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. Motivation

A policy for controlling the motion of trains in a railway system is analyzed. Gates are 

placed on track segments to prevent trains for colliding. What criteria should be used 

to determine when gates should be closed?

! is case study was designed for pedagogical purposes, to illustrate some fundamental 

modelling ideas in as small a model as possible. ! ese are: the expression and analysis 

of a system with arbitrary topology; a separation of concerns into the requirement (the 

safety property to be established), the machine (the gates and their policy), and the en-

vironment (the tracks and trains); and a very partial description of the behaviour of the 

environment, so that the safety case should make as few assumptions as possible.

! e separation of concerns follows the view of requirements developed more fully in 

Michael Jackson’s theory of problem frames [1, 2].

! is case study was inspired by a presentation on modelling San Francisco’s BART 

railway, by Emmanuel Letier and Axel van Lamsweerde at a meeting of IFIP Working 

Group 2.9 on Requirements Engineering (Flims, Switzerland, February 2000). ! eir 

work was concerned with the automatic braking system and was focused on real-time 

event sequencing aspects. In contrast, this model was constructed to illustrate the use 

of Alloy to analyze a structural aspect.

[1] Michael Jackson. Software Requirements and Specifi cations: A Lexicon of Prin-

ciples, Practices and Prejudices. Addison Wesley, 1995.

[2] Michael Jackson. Problem Frames.

. Description

We view the railway topology is viewed as a collection of segments connected end-to-

end. A segment is directional, and only admits traffi  c on one direction. ! ere is a single 

gate at the end of the segment; when down, it is intended to prevent a train from leaving 

the segment. A piece of track that can be used in both directions is therefore viewed as 

two distinct segments.

! e connectivity of segments is modelled by a relation next that maps a segment to its 

successors – the ones which a train can enter on leaving the segment. A relation over-
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laps on segments models all the physical scenarios in which it would be unacceptable 

for trains to occupy a pair of segments: because they cross, meeting at a point, or be-

cause they come close enough for trains to collide, and so on. ! is relation is symmetric, 

not being interpreted as ordered: it would make no sense for a to overlap with b but for 

b not to overlap with a. It is not generally transitive.

Each train is assumed to occupy exactly one segment. ! at is, we don’t model the  intro-

duction of new trains or retirement of old trains. Most unrealistically, we treat trains as 

points, assuming that a train crosses instantaneously from one segment to another, and 

never occupies more than one segment, or splits into several smaller trains.

Train motion is modelled by an operation in which some subset of trains on the railway 

move to successor segments. It is highly non-deterministic, because it does not con-

strain which trains move, nor for each train that moves, which successor it chooses. 

Since the safety of the system should rely as little as possible on assumptions about the 

environment, this non-determinism is desirable. Motion within a segment is not mod-

elled; we pay no attention to timing concerns.

! e basic gate policy is that (1) all predecessors of an occupied segment have closed 

gates (so that a train doesn’t enter a segment and collide with a train already there); and 

(2) for any pair of segments that have the same or overlapping segments, there is at most 

one open gate (so that two trains occupying those segments don’t move together and 

enter overlapping segments simultaneously).

Criterion (1) addresses a problem that doesn’t arise in automobile traffi  c: that since 

trains have very long stopping distances, a mechanism is needed to prevent one train 

from approaching another too closely behind. It is unnecessarily stringent, since it does 

not permit a train to move to any successor of a segment when one successor is occu-

pied. To weaken it, however, would require gates on entry to a segment, since the gate 

on exit from a segment cannot control which successor segment a train moves to.

Criterion (2) is a generalization of the traffi  c light rule that you mustn’t show green in 

both directions at once.

. Model Commentary

1.3: In an earlier version of the model, segments were connected by shared points. 

Unless the points have signifi cance in their own right, a more abstract model that con-

nects segments directly is more appropriate. Two relations characterize the topology: 

next, which maps each segment to (zero or more) successors, and overlaps, which maps 

each segment to the (zero or more) segments that it overlaps with. ! ese relations are 

minimally constrained, since our aim is to account for as many topologies as possible. 

In developing a model of this sort, a good strategy is to start with no constraints, and 
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discover those that are necessary when safety violations are found by the analysis that 

correspond to unrealistic scenarios.

1.5: ! e overlaps relation is constrained to be symmetric. ! is is purely a modelling 

convenience. By viewing a segment as overlapping with itself, we obtain more uniform 

constraints. It is not necessary, for example, to say that two trains may not occupy the 

same segment, this case being subsumed by the constraint that they may not occupy 

overlapping segments.

1.6: ! e symmetry of the overlaps relation is, in contrast, justifi ed by the notion being 

modelled, since overlapping is a phenomenon of a set of two segments, not an ordered 

pair. In a sense this constraint undoes the unwanted directionality of the binary relation. 

