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A b s t r a c t  

Implicit invocation [SN92, GN91] has become an important 
architectural style for large-scale system design and evolu- 
tion. This paper addresses the lack of specification and ver- 
ification formalisms for such systems. Based on standard 
notions from process algebra and trace semantics, we define 
a formal computational model for impficit invocation. A 
verification methodology is presented that supports linear 
time temporal logic and compositional reasoning. First, the 
entire system is partioned into groups of components (meth- 
ods) that behave independently. Then, local properties are 
proved for each of the groups. A precise description of the 
cause and the effect of an event supports this step. Using 
local correctness, independence of groups, and properties of 
the delivery of events, we infer the desired property of the 
overall system. Two detailed examples illustrate the use of 
our framework. 

1 I n t r o d u c t i o n  

A critical issue for large-scale systems design and evolution 
is the choice of an architectural style that permits the inte- 
gration of separately-developed components into larger sys- 
tems. Familiar styles include those based on remote pro- 
cedure call [BN84], shared variables, asynchronous message 
passing, etc. 

One key factor determining the effectiveness of an ar- 
chitectural style is the ability to reason effectively about 
properties of a system from properties of its components. 
As a result, considerable effort has gone into techniques for 
composition based on procedure invocation [Dij76, Hoa69], 
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shared data [CM88, OG76], and message passing [Hoa85, 
Mil80, ISO87]. Even though practitioners rarely carry out 
formal reasoning throughout the full design and implemen- 
tation process, they can both use the techniques as needed 
and also apply intuition that has been built up during de- 
velopment of the supporting techniques. 

One increasingly important architectural style for system 
composition is implicit invocation (II) [SN92, GNgl]. 1 At its 
heart, II is based on the idea that a component A can invoke 
another component B without A being required to know B's 
name. Components such as B "register" interest in particu- 
lar "events" that components such as A "announce." When 
A announces such an event, the II mechanism is responsible 
for invoking component B, even though A doesn't know that 
B or any other components are registered? 

One of the simplest examples of II is when an operat- 
ing system allows user code to register a callback procedure. 
For example, user code might register a procedure that is in- 
voked when a particular signal is raised by the kernel. This 
allows the user code added control without compromising 
the kernel. A somewhat more complicated example arises in 
broadcast message-based programming environments (such 
as those derived from Reiss' Field [Rei90] system). A col- 
lection of tools, such as a compiler, a debugger, an editor, 
a program visualization tool, etc., execute together. Rather 
than calling one another directly, at appropriate times they 
each announce potentially interesting activities. For exam- 
ple, the editor might announce, "procedure f was saved", 
while the debugger might announce, "the breakpoint in file 
x.c at line 173 was reached." Other tools might decide to lis- 
ten for particular kinds of announcements. For example, the 
editor might listen for "breakpoint" announcements, so that 
it can move the cursor to the appropriate file and line. A 
centralized message server is used to deliver announcements 
to the tools that have registered interest. 

There are a number of benefits of using the II architec- 
tural style, and it has been used in diverse settings such 
as programming environments and operating systems and 
others. Mechanisms to support II are found in commer- 
cial toolkits (e.g., Softbench [Ger89], ToolWalk [Sun93], Dec- 
Fuse), communication standards (e.g., Corba [Cor91]), in- 
tegration frameworks (e.g., OLE, JavaBeans [Jub98]), and 
programming environments like Smalltalk [Go184]. 

However, there is currently no established methodology 
for reasoning about II systems. In particular it is difficult to 

l In other contexts "implicit invocation" is referred to by other 
names, such as "publish-subscribe" and "event multicast". 

2In this paper, a "component" is just a procedure or method. 
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answer questions like: What will be the effect of announcing 
a given event? Have enough event bindings been declared 
to achieve the desired system behaviour? Does a given com- 
ponent announce sufficient events to permit effective inte- 
gration? If a new component is added to an existing sys- 
tem, will it break the existing system? Are there the right 
components to produce desired overall system behaviour? 
Moreover, to fully support the intent of II, the reasoning 
should be compositional. More precisely, the verification of 
a given component should as much as possible be decoupled 
from the verification of the system in which its events are 
bound to other components. This is because changing any 
binding requires reanalysis of the components that announce 
the events in the changed bindings. 

This paper presents a formal model for systems designed 
using the II architectural style. The model combines stan- 
dard notions from process algebra and trace semantics [Mil80, 
Hoa85] and allows the development of a compositional ver- 
ification methodology for II systems. Informally, an II sys- 
tem $ consists of a set of methods mi and a distinguished 
dispatcher method disp which explicitly models the deliv- 
ery and storage of events E. An event-method binding B 
determines which methods are triggered by which events. 
Each event e E E has a semantics associated with it that 
gives precise meaning to the generation and consumption of 
events. The cause of an event captures the state change that 
caused the generation of the event. The effect of an event 
captures the state change that the event will give rise to. 

Suppose system S with methods 

M = { m l , . . . ,  m,~,disp} 

is to be verified with respect to some specification ~. Our 
methodology consists of the following three phases. 

• P h a s e  1 (Decomposition) 
The set of methods M is partitioned into groups 

{al,..., a~} 
with 1 _< k _< n. For each group Gi we find a loca l  
property ~oi. Groups are independent in the follow- 
ing sense: if Gi satisfies ~i, then the entire system 
also satisfies ~i. We also prove a local property ~ai~p 
about the dispatcher method disp. The property ~oalsp 
captures the minimal requirements on the binding and 
the dispatch policy of events. For instance, in all non- 
trivial cases the binding needs to be non-empty and 
the dispatcher is required not to lose certain or even 
all events. 

• P h a s e  2 (Local reasoning) 
Each group Gi is verified with respect to the local 
property ~i. Moreover, the dispatcher is verified with 
respect to ~Paisp. Typically, this step uses both the 
event-method binding B and the semantics of the events 
used by group Gi. 

• Phase  3 (Global reasoning) 
We show that the local correctness of each of the groups 
and the dispatcher implies the correctness of S with 
respect to ~0. Independence ensures soundness of this 
phase. 

In general, the tractability of this methodology depends on 
the number of independent groups that the system can be 
split into. We believe that the loosely-coupled nature of II 
systems naturally supports the formation of a large number 
of independent groups; that is, we expect the number of 
groups k to be linear in the number of methods n rather 
than a small constant. 

1.1 Related Work 

There are two general areas of related work. The first is 
research on implicit invocation systems. Most of the work 
on such systems has centered around developing practical 
mechanisms for exploiting the paradigm in real systems, 
such as programming environments like Field and Softbench 
[Rei90, Ger89]. Our work is inspired by the practical success 
of this work, and hopes to make engineering efforts based 
on it more effective by providing a more principled basis for 
reasoning about II systems. 

Within the general area of II research several researchers 
have attempted to provide precise characterizations of im- 
plicit invocation systems. An early survey of applications 
of the technique appeared in [GKN92] in which the authors 
illustrated how and why the ideas of II systems are perva- 
sive in software systems. Sullivan and Notkin showed how a 
particular style of use of II, which they call mediators, sim- 
plifies some specific classes of system change [SN92]. More 
recently, [BCTW96] produced a taxonomic survey of event- 
based mechanisms, together with a generic object model for 
comparison of them. By providing a general framework for 
all systems that use events as a communication mechanism 
(including, for example, remote procedure call) their work 
is concerned with a much broader class of systems than is 
our research. By focusing on the more specialized domain 
of implicit invocation systems, our models need not include 
all of the taxonomic entities that they propose, but are tai- 
lored to provide a more substantial analytic basis for formal 
reasoning about the behavior of such systems. 

