
r e s e a r c h s u m m a r i e s a r i d

e x l l e r l e n c e r e p o l r e s

P e t e r C o a d

O b j e c t - O r i e n t e d P a t t e r n s
his article explores patterns, how to f ind them, presents some patterns for object-
oriented analysis (OOA) and object-oriented design (OOD) as well as providing
examples and guidelines for applying them. ® • • • • ® • • • • ® • #

Patterns Apply tO
Many DiSciplines
What is a pa t te rn?

Pattern. A fully realized form,
original, or model accepted or
proposed for imitation: something
regarded as a normative example
to be copied; archetype; exemplar
[10].

Many fields use pa t te rns in various
ways: In music an d l i terature, a pat-
t e rn is the cohe ren t s t ructure or
des ign of a song or book. In art, a
pa t t e rn is the composi t ion or p lan
of a work of graphic or plastic art.
I n archi tecture , a pa t t e rn is an ar-
chi tectural des ign or style.

In psychology, a pa t t e rn is a
t h ink ing mechan i sm that is basic to
the bra in ' s opera t ion , he lp ing o n e

to perceive things quickly [1]. In
archeology, a pa t t e rn is a g roup of
phases hav ing several dis t inguish-
ing and f u n d a m e n t a l features in
common . In linguistics, a pa t t e rn is
the m a n n e r in which smaller uni ts
of l anguage are g r o u p e d into larger
units .

In dressmaking , a pa t t e rn is a
pleasing shape that is appl ied re-
peatedly. In decorat ing, a pa t t e rn is
a des ign or f igure a p p ea r i n g in fur-
n i tu re or an accessory. In manufac -
tur ing , a pa t t e rn is the shape or
style of a m a n u f a c t u r e d form. In
aviation, a pa t t e rn is a collection of
approaches , turns , and alt i tudes
prescr ibed for an a i rp lane that is
coming in for a landing. In broad-
casting, a pa t t e rn is a s t andard dia-
g r am for test ing television circuits.

In numismat ics , a pa t t e rn is a
spec imen of a p roposed coin or
coin design. In chess, a pa t t e rn is a
set o f moves that may be appl ied in
an overall strategy [10].

With each pa t te rn , small piece-
work is s tandard ized into a larger
c h u n k or uni t . Pat terns become the
bu i ld ing blocks for des ign and con-
s truct ion. F i n d i n g and app ly ing
pa t te rns indicates progress in a
field of h u m a n endeavor .

HOW do People Discover
Patterns?
In his book The Timeless Way of
Building [2], no ted architect Chris-
t ophe r A lexande r examines the
impor t ance of archi tectural pat-
terns:

..,every place is given its character
by certain patterns of events that
keep on happening there.... These
patterns of events are locked in
with certain geometric patterns in
the space. Indeed, each building
and each town is ultimately made
out of these patterns in the space,
and out of nothing else; they [pat-
terns in the space] are the atoms
and molecules from which a build-
ing or a town is made [2].

Pat terns are more t han jus t the
smallest e lements in an endeavor .

On the geometric level, we see cer-
tain physical elements repeated
endlessly, combined in an almost
endless variety of combinations
It is puzzling to realize that the
elements, which seem like elemen-
tary building blocks, keep varying,
and are different every time that
they occur If the elements are
different every time that they
occur, evidently then, it cannot be
the elements themselves which are
repeating in a building or town;
these so-called elements cannot be
the ultimate "atomic" constituents
of space [2].

To f ind pat terns , what does one
look for?

Look more carefully...to find out
what it really is that is repeating
there Beyond its elements, each
building [or town] is defined by
certain patterns of relationships
among the elements.... These rela-
tionships are not extra, but neces-
sary to the elements The ele-
ments themselves are patterns of
relationships [2].

A n d what h a p p e n s when o n e

f inds a pa t te rn? O n e begins to th ink
with that new bu i ld ing block, r a the r
t han with littler pieces.

And finally, the things which seem
like elements dissolve, and leave a
fabric of relationships behind,
which is the stuff that actually re-
peats itself, and gives the structure
to a building or a town [2].

HOW Can One Find Patterns
for OOA and OOD?
So what is the impact o f Alexan-
der ' s insights on advanc ing O O A
and OOD? Objec t -or ien ted meth-
ods t end to focus on the lowest-level
bu i ld ing block: the class and its ob-
jects [3, 4, 5, 9, 11].