An alternative would be to model overlappings as atoms in their own right, declared 

with a signature and a relation mapping overlappings to sets of segments.

1.8: Trains are introduced as basic atoms without fi elds of their own. ! e property of 

being on a segment is time-dependent, and is therefore modelled as a fi eld of the State 

signature.

1.9: ! e GateState signature models the set of global confi gurations of the gates. A gate 

state is associated, by the closed fi eld, with a  set of segments that are closed. ! is treat-

ment is nice and abstract; it doesn’t require us to allocate gates to segments fi rst, and 

then determine which are closed (although in an implementation this is of course what 

you would do). Note that the state of a segment is modelled by its membership in the set 

of segments whose gates are closed. A novice might want to declare a signature corre-

sponding to the diff erent statuses of a gate (open and closed), and then defi ne a mapping 

from gates to their statuses. ! is is clumsy; it introduces an unnecessary notion (gate 

status), and it tends to make constraints less succinct (with set comprehensions being 

introduced to provide the set of gates with a given status that is available immediately 

in the simpler treatment).

1.10: ! e TrainState signature models the set of confi gurations of trains: how they are 

placed on segments. Note that the underlying confi guration of segments is not mod-

elled explicitly by a signature, but by the nexts and overlaps relations of Seg. Since these 

are fi xed, the model does not account for dynamic changes in toplogy. ! e on fi eld of 

TrainState captures the train confi gurations, by mapping each train to the segment it 

sits on. ! e multiplicity symbol (the exclamation mark) on the right-hand side in the 

expression for on carries a lot of weight: it expresses the domain assumption that trains 

occupy at most one segment, and that they are never ‘off  track’. ! e occupied fi eld is de-

fi ned in terms of on. It is redundant, and included only for convenience. For a trainstate 

x, x.occupied gives the set of segments that have trains on them.

1.12: ! e safety criterion is recorded as a function, and not a fact, since we want to 

check that it follows from the policy, so it would make no sense to declare it to be true 



4

from the outset. It is a property of a single train state: it is appropriate that its span (see 

2) is as narrow as possible, and does not include the gate state, for example, which is 

part of the mechanism designed to achieve safety but not relevant to the essential safety 

concern. ! e constraint says that, for any pair of distinct trains t and t’, the segment that 

t occupies is not a member of the set of segments that are overlapped by the segment 

t’ occupies. Note that in the expression x.on[t’].overlaps, the [] operator binds more 

loosely than the dot operator, so it is parsed as ((x.on)[t’]).overlaps: fi rst take the on 

relation of the train state x; fi nd the segment associated with t’; then fi nd the segments 

this segment overlaps with.

1.16: ! e transition relation describing what changes in state may actually occur is 

split into two functions. ! e fi rst, MoveOK, is a constraint that describes in which gate 

and train states it is legal for a set of trains to move. ! e second, TrainsMove describes 

the eff ect on the train state of some set of trains moving. It is separated from MoveOK 

for methodological reasons. MoveOK records a social agreement: a driver may choose 

to violate it. TrainsMove, on the other hand, is a physical constraint: a driver may not 

choose to cross from a segment into a segment not connected to it. MoveOK says that a 

set of trains movers may move when the gates are in a state g and the trains are in a state 

x, so long none of the trains in movers are on segments whose gates are closed.

1.20: ! e function TrainsMove describes the eff ect of a set of trains movers moving from 

their segments to arbitrary successors. Note that the eff ect is described only in terms 

of the state of the trains, producing a change from x to x’, and is not constrained by the 

state of the gates. ! e constraint has two parts. ! e fi rst (1.21) says that every train that 

moves ends up in the state x’ on a segment that is a successor of the segment it was in 

the previous state x. ! e second (1.22) says that the trains that don’t move stay on the 

same segments. ! is function illustrates two key features of declarative specifi cation: 

the ability to write very underdetermined descriptions (in this case, allowing any set of 

trains to move, and for each to select the successor segment to move to) without special 

constructs for non-determinism, and, arising from this, the need for frame conditions 

(in this case constraining the remaining trains to stay put). Making this description 

of train motion as loose as possible is crucial, since we want to check that the safety 

mechanism will work with as few assumptions about the environment as possible.

1.25: ! e function GatePolicy describes the safety mechanism, enforced as a policy on 

a gate state and a train state. It comprises two constraints. ! e fi rst (1.26) is concerned 

with trains and gates: it says that the segments that are predecessors of those segments 

that are occupied by trains should have closed gates. In other words, a gate should be 

down when there is a train ahead. ! is is an unnecessarily stringent policy, since it does 

not permit a train to move to any successor of a segment when one successor is occu-

pied. ! e second (1.27) is concerned with gates alone: it says that between any pair of 

segments that have an overlapping successor, at most one gate can not be closed. Note 

that, like the TrainsMove function, this constraint is also quite weak. An implementation 
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of a safety mechanism would be deterministic; it would presumably determine which 

gate to close according to many factors not modelled here (such as priority of trains, 

time of arrival, etc.). ! is weaker constraint is an attempt to capture properties that a 

whole class of mechanisms would share.