Closer to our line of research, some efforts have attempted 
to provide a formal characterization of certain aspects of II 
systems. An early characterization of II in Z captured struc- 
tural and basic behavioural aspects, but no fundamentals of 
semantics [GN91]. More recently, researchers in software 
architecture have looked at some of the formal properties 
of II architectural styles [AAG95], but  this research has fo- 
cussed on taxonomic issues, and does not provide an explicit 
computational model that permits compositional reasoning 
about the behaviour of such systems. 

In an earlier paper [DGJN98], we investigated the use 
of Jones' rely-guarantee framework [Jon83]. Here, composi- 
tionality is achieved by restricting the behaviour of the en- 
vironment with a single logical formula, called environment 
assumption or invariant. To discharge this assumption the 
environment then has to be shown to satisfy this invariant. 
Since the invariant has to be preserved by every transition, 
this is a very strong requirement that typically can only be 
met after weakening the invariant with location predicates 
that describe the value of the program counter. A weakened 
invariant thus typically expresses that either the invariant 
already holds or certain statements are about to be executed 
which reestablish it. Consequently, the reasoning becomes 
unnecessarily detailed. We are forced to explicitly keep track 
and expose the number and identity of intermediate states 
even if this information is completely irrelevant to the cor- 
rectness of the system. In the present paper we strive to 
overcome this deficiency with the help of temporal logic. 

Other researchers have investigated at formal aspects 
of event-multicast and process groups as a mechanism for 
achieving fault tolerance through replication [BJ89]. This 
work differs from that on implicit invocation in that multiple 
recipients of an event typically perform the same computa- 
tions. This leads to very different requirements for underly- 
ing theory, since the main issue is how to add and remove 
replicated servers correctly to a running system. 

As we will see, this paper uses the UNITY program- 
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ming language [CM88] augmented  with a few communica-  
tion primitives to provide a semantic base for implicit  in- 
vocation. One possible a l ternat ive would have been to use 
Linda 's  tuple space [GZ97] as the underlying model. How- 
ever, the match  between tuple spaces and implicit invocat ion 
did not  appear  to be a natura l  one: II systems are sensitive 
to the relative order in which events are communicated,  and 
a tuple space's inherent non-determinism would thus have 
to be restricted. 

In the remainder  of this paper  we describe a formaliza- 
tion of implicit  invocat ion systems. The  next  section intro- 
duces a formal model  for II systems. Section 3 describes the 
specification formalism. Section 4 presents the verification 
methodology. Section 5 concludes and outlines fur ther  work. 

2 Modeling implicit invocation systems 

An implicit  invocation system will be modeled as a col- 
lection of methods  tha t  anonymously exchange messages 
(events) by means of a dispatcher  and an event -method  bind- 
ing. A method  is a U N I T Y  program augmented  with com- 
municat ion primit ives for sending and receiving messages. 
We employ a notion of communicat ion  similar to Milner 's  
CCS [Mil80]. There  are three types of actions a. a is ei ther 

• the s i lent  ac t ion r,  

• an inpu t  act ion (m,  z)? or (m, e)?, or 

• an ou tpu t  act ion (re, e)!, 

where m is some method,  e is some event in E,  and z is some 
variable ranging over events. An input  action al  - (ml ,  z)? 
or al ~ (ml ,  e)? and an ou tpu t  act ion a2 - (m2, e)! are said 
to match,  if ml  = m~. Synchronizat ion is achieved through 
matching actions. Intuitively, if a me thod  ml  announces 
an event e meant  for a me thod  m2, it performs the out- 
put  action (m2,e)! .  Method  m2 consumes the event e by 
synchronizing with the above action by performing one of 
the input  actions (m~, z)? or (m2, e)?. The  synchronization 
then gives rise to the silent action r and also assigns e to z 
in case (m2, e)! is matched  with (m2, z)?. 

To allow for a "selective receipt" of events, input  actions 
could be augmented  with a predicate  p, such that  (m,  z ,p )?  
matches  (m, e)! only if e satisfies p. As in Field [Rei90], 
different methods  could thus "listen" for different sets of 
actions. 

D e f i n i t i o n  2.1 A me thod  m is a 4- tuple  

m - ( V , E , P , S )  

where 

• V is the se t  o f  variables that  m accesses. Each variable 
x has a domain  Dom~ associated with it, 

• E is a se t  o f  events  that  m announces ,  

• P is a boolean express ion over  V describing the se t  o f  
in i t ia l  states,  

• S is a se t  o f  s ta tements  of  the f o r m  

g a )x  :~ exp 

where 

- g is a boolean express ion over  V called guard,  

- a is an action, 

- x :=  exp  is an a s s i g n m e n t  where x E V and  exp  
is an express ion over  V .  [] 

The  semantics of a me thod  is similar to that  of a U N I T Y  
program [CM88]. The  me thod  executes the s ta tements  in an 
infinite loop using the following strategy. First,  a s ta tement  

g a ) x : = e x p E S  

is chosen non-determinist ical ly.  If g holds in the current 
state,  the action a is carried out. If a = (re, z)?, then 
we input  the next  event addressed to me thod  m and as- 
sign it to z. Next ,  the assignment x :=  exp  is executed 
by evaluat ing the expression exp  in the current s tate and 
then updat ing  variable x. If the environment  of m does not  
offer a matching  ou tpu t  action, we get a s tut ter ing step, 
that  is, the  assignment is not  carried out and the execution 
of the s ta tement  te rminates  in the same state.  The  case 
a = (m, e)?, is similar except  tha t  no variable update  takes 
place. The  communica t ion  thus only has a synchronizing 
effect. If a = (re, e)!, we ou tpu t  the event e to method  m 
and then evaluate the assignment.  Again, if the environ- 
ment  does not  offer a matching  input  action, the s ta tement  
te rminates  with a s tu t te r ing  step. Finally, if a = r,  we im- 
mediately evaluate the assignment.  Note  that  execution of 
an assignment is assumed to be atomic.  If the guard is not  
t rue in the current  state,  the execution of the s ta tement  ter- 
minates  immediate ly  in the same state.  Jus t  like in UNITY,  
we adopt  the fairness constraint  that  every s ta tement  will 
be executed infinitely often. 

The  recipients of an event  are de termined by the binding. 

D e f i n i t i o n  2.2 Let  E be a se t  o f  events  and  M a set  of  
methods.  A (possibly emp ty )  se t  B C_ E × M is called a 
binding over E and M.  [] 

A binding associates each event  e wi th  zero or more methods  
that  are to be tr iggered when tha t  event is announced. Note 
that  an event need not  be bound  to any methods  and that  
several methods  can be bound  to the same event. 