Object. A person, place, thing,
event , o r concept .

Class. A descr ip t ion of a n u m -
ber of objects which have cer-
tain likenesses or c o m m o n
traits.

(derived f rom [10])

Classes and objects co r r e spond to
Alexander ' s constant ly repeat ing ,
lowest-level e lements . Pat terns of
lowest-level e lements and relat ion-
ships be tween them fo rm a bu i ld ing
block for more effective O O A and
OOD. To f ind a pa t t e rn a m o n g
some lowest-level e lements (classes

152 September 1992/VtJI.35, No.9/COMMUNICATIONS OF THE ACM

and objects), one must look at the
relationships between them.

Object-oriented methods already
emphasize certain patterns of rela-
tionships, including generalization-
specialization, whole-part, associa-
tion, and messaging [3, 4, 9]. Such
relationships tie the lowest-level
building blocks together.

Some have investigated applica-
tion frameworks [7], a skeleton of
classes, objects, and relationships
grouped together for building a
specific application. Most of these
application frameworks are pri-
marily human interaction skele-
tons, providing a more systematic
approach to building window inter-
faces. Examples include Apple's
MacApp (for building a Mac inter-
face), Borland's ObjectWindows,
and the model-view-controller ar-
chitecture within ParcPlace Sys-
tem's Objectworks [6, 8].

But other combinations--ones
likely to be applicable multiple
times within a single application,
and likely to be applicable across
many different kinds of applica-
t i o n s - h a v e not been investigated
to date. Little is known about pat-
terns--combinations of certain
classes and objects, with relation-
ships between them-- tha t apply
again and again in different OOA
and OOD efforts. Exploring such
patterns is the purpose of this short
article.

An object-oriented pattern is an ab-
straction of a doublet, triplet, or other
small grouping of classes that is likely to
be helpful again and again in object-
oriented development.

Patterns are found by trial-and-
error and by observation. By build-
ing many object-oriented models
and by observing many applications
of the lowest-level building blocks
and the relationships established
between them, one can find pat-
terns. With such patterns, as Alex-
ander observed, "the things which
seem like elements dissolve," and
one is able to use a higher-level
building block for OOA and OOD.

r e s e a r c h s u m m a r i e s a n d

e x p e r i e n c e r e p o r t s

Seven Patterns, Seven
Examples, and Guidelines
This section begins with notation,
followed by a presentation of the
following patterns: item descrip-
tion; time association; event log-
ging; roles played; state across a
collection; behavior across a collec-
tion; and broadcast. With each pat-
tern discussed, examples and
guidelines are provided.

Notation
This article uses the notation sum-
marized in Figure 1.

"Item Description" Pattern
Figure 2 illustrates the "item de-
scription" pattern.

The pattern. The item description
pattern consists of an "item" object
(i.e., an object of the class "item")
and an "item description" object.
An "item description" object has
attribute values which may apply to
more than one "item" object; an
"item" object has its own individual
assignment of attribute values.

An example. An "aircraft" object
knows its own tail number (e.g.,
N123ABC); it also knows about
exactly one "aircraft description"
object. An "aircraft description"
object knows its own manufacturer
(e.g., Boeing), model (e.g., 747-
400), and standard cruising range
(e.g., 8,333 miles); it also may know
about some number of "aircraft"
objects that depend on that infor-
mation.

Guidelines for use. Use this pattern
when some attribute values may
apply to more than one object in a
class.

"Time Association" Pattern
Figure 3 illustrates the "time associ-
ation" pattern.

The pattern. A "participant 1" ob-
ject may know about (be associated
with) a "participant 2" object. I f one
needs to express attributes or ser-
vices regarding that association,
then an object from "time associa-
tion" is needed. A "time associa-
tion" object often sends messages to
its participating objects in order to
get values or get a subcalculation

done on its behalf. Note that the
association connection (1) captures
the association for future queries
about these objects and (2) captures
(for the sender) "to whom to send a
message."

An example. A "legal event" object
knows its date and time; it also
knows about (and ties together, in
association) some number of
"owner" objects and exactly one
"vehicle" object. To calculate a fee,
a "legal event" object sends the
message "assess tax type" to its cor-
responding owner object(s) and
then sends the message "categorize
vehicle" to its corresponding vehi-
cle object. An "owner" object knows
its name and address; it also knows
about some number of correspond-
ing "legal event" objects. A "vehi-
cle" object knows its number and
style; it also knows about some
number o f corresponding "legal
event" objects.

