part h Concur-
rency based on shared variables. In E.J. Neuhold
and G. Chroust, editors, Formal Methods in
Programming. IFIP, Elsevier Science Publishers,
1985.

C. Gerety. HP Softbench: A new genera-
tion of software development tools. Technical
Report SESD-89-25, Hewlett-Packard Software
Engineering Systems Division, Fort Collins, Col-
orado, November 1989.

E. Gamma, R. Helm, R. Johnson, and J. Vlis-
sides. Design Patterns: Elements of Reusable
Object-Oriented Design. Addison-Wesley, 1995.

D. Garlan, G.E. Kaiser, and D. Notkin. Us-
ing tool abstract ion to compose systems. IEEE
Computer, 25(6), June 1992.

220

[GN91]

[Go184]

[GZ97]

[Hoa69]

[Hoa85]

[ISO87]

[Jon83]

[Jub98]

[KP881

[Mil80]

[OG76]

[Rei90]

[san90]

[SN92]

[Su~93]

D. Garlan and D. Notkin. Formalizing design
spaces: Impficit invocation mechanisms. In
VDM'91: Formal Software Development Meth-
ods, pages 31-44, Noordwijkerhout, The Nether-
lands, October 1991. Springer-Verlag, LNCS
551.

A. Goldberg. Smal l ta lk -80- The Interactive
Programming Environment. Addison-Wesley,
Reading, MA, 1984.

D. Gelernter and L. Zuck. On what linda is: For-
mal description of Linda as a reactive system. In
Second International Conference on Coordina-
tion Models and Languages, LNCS 1282, pages
187-204. Springer Verlag, September 1997.

C.A.R. Hoare. An axiomatic basis for computer
programming. Communications of the ACM,
12(10), October 1969.

C.A.R. Hoare. Communicating Sequential Pro-
cesses. Prentice Hall, 1985.

ISO. Information processing systems - open sys-
tems interconnection - LOTOS - a formal de-
scription technique based on the temporal or-
dering of observational behaviour. Technical
Report ISO/TC 97/SC 21, International Stan-
dards Organization, 1987.

C.B. Jones. Tentative steps toward a develop-
ment method for interfering programs. Transac-
tions on Programming Languages and Systems,
5(4):569-619, October 1983.

H. Jubin. Javabeans by example. Upper Saddle
River: Prentice Hall, 1998.

G.E. Krasner and S.T. Pope. A cookbook
for using the model-view-controller user inter-
face paradigm in Smalltalk-80. Journal of
Object Oriented Programming, 1(3):26-49, Au-
gust/September 1988.

R. Milner. A Calculus of Communicating Sys-
tems, volume 92 of Lecture Notes in Computer
Science. Springer Verlag, 1980.

S. Owicki and D. Gries. Verifying properties
of parallel programs: an axiomatic approach.
Communications of the ACM, 19(5):279-284,
May 1976.

S.P. Reiss. Connecting tools using message pass-
ing in the FIELD program development environ-
ment. IEEE Software, July 1990.

B.A. Sanders. Stepwise refinement of mixed
specifications of concurrent programs. In
M. Broy and C.B. Jones, editors, Proceedings
of IFIP Working Conference on Programming
and Methods, pages 1-25. Elsevier Science Pub-
lishers (North Holland), May 1990.

K. Sullivan and D. Notkin. Reconciling envi-
ronment integration and component indepen-
dence. ACM Transactions on Software Engi-
neering and Methodology, 1(3), July 1992.

SunSoft. Tooltalk 1.1.1 Users's Guide, Novem-
ber 1993.

221