Given a binding B,  the delivery of events is modeled ex- 
plicitly through a dist inguished dispatcher  method  dispB,  
frequently also denoted by disp  if the  binding is unders tood 
or irrelevant. A me thod  announces an event e by sending it 
to the dispatcher. In practice,  the number  of events that  a 
dispatcher can handle at  a given t ime is bounded by some 
number  m a x .  If the dispatcher  is not  filled to its capac- 
ity m a x ,  it consumes the event,  looks up which methods  e 
is bound to and then  stores all result ing pairs (e, m) in a 
pend ing  events  da tas t ruc ture  D tha t  keeps the events that  
are yet to be delivered. Concurrently,  the dispatcher can 
retrieve a pending event from D and send it to a method  it 
is bound to. The  dispatcher  is given in Figure 1. For no- 
ta t ional  convenience and wi thout  loss of generality, we will 
always represent  the list of s ta tements  S in terms of a sim- 
ple, imperat ive,  shared-variable concurrent  language aug- 
mented with two communica t ion  primit ives for sending and 
receiving messages. The  t ranslat ion from this representat ion 
to the one in Definition 2.1 is s t raightforward [CM88]. To 
model  sequential  execution, for instance, a program counter 
pc is in t roduced for each me thod  m tha t  always points to 
the next  s ta tement  in m to be executed.  Moreover, we use 
the following abbreviations.  (m, z)? and (m, e)? s tand for 

t r u e ( T - ~ ? s k l p  
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dispB : {D, z, rn) 
O 

empty(D) 
[if size(D) < max  t h e n  

consume(z ) ;  
for (z,m) 6 B do 

D := store(z,  m, D) II 
i f -~empty(D) t h e n  

(z, m ) : =  next(D); 
(re, z)!; 
D := remove(z, m, D)] 

V 
E 
P 
S 

Figure 1: The dispatcher method dispB 

and 
true(m'--~?skip 

respectively. (re, e)! abbreviates 

t (m,~)! . .  rue ) SKIp. 

An occurrence of c o n s u m e ( z )  in method m abbreviates 
(m, z)? and a n n o u n c e ( e )  abbreviates (dispB, e)!. The state- 
ment store(e, m, D) stores the pair (m, e ) i n  D and returns 
the updated D; if D is not empty, next(D) returns the next 
element stored in D; if (e, m) is in D, remove(e, m, D) re- 
moves it from D and returns the updated D. size(D) yields 
the number of elements stored in D and empty(D) returns 
true if and only if D is empty. For the sake of generality, we 
intentionally make as few assumptions about an implicit in- 
vocation system as possible. For example, the storage policy 
of pending events in D is left unspecified. An example for 
a policy would be a first-in-first-out discipline that does not 
remove duplicate occurrences of pairs. In other words, the 
model is supposed to abstract from specific event storage 
policies so that any possible policy can be plugged in easily. 

For the dispatcher to fulfill its purpose, all communica- 
tion needs to be forced through it. In other words, whereas 
the dispatcher must be able to communicate with every 
method (except itself), all other methods must be prevented 
from communicating with each other directly. We thus im- 
pose the following topology constraint: All methods except 
the dispatcher must use a n n o u n c e ( e )  and consume(z )  to 
send and receive messages. In other words, every output 
action and every input action in a method m except the 
dispatcher must be of the form (disp, e)! and (m, z)? respec- 
tively. 

A set of methods ml that satisfy the topology constraint 
together with a binding B and a dispatcher dispB form a 
system. Given a method 

mi ~ (V i ,E i ,P i ,S i ) ,  

let E(mi )  and P(mi )  denote Ei and Pi respectively. 

D e f i n i t i o n  2.3 An implicit invocation system S,  or system 
for short, is a 4-tuple 

S = _ ( M , P , E , B )  

where 

• M is a set of methods mi together with a distinguished 
dispatcher method dispB, that is, 

M ~ {ml , . . . ,m ,~ ,d i spB}  

with n > 1, where ml  through m,, satisfy the topology 
constraint, 

• P describes the initial states of the system. It must be 
consistent with the initial states of each of the methods, 
that is, P ~  A,,~eM P(m) ,  

• E = mmeM E(m) ,  is the set of all events, 

• B is a binding over E and { m l , . . . , m n } .  

The actions of a system are collected in 

InOut =_ { (m, e>?, (m, e>! I m e M, e E E}  
Act =_ InOutU {r}. 

[] 

Note that the same variable can be accessed by more 
than one method. Methods thus can also communicate 
through shared variables. 

From an implementation point of view, we can think of 
a system as a network of processes (methods) that are con- 
nected through input ports as shown in Figure 2. p,,  de- 

Figure 2: Implicit invocation system as network 

notes the input port of process (method) m. Note how the 
dispatcher controls the flow of events. 

2.1 Modeling the environment 

Typically, a system is triggered directly by some "top-level" 
(or "external") events that are provided by the user. The 
environment model represents all allowed sequences of input 
and output actions that may be presented to some set of 
methods. 

D e f i n i t i o n  2.4 Given a system with input and output ac- 
tions InOut, an environment model Env is a (possibly empty} 
set of finite sequences of input and output actions, that is, 
Env C InOut* .  [] 

Although the above definition is a lot more general, we will 
only employ two kinds of environment models in this paper. 

• To define the semantics of an event we will need en- 
vironments that can only execute a single action a E 
InOut. The corresponding model thus is of the form 
{a}. 

• Moreover, to model an arbitrary but finite stream of 
"top-level" actions supplied by a user, we will use envi- 
ronment models of the form { a l , . . . ,  an}* where ai E 
InOut for all i < i < n. 
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The  behaviour  of an environment  model  Env will be imple- 
mented  by the me thod  mEnv. The  me thod  corresponding to 
Env ~ {a, . . . .  , a , }*  is given in Figure 3 where the execution 
of 

n :=  c h o o s e ( l ~ )  

assigns a random natura l  number  to n and 

c h o o s e ( a t , . . . ,  am) 

non-determinist ical ly chooses an act ion ai with 1 < i < m. 

m E n v  : @ V 

{at . . . .  , a , . }  E 
true P 

n :=  c h o o s e ( N ) ;  S 
f o r i =  1 t o n d o  

c h o o s e ( a t , . . . ,  am) 

Figure 3: The  me thod  mEn~ corresponding to Env  
{a , , , , , ,am}" 

2.2 Example: Sets and counters 

We show how the above model  of an implicit  invocat ion sys- 
tem can be ins tant ia ted by a specific example.  Consider a 
system SC which maintains a set S of elements over some do- 
main Dora= and a counter  C. Initially, S = @ and C = 0. Be- 
sides the dispatcher  the system contains two methods  which 
are given in Figure 4. An element x can be inserted into or 

set: i x ,  Zl, S} 
{ins, del} U {insert(v),  delete(v)lv E Dom=} 

S = O  
c o n s u m e ( z 1 ) ;  
i f  zt = insert(x) t h e n  

i f  x ~ S t h e n  
S : =  S u {x}; 
a n n o u n c e ( i n s )  

e l s i f  zt = delete(x) t h e n  
i f  x E S t h e n  

s : =  s\{x}; 
announce(del)  

cnt  : i t ,  z~ } 
{ins, del} 

C = 0  
e o n s u m e ( z 2 ) ;  
i f  z2 = ins t h e n  

C : = C + I  
e l s i f  z2 = del t h e n  

C:=C-I 

Figure 4: Methods  set  and cnt  

deleted from the set S using the me thod  set. Analogously, 
the counter  C can be incremented  or decremented using cnt. 
The binding is 

Thus,  

B =_ {(ins, cnt),  (del, cnt)} .  

M =_ {set,  cnt,  dispB} 

and 

E - {ins, de[} U {insert(v) ,  delete(v) I v E Dora=}. 