Guidelines for use. Use this pattern
whenever the system is responsible
to know an association between two
or more objects and to know or do
something about that association.

"Event Logging" Pattern
Figure 4 illustrates the "event log-
ging" pattern.

The pattern. A "device" object
monitors an external device; the
object is responsible for detecting
that an event has occurred; the ob-
ject is also responsible for initiating
the response to that event. Part of
that response may be to log the
event's occurrence. When this is the
case, a "device" object sends the
message "create" to the "event re-
membered" class to create a new
object in that class, one with histori-
cal values. A "device" object may
know about some number o f "event
remembered" objects; an "event
remembered" object must know
about a corresponding "device"
object.

An example. A "temperature sen-
sor" object monitors an actual tem-
perature sensor, looking for a
threshold violation; to do its job, it
knows its operational state and its
threshold. Once it detects that a

COMMUNICATIONS OF THE ACM/September 1992/Vol.35, No.9 153

r e s e a r c h s u m m a P l e s a n d

e x p e r i e n c e r e p o r t s

i ClassNamel

iii i

ClassName2 J

This is a 'class-&-object" symbol.
The heavy border represents a class.
The lighter border represents

an object In that class.

This is a "class" symbol.
It has no directly corresponding

objects.

I ClassName3 1
Attribute1
Attribute2

Attributes are listed In the center section.
Attributes depict what an oblect knows.

Services are listed In the lower section.
Services define what an object does.

i GeneralizationClass

U
1

P
SpecializationClass

This is a generalization-
specialization (gen-spec) structure.

A speclalizaUon class Inherits
the attributes and services defined
In the generalization class.

O,~rnl This is a whole-part structure.

I 1 The range or limit markings in
I ~ l this example indicate that a

whole object may know about
some number of part objects,
and that a part object knows
about one whole object.

i Sender o m I Receiver 1 The solid connecting line Is
an association connection,
Indicating that one object needs
to know about another object.

The patterned (dashed) arrow
is a message connection. It
portrays dynamic scenarios
(threads of execution).

A subject Is used to guide a reader through
~ . c ~ a"chunk"o, an overallmodel.

"Item description" pattem

An example

U
tai lNumber i i 1 AircraftDescription

1 manufacturer
model

O,m standardCruisingRange

F i g u r e 11. OOA and OOD notat ion used
in this article

I [=lgure :!. " I tem descript ion" [oattern
and example

threshold violation has occurred, it
sends a message to the "threshold
violation" class to create a new ob-
ject in that class with values for date

and time, measured value, and
moni tored threshold.

Guidelines for use. Use whenever
an event is detected, and you need
to log its occurrence to suppor t
after-the-fact analysis or to meet
legal requirements .

"Ro les P layed" P a t t e r n
Figure 5 illustrates the "roles
played" pat tern.

The pattern. A "player" object has
at tr ibute values and services that
apply over time. A player object is
always a player object. At times, a
player object "wears di f ferent hats,"
playing one or more roles. Often,
start ing and ending times are corn-

lS4 September 1992/Vol.35, N o . 9 / C O M M U N I C A T I O N S OF T H E A C M

r e s e a r c h s u m m a r i e s a n l l

e x p e r i e n c e r e p o r t s

"Time association" pattern
I (Participant1 ~ I TimeAss°ciati°n i ~ I

dateTime
calculate

Participant2

An example

il1 ri_ V°h,o,o I! Owner ' 1,m LegalEvent II 1,m]~ number
II name II address dateTime I 1 ~ 1 1 s~/le
~L~assessTaxType calculateFee ~ ~ assessVehicl_eCategory