1.30: PolicyWorks asserts the safety claim. It says that if a move is permitted according 

to the rules on MoveOK, if the trains move according to the physical constraints of Train-

sMove, if the safety mechanism described by GatePolicy is enforced, then a transition 

from a safe state will result in a state that is also safe. In other words, safety is preserved; 

the mechanism works.

1.39: ! e command CheckPolicy instructs the analyzer to evaluate the claim PolicyWorks 

for all situations involving at most 5 trains, 5 segments, 2 train states, and one gate state. 

No counterexample is found; the analysis is completed in about 5 seconds (Version 1.1, 

October 2002). We could increase the scope and consider more trains and segments, 

but it seems unlikely that it would reveal a problem. Note that considering more states 

is pointless, since any counterexample requires 2 train states and one gate state, those 

states named by bound variables.

1.1  module pedagogical/railway

1.2    

1.3  sig Seg {next, overlaps: set Seg}

1.4    

1.5  fact {all s: Seg | s in s.overlaps}

1.6  fact {all s, s’: Seg | s in s’.overlaps = s’ in s.overlaps}

1.7    

1.8  sig Train {}

1.9  sig GateState {closed: set Seg}

1.10  sig TrainState {on: Train -! Seg, occupied: set Seg}{occupied = on[Train]}

1.11    

1.12  fun Safe (x: TrainState) {

1.13   all disj t, t’: Train | x.on[t] !in x.on[t’].overlaps

1.14   }

1.15    

1.16  fun MoveOK (g: GateState, x: TrainState, movers: set Train) {

1.17   no x.on[movers] & g.closed

1.18   }

1.19          

1.20  fun TrainsMove (x, x’: TrainState, movers: set Train) {

1.21   all t: movers | x’.on[t] in x.on[t].next

1.22   all t: Train - movers | x’.on[t] = x.on[t]

1.23   }

1.24         
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1.25  fun GatePolicy (g: GateState, x: TrainState) {

1.26   x.occupied.overlaps.~next in g.closed

1.27   all s,s’: Seg | some (s.next & s’.next.overlaps) = sole (s + s’ - g.closed)

1.28   }

1.29    

1.30  assert PolicyWorks {

1.31   all x, x’: TrainState, g: GateState, movers: set Train |

1.32    {MoveOK (g, x, movers)

1.33    TrainsMove (x, x’, movers)

1.34    GatePolicy (g, x)

1.35    Safe (x) }

1.36    = Safe (x’)

1.37   }

1.38          

1.39  CheckPolicy: check PolicyWorks for 5 but 2 TrainState, 1 GateState

. Variations

.. A Faulty Gate Policy

As an example of a simple bug, suppose the safety mechanism were to omit one of the 

cases in which overlap is considered, so that the check tests only for a potential colli-

sion with a train in a succeeding segment, and not all those that overlap succeeding 

segments:

1.40  fun GatePolicy (g: GateState, x: TrainState) {

1.41   x.occupied.~next in g.closed

1.42   all s,s’: Seg | some (s.next & s’.next.overlaps) = sole (s + s’ - g.closed)

1.43   }

! e conjecture PolicyWorks is now false. It has a counterexample in a smaller scope than 

the one specifi ed in the command CheckPolicy. Executing the command

1.44  CheckPolicy’: check PolicyWorks for 2 Train, 3 Seg, 2 TrainState, 1 GateState

produces the counterexample shown in the fi gure below, in which Train_0 on Seg_1 

moves to Seg_2 which overlaps with Seg_0, which is occupied by Train_1.

.. Exploiting Relational Operators

In several places, we could make the model a bit more elegant by using relational opera-

tors rather than set-based operators.
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In the GatePolicy function (1.25), for example, the second condition (1.27) could be 

written instead as

1.45  all s,s’: Seg | some (s.next->s’.next) & overlaps = sole (s + s’ - g.closed)

Here, the expression s.next->s’.next forms the set of all pairs of successors of s and s’; the 

condition some (s.next->s’.next) & overlaps tests whether any such pair also belongs to 

the overlap relation.

! e properties of the overlap relation are generic properties of many relations, so it 

makes sense to factor them out as polymorphic functions. ! e following code illustrates 

this, as well as a way of writing the properties with relational operators rather than 

quantifi ers.

1.46  fact {Refl exive(overlaps) && Symmetric(overlaps)}

1.47   

1.48  fun Refl exive [t] (r: t - t) {iden[t] in r}

1.49  fun Symmetric [t] (r: t - t) {~r in r}