Execut ion is t r iggered by a finite sequence of insert or delete 
actions addressed to the set  method.  We define 

Env - {(set ,  insert(v)>!, (set, delete(v))! [ v 6 Dom=}*.  

Given one of the actions 

(set, inserffv))! 

or  
(set, delete(v))!, 

t h e  method  set  is invoked. If necessary, the set S is upda ted  
by inserting or deleting the element  v and the corresponding 
event is announced.  This  in tu rn  triggers cnt. B provides 
the necessary bindings for events tha t  announce the update  
of the set, so tha t  the counter  can also be upda ted  corre- 
spondingly. 

Note  tha t  we do not  assume that ,  for instance, the inser- 
t ion and the increment  occur  simultaneously. Consequently, 
it is not  the case tha t  the size of the set is always equal to 
the counter. However, if every announced event has been 
consumed and "serviced" with  the corresponding counter 
update ,  then we should have ISl = c .  As we win see, this 
paper  develops the theory necessary to formally express and 
prove this kind of property.  

2.3 Trace-theoretlc model 

Before we can present the trace semantics of an  II system, 
we need to show how a me thod  and a system can be modeled 
as a u t o m a t a  (labeled t ransi t ion systems).  We first describe 
how a single me thod  is mapped  to an au tomaton .  

D e f i n i t i o n  2.5 Given a method m =-- (V, E, P, S)  we define 
a me thod  au toma ton  as 

Am - (V, E,  I ,  P ,6)  

t0here 

• E : V --+ U=ev  Dorn= is the set of states of m,  that is, 
mappings assigning values to the variables in m,  

• I C_ E is the set of initial s tates of the automaton Am,  
that is, states in which the program counter of m points 
to the f irst  s ta tement  of m,  that is, pc = 1. Note that 
not every state in I has to satisfy P ,  

• 6 C_ ~ × Act× E is the t ransi t ion relation and is defined 
as the smallest relation satisfying 

- {(s, a, s), (s, r, [slx = v])} C 6 if  there exists a 
s tatement  

a 
g---+x :=  exp 

in S such that g is true in s and exp evaluates to 
v in S, 

- ( s , r , s )  E 6 ifg is not true in s. [] 

Given a s ta te  s over variables VI and a set of variables 
V2 C V1, let s[V2 be the projection of s to V2. 
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D e f i n i t i o n  2.6 Given method automata 

Ai -- (Vi ,~ i , I i ,Pi ,S i )  

for 1 < i < n their parallel composi t ion is given by 

a l  [[. . .  IIA, -= (V, ~,  I ,  P,  8) 

where 

• v = U "  v;, i = l  

• ~ : V -+ U ~ e v  Dom~ is the set of states over V, 

• s T I i f f s I V i • h f o r a l l l < i < n ,  

n 
• P = Ai=l Pi, and 

• 6 C ~ x Act x ~ is the smallest relation satisfying 

1. (s,~-,s ')  • 8 if there exists i < i < n such that 
(sIV~,r ,s ' [Vi)  • 6i and all variables in V but not 
in ~ remain unchanged, that is, s I ( V - V i )  = 
s' l ' (V - v; ) ,  and 

2. (s, r ,s)  • ~ if there exist 1 < i , j  <_ n such that 
i # j and 

and 

and 

(srV,, (m, e)?, sW,) • 8, 

( 4v~, (m, e)!, srVj ) • 8. 

s. (s, ~, [sl~ = el) • 8 q there exist I < i, j <_ n such 
that i # j and 

and 
(sIVi, (~,  e)!, slV~ ) ~ 8 .  

and 

4. ( s , r , s )  6 ~ if there exist 1 < i < n, m andz  such 
that 

( s r ~ ,  (~,.~)~, sty;)  ~ 8, 

and 
(s rv,., (m, ~)!, sr~)  ¢ ,% 

for all e and l <_ j <_ n with j # i, and 

5. ( s , r , s )  6 8 if there exist I < i < n, m and e such 
that 

( srV,, (m, e) ?, sIV,) • 6, 

and 
(siva, (m,  e)t, s l v j  ) ¢ 8~ 

for all l <_ j <_ n with j # i, and 

6. (s, z, s) • 6 if there exists 1 < i < n such that 

( sIV,, (m, e)~, slV, ) • ,~, 

and 

and 

(srVi, ( . . ,  z)?, sfvi ) ¢ ~ 

( s f ~ ,  (re, e)?, s r~ )  ¢ ~j 

for all z and l < j < n with j • i. [] 

The  intui t ion behind the definition of 8 is as follows. The  
first clause covers the case where one of the components  
moves independent ly  by execut ing an assignment for in- 
stance. The  next  two clauses model  synchronous commu- 
nication. While the second clause captures  synchronization 
wi thout  a da ta  exchange, the third clause defines commu- 
nication with upda te  of some variable z. The  final three 
clauses allow a component  to s tu t t e r  if the environment  does 
not  offer a match ing  action. Note  tha t  only the communi-  
cat ion case requires synchronization.  In all o ther  cases a 
component  can move independently.  

We are now ready to define the trace semantics.  

D e f i n i t i o n  2.7 Let 

A = - ( V , E , I , P , ~ )  

be an automaton corresponding to some system S.  A trace 
a of A is an infinite sequence of the form 

r 1" r 
S o  - - - - - +  S l - - - - - - f  s 2  - .-----~ . • • 

where 

• so 6 I ,  

• so ~ P, and 

• (si, r, s i+ , )  6 8 for all i > O, and 

• every statement o r s  gets executed infinitely often along 
0 : .  

The set of all traces of A is denoted by T[A].  [] 

The  traces of a set of me thods  are never  considered in iso- 
lation, but  always in the context  of an  environment.  

D e f i n i t i o n  2.8 Let S be a system and let 

G - { m ,  . . . .  , m . }  

be a set of methods (including possibly the dispatcher) of S.  
Given an environment model Env, the automaton AG,Env 
modeling the behaviour of G in the environment Env, is 
given by the parallel composition of all method automatons 
Ami .and the environment automaton Amm,~, that is, 

AG,Env = A, , I[[ . . .  IlA-~,llAmm.~ • 

The traces of G in Env are the traces of AG.Env, that is, 
T[G, Env] = T~AG,Env]. [] 

3 Specifying implicit invocation systems 

To specify the ongoing behaviour  of an II system, we use 
first-order l inear t ime tempora l  logic wi thout  the next  t ime 
opera tor  X,  denoted  by L T L  - x . 3  

D e f i n i t i o n  3.1 Given some set A P  of atomic propositions 
and assumingp 6 AP ,  the set of L T L  - x  formulas is induc- 
tively defined as: 

¢ ::= v I -,4, I ~,. ^ ~'=' I V x . ~  I ~ ,  u ~ 

Other formulas can be introduced as abbreviations in the 
usual way: ~l v ~ abbreviates -~ ( -~ ,  A - ~ 2 ) ,  ~ 1 = ~ 2  ab- 
breviates - ~ i  V ~2, true abbreviates p v -~p, false abbreviates 

3Our model allows for arbitrary, but finite stuttering to be added 
between two transitions which renders the next time operator useless. 
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-,true and 3x.~ abbreviates "~Vx.-~. The temporal operator 
F4p abbreviates true U ~p and G~ abbreviates -~F-~¢. Given 

a 0 a i - - 1  
Ol ~-- 8 0 - - - ' ~ S l  . . . ------)'8i • • • 1 

let a[i] denote the state si. Let ~[i..] denote the infinite suf- 
a i  

fix si )si+l . . . .  The satisfaction relation ~ of a LTL  - x  
formula with respect to a trace ~ is inductively defined over 
the structure of the formula. 

a ~ - ~  if not (~ ~ 
Ol ~ qO 1 A ~D 2 i f  Ol ~ ~D 1 and a ~ qo~ 
cr ~ Vx.V if a ~ v[vlx] for all v e Dora= 

~ ~ , u ~  if 3o < i.~[i..] ~ ~ and 
~[j..] ~ ~, Sot all 0 < j < i. 