Figure 3. "Time association" pattern and example

"Event logging" pattern
,,,,,,oov,c. ~0.~ ,[[
state
monitor ~ ~ ~ t

EventRemembered

dataTime
value

I

IIII

ThresholdViolation

dateTime
measu redValue
monitoredThreshold
create

An example i 0,m ii •m[p•ratu •s•nsor

monitor ForTh resholdV,iolation
Figure 4. "Event logging" pattern and example

,,Ro,esp,aye, p ,,ern P'aYer

dateTimeStart
dateTimeEnd

i-, I

An example

L

i RentedVideoRole
duration
watchForOverdue

n~v'°°° }1 copyNumber o.?
VideoRole

dateTimeStart
dateTimeEnd

,L ,L
I i ReturnedVideoRole ~ status

Figure S. "Roles played" pattern and example

COMMUNICATIONSOFTHE ACM/Scptcmber 1992/Vo1,35, No.9 lSS

=State across a collection" pattem

r e l e o r ¢ h s u n t n l o r l e s a l l d

e x p e r i e n c e r e p o r t s

An example

I Collection ~ Aircraft

~ a l t i t u d e + o.?,
memberAttribute ~ ratedPower

"Behavior across a collection" pattern

I Collection

collectionService 1

Member

memberService

An example

CallCalulation

selectNextCall

- - 7 T Oom

Call
timeOfArrival
priority
originatingNumber
route
ratelmportance

mon to all such roles. Roles are spe-
cialized, according to the attributes
and services needed in each role.
This pattern accommodates large
numbers of roles, combinations of
roles, and changes in roles much
more graciously than an application
of multiple inheritance permits.

An example. A "video" object
knows its name and copy number;
it also knows about corresponding
"rented video role" and "returned
video role" objects. Each role object
knows its starting date and time and
(eventually) its ending date and
time. The "rented video role"
knows its duration, and watches for
it becoming overdue; the "returned
video role" knows its status (i.e.,
whether or not it is ready to be
rented again).

Guidelines for use. Use this pattern
whenever you have a player object
which remains the same old player
object, but has different attributes
and services, depending on the
"hats" the player may wear. Use this
pattern to model large numbers of

Figure 6. "State across a collection"
pattern and example

Figure 1. "Behavior across a collec-
tion" pattern and example

Figure 8. "Broadcast" pattern and
example

=Broadcast" pattern

I Receivlngltem
messageToGetChange
recelveChangeNotlflcatlon
sendMessageToGet Change

i

An example

I HumanlnteracUonView
messageTolnvokeAction
messageToGetChange

getUserlnput
send MessageTolnvokeActlon
recelveChangeNotiflcatlon
send MessageToGetChange
updateDisplay

Broadcastlngltem

broadcastChangeNoUflcaUon

0,m Model

broadcastChangeNotlflcaUon

DatalnteractlonView
messageToGetChange

load
receiveChangeNotification
send MessageToGetChange
update
save

I S 6 September 1992/Vol.35, NO.9/COMMUNICATIONS OF THE ACM

roles, combinations of roles, and
changes in roles; this approach is
more concise and flexible than at-
tempting to use multiple inheri-
tance in this situation.

"State Across a Collection"
Pattern
Figure 6 illustrates the "state across
a collection" pattern.

The pattern. A "collection" object
knows its state; this state applies to
the collection and may also apply to
its parts, by physical or temporal
proximity. And each "member"
object has its own state, too.

An example. An aircraft is an as-
sembly (collection) of engines; in
other words, an "aircraft" object
may know about some number of
"engine" objects. (Note that while
most aircraft have engines, gliders
do not.) Each "engine" object
knows its own rated power. Each
"aircraft" object knows about its al-
titude; this particular attribute
value applies to the whole, and also
to its parts, by physical proximity.

Guidelines for use. Use this pattern
whenever there is whole-part in a
business domain or implementation
domain, and one or more attributes
apply to the whole (the collection).

"Behavior Across a Collection"
Pattern
Figure 7 illustrates the "behavior
across a collection" pattern.

The pattern. A "collection" object
has behavior that applies across an
entire collection of its "member"
objects. And each "member" object
performs actions, knowing (by
means of its attributes) how to per-
form, without needed coordination
with other "member" objects.

An example. A "call" object knows
its time of arrival, priority, and its
originating number. The "call" ob-
ject (the abstraction, not the elec-
tronic signal it works on) also knows
how to route itself. It can even rate
its importance.

But which call gets to go next?
The "call" object does not know
enough to make the actual selec-
tion. Yet a collection of all calls,
called a "call collection" object in

r e s e a r c h s u m m a r i e s a n d

e x p e r i e n c e P e p o P t s

this example, can know enough (all
the call objects waiting to be ser-
viced) and do enough (select the
next call, based on a selection algo-
rithm) to carry out this responsibil-
ity. So the "call collection" object is
set up to do just that. Note that such
a collection does exist in the do-
main; it is called a queue; but the
words "call collection" take the
model away from being locked into
a "first in, first out" mentality; and
the name helps one to focus on
behavior across the collection only,
not pulling up any of the work that
each call knows enough to do itself.

