JHlow: Practical Mostly-
Static Information Flow
Control

By Andrew C. Myers (POPL '99)
Presented by Daryl Zuniga

Overview

Information-flow: what and why
JFlow: Intro

JFlow: How it works

JFlow: Characteristics and limitations

Discussion

Overview

- Information-flow: what and why

JFlow: Intro
JFlow: How It works
JFlow: Characteristics and limitations

Discussion

INnformation-flow

Goal: ensure programs satisfy security policies
Example: ensure secret data isn't leaked

Information-flow control is a mechanism for
enforcing policies

Non-goal(s): program optimization

INnformation-flow

e Security concepts:

e Confidentiality: don’t leak important data (e.g.
passwords)

e Formally: given two arbitrary executions of a program, if you only
changed the secret inputs, only the secret outputs can change
(aka “non-interference”)

* Integrity: don't corrupt important data (e.g. votes)

e Formally: given two arbitrary executions of a program, if you only
changed the public inputs, only the public outputs can change
(also non-interference)

INnformation-flow

e Security concepts:

e Channels: mechanisms for signaling information
through a computing system.

* Covert channels: channels that exploit a mechanism
whose primary purpose Is not information transter.

* TIming channels

e Jermination channels

INnformation-flow

e Other security mechanisms:
* Access control
* Firewalls
* Encryption

e Antivirus

INnformation-flow

e Access control

 Example: permissions in a file system. Only
authorized readers can access certain files.

- “Access control does not control how the
data is used after it is read from the file.”

INnformation-flow

e Firewalls

* Works by preventing communication with the
outside world.

- “Firewalls permit some communication in
both directions; whether this communication
violates confidentiality lies outside the scope
of the firewall mechanism.”

INnformation-flow

* Encryption

e Secures an information channel so only the
endpoints have access.

- “Encryption provides no assurance that once
the data is decrypted, the computation at the
receiver respects the confidentiality of the
transmitted data.”

10

INnformation-flow

e Antivirus

* Detects patterns of previously known malicious
software.

- Limited protection against new attacks.

11

INnformation-flow

Information-flow control lets you reason about how
programs that have access to sensitive data,
handle that sensitive data.

None of these other approaches can do that.

12

Overview

Information-flow: what and why

- JFlow: Intro

JFlow: How It works

JFlow: Characteristics and limitations

Discussion

13

JFlow: Intro

* |nformation-tlow control mechanism
By Andrew Myers (Cornell)

* > 40 papers

 Badass

e JFlow’s successor “Jdif’ is still active

14

JFlow: Intro

e “JFlow: Practical Mostly-Static Information Flow
Control”

e JFlow: Java language extension

* Practical: expressiveness, easy-of-use, and run-
time performance are important goals for JFlow

* Mostly-static: most policy checking is done
statically; great runtime performance

15

Overview

Information-flow: what and why

JFlow: Intro

- JFlow: How it works

JFlow: Characteristics and limitations

Discussion

16

JFlow: How It works

Type annotations
Assignment
Definitions

Implicit Flow

Runtime labels
Runtime principles
Authority
Declassification
passwordFile example
Parameterization
Vector example
Method labels
[SKIPPING] Static checking

Translation

17

Jrlow: Type Annotations

« JFlow works by adding policies as type annotations
» Checked statically (mostly)

e Example:
int{ol:rl, rZ2; oZ2:rZ2, r3}t X;

* Only r2 can read x
* Every object/value has a label
e most are inferred or have sensible defaults

« {} is the least-restrictive / most-public label

* (N0 owner has expressed an interest in restarting the data)

18

JFlow: Assignment

 Example:
intiol:rl, rZ2; oZ:rZ2, r3} X;
X = V;

* Legal only if x's label is at least as restrictive as v's
label

19

JFlow: Definitions

Principle: user, role, group, ...

Policy: {owner: [readers...]|}
 Owners and readers are principles
Label: {policy1; policy2; vari; ...}

* Copies(?) all policies from var1’s label

20

JFlow: Implicit Flow

e Example:

int{public} x;
boolean{secret} b;

1nt x = 0;
1t (b) {

X =1;
¥

Secret information has leaked! (x = b ?2 1 : 0).

* Solution”? Program-counter (pe) labels.

21

JFlow: Implicit Flow

e Example:
{1+ 1nt{public} x;
{} boolean{secret} b;

{} 1nt x = 0;

i+ 1t (b) {
{bt} X = 1;
ir k

* The literal “1” actually has the label {b}. (All literals do this.)

 Compiler error because 1’s label is more restrictive than X’s

22

JFlow: Runtime labels

| abels are also first-class values
Examples:
* File systems: each file has its own permissions.