U 

Initial, terminated and quiescent states 

Typically, events are used to mainta in  some kind of system 
invariant. However, jus t  like loop invariants in sequential 
programming,  they usually will not  be preserved along ev- 
ery t ransi t ion of the system. The  following scenario seems 
typical for II systems: The  execution of a s ta tement  in 
some method  ml  results in the violation of the invariant. 
m l  will then announce an event which will tr igger some 
other  method  m2. The  execution of m2 will then eventu- 
ally reestablish the invariant.  Note tha t  the invariant might  
be violated until  m2 has completed.  The  next  defmition 
presents three predicates init, term, and quiescent tha t  al- 
low us to single out  certain states along a trace in which the 
invariant should hold. 

D e f i n i t i o n  3.2 Let a be a trace of a set of methods G in 
some environment Env and let s be a state along ce. 

1. The proposition init holds in s iff it is an initial state 
of the automaton AG,E~, , that is, the program counter 
of all methods in G point to the first statement. 

"2. The proposition term holds in s iff s is a fixed point, 
that is, a does not exhibit any state changes after s. 

3. If  G contains the dispatcher, that is, disp E G, then 
proposition quiescent holds in s iff it is an initial state 
of A~,e,~ and the pending events datastructure D is 
empty. [] 

In Example  2.2, for instance, the system invariant is 
IS] = C, the size of the set S is equal to the value of the 
counter  C. This  invariant is not  maintained along every 
transition. For instance, while an ins event is pending in 
the dispatcher, the counter  will lag behind. Let  a be a 
trace of me thod  set in some environment  Env and let s be a 
s ta te  along a .  Then,  if init holds in s, tha t  is, the program 
counter  of set points to the first s ta tement  of set, then  the 
size of S in s is the number  of (disp, ins)! actions issued so 
far minus the number  of (disp, del)! actions issued so far. 
Also, we expect  the counter  to have caught up whenever  all 
events have been delivered and the system is back in one of 
its initial states,  tha t  is, if s is quiescent. Note  that  every 
te rminated  s ta te  also is quiescent. 

Propert ies  of the behaviour  of a set of methods  G in 
some environment  Env can be described using the following 
not ion of specification. 

D e f i n i t i o n  3.3 Given a set of methods G and an environ- 
ment model Env, a specification is a 4-tuple 

{p} (G, Env) {~} 

where p is the pre-condition given as a boolean expression, 
and q~ is a L T L  - x  formula. The specification 

{p} (G, Env) {~} 

is satisfied, if 

Va e TIG,  Env].if ~[O] ~ p then a ~ ~. 

[] 

3.1 Event semantics 

The  key feature of II systems is tha t  the not ion of events al- 
lows for a tempora l  and spatial  separat ion of the cause and 
the  effect of cer ta in  designated s ta te  changes. For instance, 
consider a set of source and executable  files. Suppose we 
want our II system to automat ica l ly  maintain consistency of 
the executables with respect  to the source files. The  modifi- 
cat ion of one of the source files causes the editor to announce 
a modified event. Assuming tha t  this event is bound to the 
compiler, the  effect of this event will be the invocation of 
the compiler at  some la ter  point  in t ime and in some possi- 
bly remote  location. This  kind of separat ion between cause 
and effect seems essential to the easy integrat ion of loosely- 
coupled software components .  However,  it also makes formal 
reasoning about  II systems very difficult. 

We will now define causes and effects more formally. We 
say tha t  an event  e is announcedby method  m whenever it is 
passed to the dispatcher,  tha t  is, m executes a n n o u n c e ( e ) .  
Remember  tha t  in this case m performs a transi t ion la- 
beled with  (disp, e)!. The  cause of an event, cause(e) for 
short,  characterizes the s ta te  change tha t  gave rise to the 
announcement  of e. 

D e f i n i t i o n  3 .4  cause(e, m) is the strongest LTL  - x  formula 
that validates the specification 

{true} ({m}, {(disp, e)?}) {~}. 

cause(e) is 
cause(e)- V cause(e,m) 

m E G  

where G is the set of all methods that announce e. [] 

In the above definition m is run  in an environment  that  
can accept  event e if it is addressed to the dispatcher, that  
is, it offers the act ion (disp, e)?. Let c~ be a trace of m 
in tha t  environment .  Due to the restr ic ted shape of the 
environment,  the only communica t ion  that  m can engage in 
along ~ is sending e to the dispatcher.  Moreover, it can do 
so at most  once. Due to the fairness assumption tha t  every 
s ta tement  is executed infinitely often, m will thus announce 
e exactly once along a .  Note  tha t  m can still pei 'form an 
infinite number  of internal  r-act ions.  

The  effect of e, effect(e), describes the state change with 
which the rest of the system will react.  An  event invokes the 
methods  it is bound to. Suppose e is bound to m, that  is, 
(e, m) E B.  We say tha t  an event  e is consumedby m when- 
ever m receives e from the dispatcher,  that  is, m executes 
c o n s u m e ( z )  after  which z is bound  to e for some variable z. 
Remember  tha t  in this case m performs a transi t ion labeled 
with  (m, z)?. Note  tha t  in contrast  to the cause, effect(e) 
depends on the methods  tha t  e is bound  to and thus on the 
binding. An  unbound event will not  have any effect. 
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D e f i n i t i o n  3.5 effect(e,m) describes the state change by 
m that the consumption of e will give rise to. Formally, 
effect(e, m) is the strongest LTL  - x  formula ~o such that 

{tr.e) ({m), {(m, e)!}) {~}. 

The effect of the event is then given by 

effect(e)-- A effect(e,m) 
(~,m)eB 

Cause and effect of an event are referred to as its semantics.  
[] 

The  intuit ion behind the definition of the effect is analogous 
to tha t  of the cause, m is run in an environment  tha t  can 
send the event e to m once, tha t  is, it offers the act ion 
(m, e)I. Let  a be a t race of m in that  environment.  The  only 
communica t ion  tha t  m can engage in along a is receiving 
e. Moreover,  it can do so at most  once. Due to the fairness 
assumption tha t  every s ta tement  is executed infinitely often, 
m will thus consume e exactly once along a .  