Guidelines for use. Use this pattern
whenever there is whole-part in a
business domain or implementation
domain, and a behavior (i.e., one or
more services) applies across the
whole collection. Caution: make the
member objects do as much as they
can with what they know; only put
behavior that really applies across
the collection up in the "collection"
object; in doing this, the active side
of the objects is better partitioned
by the participating classes, rather
than having a centralized manager
with subordinate data-hiders.

"Broadcast" Pattern
Figure 8 illustrates the "broadcast"
pattern.

The pattern. This pattern is used
to communicate complex changes
between one major section of an
OOA/OOD model with another
major section. Whenever it
changes, a "broadcasting item" ob-
ject broadcasts a change notifica-
tion to the "receiving item" objects
that it knows about. A notified "re-
ceiving item" object then sends a
message to the "broadcasting item"
to get the change; once it gets the
change, a "receiving item" object
takes whatever action is necessary
in light of the change.

An example. On the left side of
Figure 8, the pattern is applied to
keep human interaction distinct
from business domain classes. This
is done to simplify both parts; and it
is done to increase the likelihood of
reuse for each part. A "human in-
teraction view" object gets user

input and sends a message to in-
voke action to the corresponding
"model" object. At some point in
time, when a change does occur, a
"model" object broadcasts a change
notification to its dependent
"human interaction view" objects.
Then each dependent "human in-
teraction view" object sends a mes-
sage to get the change; on receipt of
the change, the "human interaction
view" updates its display. In
ParcPlace System's Objectworks,
this application of a broadcast pat-
tern is called model-view-controller
(MVC); the innovative work on
MVC [6, 8] is the basis for abstract-
ing and then applying the "broad-
cast" pattern.

On the right side of Figure 8, the
pattern is used to isolate the impact
of data management. Again, this is
done to simplify both parts; and it is
done to increase the likelihood of
reuse for each part. At some point
in time, when a change does occur,
a "model" object broadcasts a
change notification to its depen-
dent "data interaction view" objects.
Then each dependent "data inter-
action view" object sends a message
to get the change; on receipt of the
change, the "data interaction view"
updates its data representation
(e.g., its tables). The "data interac-
tion view" knows how to save and
load its data representations into a
storage device.

Actually, this example is some-
what simplified; often, in the appli-
cation of this pattern, the interact-
ing objects are actually objects of
classes that are specializations of the
classes shown in this example. Yet
the same basic pattern applies, even
when specialization classes are in-
volved.

Guidelines for use. Use this pattern
to establish interactions between
major OOA/OOD parts in a way
that the two sections stay cleanly
separated, rather than becoming
hopelessly intertwined. Be sure to
use this pattern to separate business
domain classes from human inter-
action classes, and to separate busi-
ness domain classes from data man-
agement classes.

COMMUNICATIONS OF TH e: ACM/September 1992/Vo1.35, No.9 I S 7

r e s e c a r c h s u m m a r i e s a n d

e x p e r i e f l a : o r e p o r t s

Applying Six Patterns
In One Example
Figure 9 is a larger example show-
ing how patterns can be combined
into larger models. This one model
applies six patterns.

Summary and
Recommendations
A pat tern is a fully realized form
original, or model accepted or pro-
posed for imitation. With patterns,
small piecework is s tandardized
into a larger chunk or unit. Patterns
become the building blocks for de-
sign and construction. Finding and
applying pat terns indicates prog-
ress in a field of human endeavor.

This article is only a very small
beginning o f the work to be done
on investigating, finding, and ap-
plying object-oriented patterns.
Addi t ional investigation is needed
on pat tern discovery and usage.
Given a large number of O O A and
OOD results, can one apply a sys-

Figure 9. A larger example, applying
six patterns

tematic approach to discovering
and cataloging patterns? Is there a
hierarchy of patterns? How does
one look at examples and derive
guidelines for best usage? What
strategies can be used for connect-
ing one pat tern to another? When
does the occurrence of one pat tern
imply the need for another com-
panion pat tern?

Patterns are the molecules from
which one may apply OOA and
OOD more effectively.

Acknowledgments
The author thanks Mark Mayfield,
Jill Nicola, and Teri Roberts for
their help in identifying, abstract-
ing, and applying these p a t t e r n s . n

References
1. Albrecht, K. Brain Power. Prentice

Hall, Englewood Cliffs, N.J., 1980.
2. Alexander, C. The Timeless Way of

Building. Oxford University Press,
1979.