 Bank accounts: each account has its own privacy
requirements.

Necessary also If you want to compute labels.

Label variables are always immutable (aka final).

23

JFlow: Runtime labels

 Example:
static float{*Lb} compute(int x{*Lb}, label 1b)

* |bis both a value and a label for other types
* *1b means the label inside lb.

* Note: JFlow function arguments are immutable (aka
final).

24

JFlow: Runtime labels

« “switch label” construct lets you branch on labels at runtime

e Example:
label{L} 1b;
int{*1b} x;
int{p:} y;
switch label(x) {
case (int{y} z)

Y = £,
else throw new UnsafeTransfer();

}

* Note: PC label at “y = z” includes L
« Only legalif {L} is less restrictive than {y}

 (switch label is evaluated at run-time)

25

JFlow: Runtime principles

* Principles are also first-class values
 Examples:

« Bank accounts: each account is a different
customer; each customer is a different principle.

 Necessary also if you want to compute principles.

* Principle variables are always immutable (aka
final).

20

JFlow: Runtime principles

 Example:
class Account {

final principle customer;
String{customer:} name;
float{customer:} balance;

27

JFlow: Authority

 Each principle has some “authority".

e Authority grants the ability to act for some set of
principles.

* This creates a principal hierarchy.
e Authority also grants the ability to declassify data.

e Declassification reduces the strictness of a label.

28

JFlow: Authority

Each code location also has some authority.
Classes are given authority by an “authority clause”

e Restricts who is allowed to create instances

* (Note: It is not possible to obtain authority by inheriting from a superclass.)
Methods are given authority by an “authority constraint”

« Authority constraints are a subset of class authorities

« principle of least privilege: not all the methods of a class need to possess
the full authority of the class.

Or by “caller constraint”

e Caller grants authority to method (works for dynamic principles t0o0)

29

JFlow: Authority

Authority can be tested dynamically using the “actsFor”
construct

Example:
actsFor(pl, p2) S;

S is a statement.
S only executes if p1 can act for p2
If S’s authority includes p1, then it is augmented with p2

(actsFor is evaluated at run-time)

30

JFlow: Authority

* Authority can be also be tested at method call-sites
using the “actsFor constraint’

* (evaluated statically)

31

JFlow: Declassification

e declassify(e, L)
* Relabels the result of expression e with label L
» declassify is checked statically.

* Legal only if the static authority at the code location can
act for all the principles in the policies being relaxed.

 Doesn’t need authority to act for ALL principles
mentioned Iin e’s policies.

32

JFlow: passwordFile Ex.

e class passwordFile authority(root) {
public boolean
check (String user, String password)
where authority(root) {
boolean match = false;

try {
for (int 1 = 0; 1 < names.length; 1++) {
1f (names[1] == user && passwords[i1] == password) {

//PC: {user; password; root:}
match = true;
break;

¥
¥

¥
catch (NullPointerException e) {}

catch (IndexOutOfBoundsException e) {}
return declassify(match, {user; password});

}

private String[] names;
private String{root:}[] passwords;

33

JFlow: Parameterization

* Classes may be generic with respect to some set
of labels and/or principles

 Necessary for general purpose data structures
e Otherwise, you'd need to reimplement “Vector”
for every possible label that elements might

have.

* Note: parameterization makes JFlow classes
simple “dependent types” (types contain values)

34

JFlow: Parameterization

* Sub-typing is generally invariant in label
parameters

 Unless a parameter is declared “covariant” (this
places additional restrictions.)

* A class always has an implicit {this} label
parameters which is covariant.

35

qu

JFlow: Vector Ex.

plic class Vector|label L] extends AbstractList|L]| {
orivate int{L} length;
orivate Object{L}[]{L} elements;

public Vector() ..
public Object elementAt(int 1):{L; 1}
throws(ArrayIndexOutOfBoundsException){
return elements[1i];

¥
poublic void setElementAt{L}(Object{} o, 1int{} 1) ..
oublic 1nt{L} size() { return length; }
oublic void clear{L}() ..

36

JFlow: Parameterization

* Methods may also be generic with respect to some
set of labels and/or principles

 Necessary for general purpose library functions
* Otherwise, you'd need to reimplement

‘Math.Add” tfor every possible label that inputs
might have.