For instance, consider the set-counter  example of Sec- 
t ion 2.2. Whenever  an element  x is added to the set S wi th  
x ~ S, then the act ion (disp, ins)! announces the event ins 
by communica t ing  it to the dispatcher.  The  consumption 
of ins subsequently causes the counter  C to be incremented.  
Similarly for the event  del. For specification purposes we 
need logical variables. A logical variable is never ment ioned 
in a program and its value can thus be assumed to remain  
unchanged across program transitions.  4 Let  T and w be log- 
ical variables. Also, let follows(tp, ¢)  abbrevia te  ¢ U ( G ~ ) .  
Informally, follows(co, ¢)  holds for a if there exists a s ta te  si 
along a up to which ¢ holds and from which qo holds forever. 
The  reason for announcing ins is that  there is some value 
x 6 Dom~ such tha t  x ~ S and the value of S changes from 
T to T to {x} for some T.  Note  tha t  only the me thod  set 
announces ins. 

cause(ins) 
= cause(ins, set) 

VT E Doms .S  = T ~ 3 x  E Dom~.x q~ TA 
foUows(S = T U {x}, S = T) 

The  effect of ins is an increment  of C. Remember  that  ins 
is bound  to cnt. 

effect(ins) 
= effect(ins, cnt) 

Vw 6 D o m c . C  = w~fol lows(C = w + 1, C = w). 

Similarly, for the del event  we get 

cause( del) 
= cause(del, set) 

VT 6 Doms.S = T~3x 6 Dom~.x 6 TA 
follows(S = T - {x}, S = T) 

and 

effect( del) 
= effect(del, cnt) 

Vw 6 Domc.C = w=kfollows(C = w - 1, C = w). 

Note tha t  in the above formalizat ion the event semantics 
can only express s ta te  changes. More precisely, given an 
event e, nei ther  the announcement  nor  the consumpt ion of 
some other  event can be par t  of the semantics of e. In other  
words, an event cannot  cause the announcement  of some 
other  event, for instance. 

4Sometimes also called rigid variables. 

4 Verifying implicit invocation systems 

Before we can introduce our verification methodology, we 
need to define the not ion of independence.  

D e f i n i t i o n  4.1 Let S be a system with methods M and en- 
vironment model Env. Let G be a set of methods of S with 
environment model EnvG. We say that (G, Envc) is inde- 
pendent with respect to p and ~o, if 

implies 

{p) (G, EnvG) {~} 

{p) (M, Env) {~}. 
[] 

Independence thus allows us to "lift" a specification from 
a subset of methods  to the entire system. It  a t t empt s  to 
reconcile concurrency and composit ionali ty,  which is a cen- 
tral  problem in concurrency theory: Under  what  circum- 
stances can a proper ty  of a composi te  system be obtained 
from propert ies  of its components  despite the presence of 
concurrency [dR85]? Unfortunately ,  our  methodology cru- 
cially depends on our ability to prove independence.  To ease 
this task, we will now isolate a few syntact ic  conditions that  
guarantee independence.  

Let  G be the envi ronment  (complement)  of G, tha t  is, 
the  set of methods  in M but  not  in G. Firs t  of all, we need to 
prevent  the environment  from interfering with  the compu- 
ta t ion of G via shared variables. More precisely, we assume 
tha t  G and G do not  share any variables. Moreover, we 
need to prevent  the envi ronment  from chan_~_ing the t ru th  
value of ei ther p or ~o, tha t  is, we require G to not  men- 
t ion any of the variables in p or ~o. However,  the absence 
of variable conflicts implied by the above two conditions is 
not  sufficient. The  reason is tha t  an enlarged environment  
Env may offer communica t ion  actions that  Envc did not  of- 
fer. These addit ional  actions may allow G in Env to exhibit  
traces tha t  were impossible for G in Enva. We say that  
an environment  model  Enva complements a set of methods  
G, if every act ion ment ioned in G has a matching  action in 
EnvG. Consequently,  a complement ing  environment  will al- 
low G to engage in all communica t ions  it could be interested 
in. 

We thus arrive at  the following lemma.  

L e m m a  4.1 Let G C_ M be a non-empty set of methods 
and let "G be the methods in M but not in G. (G, Envy) is 
independent with respect to p and ~o, if 

* all methods in G do not mention any of the variables 
used in G, and 

• all methods in -G do not mention any of the variables 
used in p or qo, and 

• EnvG complements G. [] 

Let M =_ { m , , . . . , m n , d i s p }  be the set of methods  of 
some system S with  environment  model  Env. Suppose we 
want  to show tha t  

{p} (M, Env) {~}. 

Our  verification methodology consists of the following three 
phases. 
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D e c o m p o s i t i o n  Partition M into groups G1,. •., Gk with 
1 < k < n. Typically, the dispatcher is analyzed in 
isolation and forms a singleton group. For each group 
Gi find an environment model Envi and subspecifica- 
tions pl and ~i such that (Gi, Envi) is independent 
with respect to pi and ~i. 

Local reasoning Prove subspecifications 

{pi} (Gi, Envi) {~i} 

for each 1 < i < n. Typically, this step uses both the 
event-method binding and the semantics of the events. 

Global  reasoning Lift the subspecifications to the entire 
system using independence, and prove 

{p} (M, Env) {~}. 

4.1 Example: Sets and counters 

As indicated at the end of Section 2.2, we would like to 
show that after an arbitrary but finite number of insert and 
delete events have been passed to the system, the size of the 
set is equal to the value of counter in every quiescent state. 
Formally, 

{ s  = O ̂  c = 0} 
( M, Env) 
{ G( quiescent~lS I = C)} 

where 

Env = {(set, insert(v))!, (set, delete(v)>! [ v • Dome}' .  

4.1.1 Decomposition 

Each method in SC forms a group. 
shown later. 

Independence will be 

4.1.2 Local reasoning 

Let #(re, e)? stand for the number of times that event e 
was received by m so far along the current trace. Also, let 
# ( m ,  e)! stand for the number of times that event e was sent 
to m so far along the current trace. Formally, this operator 
can be implemented using auxiliary variables. 

Due to our synchronous notion of communication, a com- 
munication action cannot occur without a matching action. 
We thus get the following lemma. 

L e m m a  4.2 Along every trace (~ of some system S, the 
number of matching input and output actions must be equal, 
that is, we must have # ( m , e ) ?  = # (m,e ) ! .  [] 

Set method set 

Given the cause(ins) and cause(del), we can see that when- 
ever an element is added to the set, an ins event is announced 
and that whenever an element is removed from the set, a del 
event is announced. Thus, in initial states, the size of S is 
the number of ins events sent to the dispatcher so far minus 
the number of del events sent to the dispatcher so far. The 
validity of this correspondence is limited to initial states, 
because it does not hold when control is between updating 
the set and posting the appropriate event. Formally, 

{ s  = o} 
(set, En%et ) 
{G( ini t~[S I = #(disp, ins)! -- #(disp, de/)!)} 

where 

Env~t -- {(set, insert(v))!, (set, delete(v))! I v 6 Dome) ' .  

Counter method cnt 

The local specification of the counter is analogous. Given 
the effect(ins) and effect(del), we can see that whenever an 
ins event is consumed, the counter is incremented and that 
whenever an del event is consumed, the counter is decre- 
mented. Thus, in initial states, the value of C is the number 
of ins actions received from the dispatcher so far minus the 
number of del actions received from the dispatcher so far. 
Formally, 

{ c  = o} 
(cnt, Envc,u ) 
{ G ( i n i t ~ C  = #(cnt ,  ins)? - #(cnt,  de/)?)} 

where Envcnt = { (cnt, ins)!, (cnt, del)! } *. 

Dispatcher method disp 

Note that no assumptions about the binding B or the stor- 
age policy of the dispatcher have been made yet. For in- 
stance, we have not yet required B to be non-empty or the 
dispatcher not to lose every message. However, it is clear 
that for the verification to go through, certain minimal re- 
quirements have to be imposed. The following specification 
captures these requirements. 