3. Booch, G. Object-Oriented Design with
Applications. Benjamin/Cummings,
Redwood City, Ca., 1991.

4. Coad, P. and Yourdon, E. Object-

Oriented Analysis. Second ed. Pren-
tice Hall, Englewood Cliffs, N.J.,
1991.

5. Coad, P. and Yourdon, E. Object-
Oriented Design. Prentice Hall, En-
glewood Cliffs, N.J., 1991.

6. Goldberg, A. Information models,
views, and controllers. Dr. Dobb's J.
(July 1990).

7. Johnson, R. and Wirfs-Brock, R.
Object-oriented frameworks. Tuto-
rial notes. In Proceedings of ACM
OOPSLA (1991).

8. Leibs, D. and Rubin, K. Reimple-
menting model-view-controller. The
Smalltalk Report (Mar./Apr. 1992).

9. Rumbaugh, J., Blaha, M., Premer-
lani, W., Eddy, F. and Lorensen, W.
Object-Oriented Modeling and Design.
Prentice Hall, Englewood Cliffs,
N.J., 1991.

10. Webster's Third New International Dic-
tionary. Merriam Webster, Inc.,
1986.

11. Wirfs-Brock, R., Wilkerson, B. and
Wiener, L. Designing Object-Oriented
Software. Prentice Hall, Englewood
Cliffs, N.J., 1990.

"Item description" pattern
Product description--
sales transaction item

"Time association" pattern
Customer~sales transaction--
employee

"Event logging" pattern
Product description---
reorder event

"Roles played" pattern
Person--person role--
customer, employee

"State across a collection" pattern
Sales transaction--
sales transaction item

"Behavior across a collection" pattern
Sales transaction--
sales transaction item

i SalesTransaction 1
number 2
dateTime
calcutat eTotal

I Pea'on i
name

I PersonRole]
[dateTime

0,m(

- [~ SalesTransactionltem ~ [~ Customer 1
ProduetDescriptlon 0,m 11] quantity I ~ ' 1 J disc°un ̀

productCode price " ~ a~r:~ ~L caleulateltemTota': ~ ~,~ calculateDiscou ntAmou nt
descr ption

numberlnStock
reorderLevel L t~ 1 i getPrice ~ ; ~ ReorderEvent

O,m J| dateTime autoReorder I i I status

i E ,!y;e
number i

lS8 September 1992/Vo1.35, No.9/COMMUNICATIONS OF THE ACM

r e s e u P ¢ l l s u n l n l o r l e | l i n d

e x p e r i e n c e r e p o r t s

CR Categories and Subject Descrip-
tors: D.2.1 [Software]: Software Engi-
neering - - requirements / specifications;
D.2.10 [Software]: Software Engi-
neering-design; 1.6.0 [Computing
Methodologies]: Simulation and Mod-
eling-general; 1.6.3 [Computing Meth-
odologies]: Simulation and Model ing--
applications; K.6.3 [Computing Mi-
lieux]: Management of Computing and
Information Systems--software manage-
ment; K.6.4 [Computing Milieux]: Man-
agement of Computing and Informa-
tion Systems--system management

General Terms: Design, Experimen-
tation

Additional Key Words and Phrases:
Analysis, design, object-oriented nota-
tion and methodology, object-oriented
software engineering, reliable compo-
nent reusability

About the Author:
PETER COAD is the chair of Object
International, Inc. Current research
interests include object-oriented meth-
ods, reuse, more effective analysis and
design tools, and intelligence theories
leading to accelerated techology trans-
fer. Author's Present Address: Object
International, Inc., 8140 N. MoPac
Expressway, Building 4, Suite 200, Aus-

tin, TX 78759-8864; email: coad@
applelink.apple.com or CompuServe
71210, 3642

Permission to copy without fee all or part of
this material is granted provided that the
copies are not made or distributed for direct
commercial advantage, the ACM copyright
notice and the title of the publication and its
date appear, and notice is given that copying
is by permission of the Association for
Computing Machinery. To copy otherwise, or
to republish, requires a fee and/or specific
permission.

© ACM 0002-0782/92/0900-153 $1.50

CARE plants the
most wonderful
seeds on earth.

Seeds of self-sufficiency that help
starving people become healthy;
productive people. And we do it
village by village by village.
Please help us turn cries for help
into the laughter of hope.

COMMUNICATIONS OF THE ACM/September 1992/VoL35, No.9 ! 5 9