37

JFlow: Parameterization

e static 1int{x;y} add(int x, i1nt y) { return x+y; }
boolean compare_str(String name, String pwd)
:{name; pwd}
throws(NullPointerkException){..}
boolean store{lL}(1nt{} x)
throws(NotFound){..}

* “implicit label polymorphism™: \When an argument

label Is omitted, the method Is generic with respect
to the label of the argument

38

JFlow: Method labels

Methods may optionally specity a “begin-label” and
“‘end-label”

begin-label: restricts the pc label at the call-site

end-label: specifies information that may be
learned by observing normal termination

termination: Normal termination, return values,
and exceptions all have labels

39

JFlow: Method labels

e static 1int{x;y} add(int x, i1nt y) { return x+y; }
boolean compare_str(String name, String pwd)
:{name; pwd}
throws(NullPointerkException){..}
boolean store{lL}(1nt{} x)
throws(NotFound){..}

e The default end-label is the PC label at the end of
the method.

40

JFlow: Method labels

e static 1int{x;y} add(int x, i1nt y) { return x+y; }
boolean compare_str(String name, String pwd)
:{name; pwd}
throws(NullPointerkException){..}
boolean store{lL}(1nt{} x)
throws(NotFound){..}

e The default label for a return value is the end-label
joined with the labels of all arguments

41

JFlow: Method labels

e static 1int{x;y} add(int x, i1nt y) { return x+y; }
boolean compare_str(String name, String pwd)
:{name; pwd}
throws(NullPointerkException){..}
boolean store{lL}(1nt{} x)
throws(NotFound){..}

* The default label for an exception is the end-label.

42

JFlow: Static checking

o SKIPPING: (most of section 3)
» Exceptions
« “Path labels” (n, r, nv, nr, <goto |>, <goto e>, ...)
» Type checking vs. label checking
o Subtype rules
» Label-checking rules
« Throwing and catching exceptions
* Run-time label checking
» Checking method calls

« Constraint solving
* O(nh) and O(nd)
* h: max height of lattice

« d: max back-edges in depth-first traversal of constraint dependency graph)

43

JFlow: Translation

JFlow is compiled to Java

All type labels are erased

All class parameters are erased

declassify expressions are replaced by their contained statement
label goes to Jflow. lang. Label

principal goes to Jflow. lang.Principal

actsFor and switch label become dynamic tests

44

Overview

Information-flow: what and why
JFlow: Intro

JFlow: How It works

- JFlow: Characteristics and limitations

Discussion

45

JFlow: Characteristics

“Decentralized label model”

* Allows safe, statically-checked declassification even with mutual distrust
Access control (code privilege can be controlled statically or dynamically)
Label polymorphism (parameterization/generics)

Label & parameters inference & defaults (makes it easier for the developer)
Exception & termination precision (adds expressiveness)

Runtime support (can compute with labels and principles)

Mostly-static (low run-time costs; immediate validation)

Fast compilation (O(hn); h = height of lattice)

Java extension (uses Java infrastructure)

Dependent types (neat)

46

JFlow: Limitations

Java language extension
o JFlow can't verify programs not written in JFlow
« Limited use of libraries not written in JFlow (e.g. the entire Java standard library)
Mostly-static
* Most policies only checked at compile time (doesn’t carry proof)
e Outputis frozen
Policy specification: {owner: [readers, ...]}
e |s it a natural way to express all desired policies?
Allows declassification (feature and liability)
» Lazy programmer might declassify something inappropriately to shut up the compiler.

Other Java feature limitations: HashCode, static variables, finalizers, casts & instanceof, immutable
arguments

Mostly sound

47

JFlow: Limitations

* Mostly-sound
e Soundness: only correct programs are admitted

 Completeness: only incorrect programs are
rejected

* JFlow is also incomplete

e (But sois every type system)

48

JFlow: Limitations

* Mostly-sound
* System clock (more generally: timing channels)
 Multiple threads
* Resource exhaustion

e Power channels

49

Overview

Information-flow: what and why
JFlow: Intro
JFlow: How It works

JFlow: Characteristics and limitations

- Discussion

50

DIScuUsSsIon

e Limitations. How big of an issue are they, and what can we do about them?

 How expressive are JFlow policies?

« \What about write-only permissions?

* Incompleteness: What programs satisfy our policies that JFlow rejects?
 What are some broader applications of information-flow?

e Program optimization?

e QOther forms of correctness?

e Can we ensure integrity?

* |s JFlow provably sound?

51

AppendixX

JFlow: Protected Ex.

e class Protected {
final label{this} 1lb;
Object{*1b} content;

public Protected{LL}(Object{*LL} x, label LL) {
b = LL; //must occur before all to super()
super();
content = x; //checked assuming 1lb == LL
hy
public Object{*L} get(label L):{L}
throws (IllegalAccess) {
switch label(content) {
case (Object{*L} unwrapped) return unwrapped;
else throw new IllegalAccess();

h

¥
public label get_label() {

return Lb;

}

53