Every ins event input by the dispatcher is first stored 
in D and then passed on to the counter. Similarly for del 
events. In other words, the dispatcher must eventually pass 
on every ins and del event received. More precisely, in every 
initial state, the number of (disp, ins)? actions performed 
by the dispatcher is the sum of the number of (cnt, ins)! 
actions performed by cnt plus the number of ins events still 
pending in D. A similar correspondence holds for the del 
event. Formally, 

{true} 
( disp, Envdisv ) 
{ G ( i n i t ~  

(#(disp, ins)? = #(cnt ,  ins)! + #(cnt,  ins, D)/X 
#(disp, de/)? = #(cnt ,  del)! + #(cnt,  del, D)))} 

where 

Envdi~p =-- { (disp, ins)!, (disp, del)!, (cnt, ins)?, (cnt, del) ? }* 

and #( re ,e ,  D) denotes the number of occurrences of the 
pair (m, e) in D. Note that the above specification would 
fail, if, for instance, the binding was empty, or the dispatcher 
simply discarded some of the incoming events. 

4.1.3 Global reasoning 

Note that set, cnt and disp do not share any variables and 
that Envs~t, Envcnt and Envdi~,p complement set, cnt and 
disp respectively. Due to Lemma 4.1, the three group and 
environment pairs above are independent with respect to 
their respective specifications. Thus, 

{ s  = 0} 
(M, Env) 
(G( in i t~[S  I = #(disp, ins)! - •(disp, de/)!)} 

and 

{C = O} 
( M, Env) 
{ G ( i n i t ~ C  = #(cnt ,  ins>? - #(cnt,  de/>?)} 
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and 

{ true) 
(M, Env) 
{ G( in i t~  

# ( disp, ins)? = # ( cnt, ins)! + #( ins ,  cnt, D)A 
# ( disp, del) ? = # ( cnt, del) ! + # ( del, cnt, D))}.  

Let  cr be a trace of (M, Env) tha t  s tar ts  in a s ta te  satisfying 
S = @ A C = 0 and let si be a quiescent s ta te  along a .  si 
satisfies the implicat ion 

i n i t~  ISl = #(disp,  ins)! - #(disp,  del)!A 
C = #(ent ,  ins)? - # ¢ n t ,  del)?^ 
# ( disp, ins)? = # ( cnt, ins)! + #( ins ,  cnt, D ) A 
#(disp,  del)? = #(cnt ,  del)! + #(del ,  cnt, D). 

Moreover,  quiescence implies init and empty(D) which im- 
plies that  the number  of (cnt, ins) and (cnt, del) pairs in D 
is zero, tha t  is, 

#(ins ,  cnt, D) = #(del,  cnt, D) = O. 

Thus, si satisfies 

ISl = #(disp,  i n s ) ! -  #(disp,  del)!A 
C = #(cnt ,  ins)? - #(cnt ,  del)?^ 
#(disp,  ins)? = #(cnt ,  ins)!A 
#(disp,  del)? = #(cnt ,  del)!. 

Using Lemma  4.2 we get 

#(disp, ins)? = #(disp, ins)! 

and 
#(disp, de/)? = #(disp, del)!. 

Consequently, si ~ IS[ = C which allows us to conclude 

{S = 0 A C = 0} (M, Env) {G(quiescent~lS I = C)) .  

4.2 Example: File system 

We now consider an example inspired by the common ap- 
plication of implicit  invocat ion to software development  en- 
vironments,  such as Field [Rei90]. Previously, a s ta te  was 
a mapping from variables to values. We now consider a 
slightly different scenario, in which the s ta te  is given by the 
contents  and the a t t r ibu tes  of.a file system ~ S .  Suppose Src 
is a set of source files. We assume tha t  the files in Src cor- 
respond to an executable  file exe and tha t  make(Sre, exe) 
creates a new executable  wi th  respect  to the current  con- 
tents of Src. In the following, the variable f will range over 
files in ~r,5, that  is, D o m f =  {v I v is a file in ~ 'S}.  The  
system ~ 'S  contains the events 

E -- {modified) U {ed(v) [ v E Domf}, 

and the methods  

M =_ {edit, cmpl, dispB} 

where 
B = {(modified, cmpl)}. 

Let fresh denote the fact tha t  the last modificat ion date  of 
exe is more recent than  tha t  of all files in Src, that  is, for all 
f E Src, 

datedast_modified( exe ) > date_last_modified(f). 

The  modified event gets announced,  whenever  the file sys- 
t em is not  fresh. Moreover,  whenever  the modified event 
is consumed the file system will eventual ly be fresh. The  
semantics of the modified event  thus is 

cause(modified) ~ FG-~fresh 
effect(modified) ~ FGfresh. 

The  methods  are given in Figure  5. An ed(v) event trig- 

edit : 

cmpl : 

Dora I U { f }  
{modified} U {ed(v)lv E Dotal} 

fresh 
l o c a l  bur= @ in 

consume( ed(f) ); 
r e a d ( f ,  bu¢); 
edit Loop( buf); 
s a v e  (bur, f ) ;  
i f  f E Src t h e n  

a n n o u n c e ( m o d i f i e d )  

Src u {exe} 
{modified} 

fresh 
c o n s u m e ( m o d i f i e d ) ;  
m a k e  (Src, exe) 

V 
E 
P 
S 

V 
E 
P 
S 

Figure 5: The  methods  edit and cmpl 

gers the edit method.  Method  edit copies the contents  of v 
into a local buffer bur and at  the end of the edit  session, v 
is upda ted  with bur. If v also is a source file relevant to exe, 
the  modified event  is announced.  The  modified event  trig- 
gers the compile me thod  cmpl which updates  the executable. 
We would like to show tha t  af ter  a fmite but  arbi t rary se- 
quence of ed(v) events the file system will always be fresh 
upon terminat ion.  Formally, 

{fresh) ( M, Env) { G( t erm~ fresh) } 

where E n v -  {(edit, ed(v))!  l v e Dotal} ' .  

4.2.1 Decomposition 

Like in the se t -counter  example,  each m e t h o d  forms a group. 
An  independence a rgument  is given later.  

4.2.2 Local reasoning 

We abuse nota t ion  slightly and use an input  or ou tpu t  action 
a also as an a tomic  proposit ion.  A s ta te  s along some trace 
c~ satisfies (m, e)? if e has jus t  been received by m. Also, s 
satisfies (m, e)! if e has jus t  been sent to m. 

Edit method edit 

The  fact tha t  one of the source files in Src is to be edited, is 
abbrevia ted  by update(Src), tha t  is, 

update(Src) = 3 f  E Src.(edit, ed(f))?. 

We will also need a weak until operator ~0Uw¢ which ex- 
presses tha t  e i ther  ~ holds forever or  at least until  ¢ holds, 
that  is, 

~ u ~ ¢  = G ~ v ( ~  u ¢). 
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Whenever the executable is fresh, it will either remain so 
forever or until a source file is edited, that  is, update(Src) 
holds. 

{fresh} 
(edit, Env~dit ) (1) 

{ G(fresh~(fresh Uw update( Src) ) ) } 

where Env~ait =- {(edit, ed(v))! [ v E Doml}*. Also, ev- 
ery update eventually leads to the modified event being an- 
nounced. 

