
FlowDroid
Alex Mariakakis

From CSE 501…again

Motivation

•  All sorts of mobile malware exist
– Selling user information to advertisement/

marketing companies
– Stealing user credentials
– Premium rate calls and SMS
– SMS spam
– Search engine optimization
– Ransom

Contributions

•  FlowDroid: the first fully context, field, object and
flow-sensitive taint analysis which considers the Android
application lifecycle and UI widgets, and which features a
novel, particularly precise variant of an on-demand alias
analysis

•  DroidBench: a novel, open and comprehensive
micro benchmark suite for Android flow analyses

•  Experiments: demonstrate superior precision and
recall to commercial tools and manageable runtimes on
real-world apps

Challenges

1.  Multiple entry
points

2.  Asynchronousl
y executing
components

3.  Callbacks

Challenges

1.  Multiple entry
points

2.  Asynchronousl
y executing
components

3.  Callbacks

Challenges

1.  Multiple entry
points

2.  Asynchronousl
y executing
components

3.  Callbacks

public class LeakageApp extends Activity {
 private User user = null;

 protected void onRestart() {

 EditText usernameText = (EditText) findViewById(R.id.username);
 EditText passwordText = (EditText) findViewById(R.id.pwdString);

 String uname = usernameText . toString ();

 String pwd = passwordText . toString();
 if (!uname.isEmpty() && !pwd.isEmpty())

 this.user = new User(uname, pwd);

 }

 // Callback method in xml file
 public void sendMessage(View view) {

 if (user == null) return;

 Password pwd = user.getpwd();
 String pwdString = pwd.getPassword();

 String obfPwd = "";

 // must track primitives

 for (char c: pwdString.toCharArray())
 obfPwd += c + "_"; // String concat

 String message = " User : " + user.getName() + " | Pwd: " + obfPwd;

 SmsManager sms = SmsManager.getDefault();

 sms.sendTextMessage(" +44 020 7321 0905 ", null, message, null, null);
 }

}

#1

#2 and
3

Dummy Main Method

On-Demand Alias Analysis
void main() {
 Data p = new …; Data p2 = new …;

 taintIt(source(), p);
 sink(p.f);

}

void taintIt(String in, Data out) {

 x = out;

 x.f = in;
 sink(out.f);

}

// x = p → p.f = source()

// x.f = source()
// sink(p.f) → sink(source())

Context Sensitivity

•  Inject context of forward analysis into backward analysis since
not all inputs will lead to taints

 Ex: taintIt(source(), p1) vs. taintIt("public", p2)
•  Whenever an alias is found, work forward from the beginning

(rather than backwards) to map taints and avoid unrealizable
paths

Visualizatio
n from IFDS

Flow Sensitivity

Concept from
Andromeda

Data p = new …; Data p2 = p;
sink(p2.f);

p.f = source();
sink(p2.f);

activation
statement p’s taint not

yet
activated

tainted

not tainted

Evaluation
RQ1: How does FlowDroid compare to
commercial taint-analysis tools for Android
in terms of precision and recall?

precision =
86%
recall = 93%

Evaluation
RQ2: Can FlowDroid find all privacy leaks
in InsecureBank, an app specifically
designed by others to challenge
vulnerability detection tools for Android,
and what is its performance?

Finds all seven data
leaks in 31 seconds

Evaluation
RQ3: Can FlowDroid find leaks in real-
world applications and how fast is it?

App	
 Source	
 Run	
 Time	
 Notes	

Google	
 Play	
 Mean	
 <	
 1	
 min	

Max	
 ≈	
 4.5	
 min	

Found	
 lots	
 of	
 leaks,	

claims	
 that	
 most	
 are	

not	
 malicious	

VirusShare	
 Project	
 Mean	
 =	
 16	
 s	

Min	
 =	
 5	
 s	

Max	
 =	
 71	
 s	

Samples	
 were	
 smaller	

than	
 Google	
 Play	
 apps	

Evaluation
RQ4: How well does FlowDroid perform
when being applied to taint-analysis
problems related to Java, not Android,
both in terms of precision and recall?

precision =
93%
recall = 97%

Limitations from Implementation

•  Rule-based taint propagation for external
libraries
– E.g., adding a tainted element to a set taints

the whole set
•  Native C calls treated as black box

–  If not predefined rule, assume tainted input
leads to tainted output

•  Assumes arbitrary, but sequential
ordering, so can’t handle multi-threading

Interesting Questions

•  Why so much focus on Android? Does it
generalize?

•  Which do you value more: precision or
recall?

