
Apposcopy: Semantics-
Based Detection of
Android Malware through
Static Analysis
By Feng et al [FSE ‘14]
Presented by Maaz Ahmad

The Malware Problem
•  (Feb, 2015) Motive Security Labs estimates 16 million infected mobile
devices.[1]

•  Nearly half of Android Malware attempt to steal personal data.
•  Kaspersky Lab detected 29,695 new malware modifications in a quarter of a
year.[2]

[1] http://www.alcatel-lucent.com/press/2015/alcatel-lucent-report-malware-2014-sees-rise-device-and-network-attacks-place-personal-and-workplace
[2] http://securelist.com/analysis/quarterly-malware-reports/37163/it-threat-evolution-q2-2013/

Prevalent solutions
•  Taint Analysis;

•  Information flow analysis
•  Expose applications that leak confidential data
•  Not all applications that leak data are malware
•  Security audit required to filter benign applications from malware

•  Signature Based Detectors;
•  Pattern matching technique, searches for specific instruction or byte sequences
•  Great against known malware
•  Only as good as their signature database (which must be kept up to date)
•  Easy to work around by introducing code transformations

What we need
•  Tools that operate automatically

•  No security audit required

•  Tools that are smart
•  Can look past minor program obfuscations
•  Can adapt to new unknown malware

Apposcopy: a best of both worlds?
•  Semantic based approach for malware that steal information

•  Two main components:
•  A high level language to describe semantic signatures of malware

•  Control flow properties (eg: broadcast receiver launches a service)
•  Data flow properties (eg: reads contacts data and sends it through SMS)

•  A powerful static analysis for deciding if an application matches the a signature
•  Inter-component callgraph (ICCG) for control flow analysis
•  Taint analysis for data flow

•  High level signatures are resistant to low level code transformations

An Example: GoldDream Malware
•  A family of malware software that
•  Spies on user’s messages and calls

•  Registers a receiver to listen for these events
•  Once invoked, starts a background service w/o users knowledge
•  Uploads call and SMS data to remote server
•  Uploads other personal data such as IMEI number, subscriber ID etc.

GoldDream Signature

Signature Detection (ICCG)

Broadcast Receivers Activities Services Invokes Relation

Legend

Signature Detection (Taint Analysis)

Malware Spec Language
•  Datalog program augmented with built in predicates
•  A predicate must be defined for each malware family
•  Helper predicates may be defined

Datalog
•  Each program comprises of:

•  A set of facts
•  parent("Bill", "Mary")
•  GDEvent(SMS_RECEIVED)

•  A set of rules
•  ancestor(x, y) :- parent(x, z), ancestor(z, y)

•  Predicates may contain variables, constants or “_” (meaning: don’t care)
•  Predicates represent relations

Built-in Predicates
•  Component type predicates
•  Inter-component communication predicates

•  Predicate calls()
•  Predicate flows()

Component type predicates
•  Represent different kinds of components in the Android framework:

•  service(c)
•  activity(c)
•  receiver(c)
•  contentprovider(c)

•  Used to establish type of c
•  Correspond to relation of type (component : C)

ICC Predicates
•  Inter-component communication predicates
•  ICC in Android revolves around Intents
•  Methods that take Intent as parameter are called ICC methods

•  Instructions that invoke ICC Methods are called ICC sites
•  When ICC is initiated, life-cycle methods of the target component are
invoked

ICC Predicates Cont’d
•  Intents passed to target may carry many types of information
•  Apposcopy only considers ‘action’ and ‘data’
•  ICC predicate represents inter-component communication in Android
framework

•  icc(s,t,a,d)
•  Corresponds to relation of type (source : S, target : T, action : A, data : D)
•  A and D may be ⊥

ICC Predicates Cont’d
•  Definition 3.1: Target of any ICC site is all components that receive passed
intent in some execution of the program.

•  Definition 3.2: m1 è m2, if method m1 directly calls m2. m1 è* m2 if m1
transitively calls m2.