{true} 
(edit, Env~ait ) 
{ G( update( Src)~ F ( disp, moaifiea) ~ ) } 

This step uses cause(modified). 

(2) 

Compiler method cmpl 

The receipt of a modified event triggers recompilation and 
thus eventually creates a fresh executable. The semantics 
modified allows us to conclude that  the file system eventually 
stays fresh forever. 

{true} 
(cmpl, Envcmv, ) (3) 

{ G( (cmpl, modified) e ~ FG fresh) } 

where Envcmpt =__ {(cmpl, modified)!}*. This step uses the 
effect of modified. The above specification is too strong for 
our purposes, because it cannot be rifted to the entire sys- 
tem. We thus employ the following weaker specification. 

{true} 
(cmpZ, Envomp,) (4) 
{ G( (cmpl, modified) ? ~ F fresh) } 

Dispatcher method disp 

The requirements for the binding and storage policy are as 
follows. An arriving modified event eventually leads to a 
pending event (cmpl, modified) being stored in D. 

{true} 
(disp, Envaisv) 
{ G( (disp, modified) ? ~ F(cmpl, modified) • O)} 

where Envaisv =- { ( disp, modified)!, (cmpl, modified)?}*. An 
event pending in D eventually is delivered. 

{true} 
( disp, Envdisv ) 
{G( (cmpl, modified) E D~F(cmpl, modified)])}. 

This implies 

{true} 
(disp, Envai,v) (5) 

{ G( ( disp, modified) ?=~, F (cmpl, modified)!)}. 

Note that  in contrast to the set-counter example, the dis- 
patcher now is allowed to lose some (but not all) incoming 
events. More precisely, suppose a non-empty sequence of 
(disp, modified)! actions are passed to the dispatcher. Then, 
only at least one (cmpl, modified)! action needs to be passed 
to the compiler. 

4.2.3 Global reasoning 

In contrast to the set-counter example, the ~ 'S system con- 
thins two methods (edit and cmpl) that  share variables (files). 
Obviously, this complicates the verification since Lemma 4.1 
cannot be applied as readily. However, since the dispatcher 
does not share any variables with edit or cmpl, Lemma 4.1 
can still be used to lift (5), the local specification of the dis- 
patcher. Moreover, the sharing is limited enough such that  
the remaining specifications can still be lifted. (edit, Env~d,t) 
is independent with respect to the specification (1) because 
the environment (the compiler and the dispatcher) can never 
change the value of fresh from true to false (only from false 
to true) nor can it change the value of update(Src). Also, 
(edit, Env~dit) is independent with respect to the specifica- 
tion (2) because the environment (the compiler and the dis- 
patcher) cannot prevent edit from eventually announcing 
modified. Moreover, (cmpl, Env~,,~vt) is independent with 
respect to (4), because the environment (the editor and 
the dispatcher) cannot prevent the compiler from creating a 
fresh executable once it has received a modified event. Note, 
however, that  the environment can prevent an executable 
from staying fresh forever and thus the original specifica- 
tion (3) cannot be lifted. 

Using the lifted versions of (2), (5), and (4) we get 

{fresh} (M, Env) {G(update(Src)~Ffresh)}. (6) 

Let a be a trace of (M, Env) that  starts  in a state satisfying 
fresh. There are two cases. 

Case  1: No state along a satisfies update(Src). Then, the 
executable is always fresh and thus 

~ G(term~fresh). 

Case  2: There is at least one state along a that  satisfies 
update(Src). Since the environment Env issues only a 
finite number of ed(f) events, there must be a state si 
that  is the last such state, that  is, 

Vj.i < j.'~update(Src). 

By (6), there exists k > i such that  a[k] ~ fresh. Since 
there are no more updates  after si, we also have with 
(1), 

~[k..] ~ Gfresh. 
Thus, every terminated state along ~ must also be 
fresh. 

Thus, 
{fresh} ( M, Env) { G( term~ fresh) }. 

5 Conclusion and future work 

We have presented a formal framework for reasoning about 
implicit invocation systems. The framework rests on a for- 
mal semantics that  combines s tandard notions from process 
algebra and trace semantics. It formally captures the cause 
and the effect of an event and thus offers a useful abstrac- 
tion mechanism and reasoning tool. A three-phase verifi- 
cation methodology supporting linear time temporal logic 
properties is presented. In the decomposition phase the en- 
tire system is part i t ioned into groups of components and for 
each group a suitable subspecification is found. In the local 
reasoning phase, each group is verified with respect to its 
respective subspecification. The global reasoning phase lifts 
the local properties to the entire system and uses them to 
show the overall specification. The notion of independence 
ensures soundness of this step. 
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Future work 

The weakness of this work clearly lies in decomposition phase. 
Little support is offered for parti t ioning the system into suit- 
able groups, finding subspecifications for them and proving 
independence. Future work will a t tempt  to identify more 
heuristics and sufficient conditions to aid this phase. Com- 
positionality is achieved through independence. In the pres- 
ence of concurrency, however, compositionality has proven 
to be a difficult goal which most of concurrency theory has 
been concerned with for a long time [dR85]. Hopefully, we 
will be able to make use of the existing work here. 

While the present paper  is aimed at a rather general 
modeling of II systems, an approach to find support for 
verification is to analyze existing II systems and to distill 
constraints which can safely be imposed on the construc- 
tion of II systems without overly compromising expressive- 
ness [BG99]. For instance, the examples used in this paper  
seem to be representative of two important  classes of oper- 
ations. 

* The first class is probably best described as reset or up- 
date operations. An operation falls into this class if it 
establishes its postcondition from any initial state and 
in any environment. An example is the m a k e  opera- 
tion of the file system example. Another example is the 
update operation on multiple (possibly distributed) 
views in the model-view-controller paradigm [KP88, 
GHJV95]. 

• The second class is characterized as follows. Suppose 
two operations f and g act on disjoint sets of variables 
V I and V 9 respectively. Suppose the invariant I ex- 
presses some kind of relationship between the values 
of V l and V 9 that  behaves as follows. A single appli- 
cation of either f or g leaves I violated. However, the 
application of the second, corresponding operation (g 
or f )  reestablishes I. Consider the set-counter exam- 
ple, for instance. The two operations are the insert 
operation S := S tO {x} and the increment operation 
C : = C + I .  

As we have seen, both, the independence of operations from 
initial states and environment interference on the one hand, 
and the disjointness of variables on the other, can greatly 
aid the verification process. More work needs to be done to 
identify more classes of operations and investigate how the 
inherent constraints can support  the verification. Ideally, 
this would lead to lemmas and proof rules that  would make 
the global reasoning phase more mechanic. 

Moreover, the size and complexity of the independent 
groups that  arise during the decomposition phase determine 
the tractabili ty of the methodology for large-scale systems. 
In general, there seems to be a tradeoff between the size 
of a group and the ease of proving its independence. Large 
groups are more likely to be independent, but  also tend to be 
more complex. However, we believe that  the loosely-coupled 
nature of II systems naturally supports the formation of 
small independent groups. More experience on large-scale 
examples is needed before we can support this claim more 
formally. 

We also intend to investigate the hierarchical (or recur- 
sive) use of our methodology. This would allow us to view 
an entire system as a component of yet another system and 
would thus allow for the development of a stepwise refine- 
ment strategy. Previous work on refinement for UNITY 
(e.g., [CM88, San90, Din97]) may be helpful here. 
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