•  Definition 3.3: The predicate icc(s,t,a,d) is true iff:
•  m1 is a lifecycle method of s
•  m1 è* m2
•  m2 contains an icc site with target t
•  The action and data values are a and d respectively

• Definition 3.4: icc*(s,t) is true if s transitively communicates with t.
•  icc*() allows the signatures to be more robust to code alterations

Predicate calls()
•  Represents a method call by a component
•  Corresponds to the type (component : C, callee : M)
•  calls(c, m) is true iff:

•  n is a life-cycle method defined in component c
•  n è* m

•  Help detect malware that abuse Android API methods

Predicate flows()
•  Represents data flow to help detect sensitive information leak
•  Definition 3.5: Source and sink variables are annotated program variables that are
either method parameter or it’s return value. The associated method is source/sink
method.

•  getDeviceId() is source method, return value is source variable
•  sendTextMessage(..,x,..) is a sink method, where x is sink variable

•  Corresponds to relation of type (srcComp : C, src : SRC, sinkComp : C, sink : SINK)
•  Definition 3.6: A taint flow (so, si) represents a route from source to sink
•  Definition 3.7: flow(p, so, q, si) is true iff:

•  m and n are source and sink methods for so and si respectively
•  calls(p,m) and call(q,n) are true
•  taint flow(so,si) exists

Predicate flows() : Example

flow(ListDevice,$getDeviceId,ListDevice,!sendTextMessage) is True.

Static Analysis
•  Pointer analysis
•  Data flow analysis for intents
•  ICCG construction
•  Taint Analysis

Pointer Analysis
•  Notation for ‘x may point to y’: x à y
•  Field-sensitive
•  Context-sensitive

•  Call site sensitivity for static method calls
•  Object sensitivity for virtual method calls

•  Anderson style

Data flow analysis for intents
•  Forward inter-procedural analysis
•  For each Intent variable i, the analysis tracks:

•  it ∈ Components
•  id ∈ Data types
•  ia ∈ Actions

•  Values initialized to ⊥
•  Join operator is the set union
•  Transfer function based on Android API

Example: x.setComponent(s)

•  If Γ(xt) does not contain ⊥, explicit(xt) must be true
•  Else implicit(xt) may be true

ICCG Construction
Definition 4.1:
An ICCG for a program P is a graph (N, E) such that:
Nodes N are the set of components in P
Edges E define a relation E ⊆ (N ×A×D ×N) where
A and D are the domain of all actions and data types

ICCG Construction
•  icc_site(m,i) : Method m contains ICC site with intent i
•  P è* m : Component P transitively invokes m
•  intent_filter(P,A,D) : Component P has intent filter with action A and data D

•  Extracted from the manifest.xml

Taint Analysis
•  Annotations

•  Source : for methods that read sensitve data (symbol: $)
•  Sink : for methods that leak data outside the device (symbol: !)
•  Transfer : for taint flow through android methods

Taint Analysis Cont’d
•  New Predicate: tainted(o,l)

•  Corresponds to relation of type (O : AbstractObj, L : SourceLabel)
•  If true: any object represented by o may be tained by l

•  mi : i’th parameter of method m
•  m0 : ‘this’ variable
•  mn+1 : return value (n is the number of parameters)

•  src(mi,l) : i’th parameter of m is annotated as source label l
•  sink(mi,l) : i’th parameter of m is passed to sink label l
•  transfer(mi, mj) : flow(mi, mj) is true

Taint Analysis Cont’d

Performance Evaluation
•  Accuracy for known Malware 90%

•  Performs poorly for BaseBridge (dynamic code loading)
•  11,215 Google apps scanned, only 16 reported malware
•  Approximately 350 seconds to analyze 27k lines of code
•  100% detection of obfuscated malware

Discussion
•  Taint Analysis vs Apposcopy
•  Maintaining malware database
•  Why Android? What generalizes to other systems?
•  What’s next?

