
JFlow: Practical Mostly-
Static Information Flow

Control
By Andrew C. Myers (POPL ’99)

Presented by Daryl Zuniga

Overview
• Information-flow: what and why

• JFlow: Intro

• JFlow: How it works

• JFlow: Characteristics and limitations

• Discussion

2

Overview
• Information-flow: what and why

• JFlow: Intro

• JFlow: How it works

• JFlow: Characteristics and limitations

• Discussion

3

Information-flow
• Goal: ensure programs satisfy security policies

• Example: ensure secret data isn’t leaked

• Information-flow control is a mechanism for
enforcing policies

• Non-goal(s): program optimization

4

Information-flow
• Security concepts:

• Confidentiality: don’t leak important data (e.g.
passwords)

• Formally: given two arbitrary executions of a program, if you only
changed the secret inputs, only the secret outputs can change
(aka “non-interference”)

• Integrity: don’t corrupt important data (e.g. votes)

• Formally: given two arbitrary executions of a program, if you only
changed the public inputs, only the public outputs can change
(also non-interference)

5

Information-flow
• Security concepts:

• Channels: mechanisms for signaling information
through a computing system.

• Covert channels: channels that exploit a mechanism
whose primary purpose is not information transfer.

• Timing channels

• Termination channels

6

Information-flow
• Other security mechanisms:

• Access control

• Firewalls

• Encryption

• Antivirus

7

Information-flow
• Access control

• Example: permissions in a file system. Only
authorized readers can access certain files.

• “Access control does not control how the
data is used after it is read from the file.”

8

Information-flow
• Firewalls

• Works by preventing communication with the
outside world.

• “Firewalls permit some communication in
both directions; whether this communication
violates confidentiality lies outside the scope
of the firewall mechanism.”

9

Information-flow
• Encryption

• Secures an information channel so only the
endpoints have access.

• “Encryption provides no assurance that once
the data is decrypted, the computation at the
receiver respects the confidentiality of the
transmitted data.”

10

Information-flow
• Antivirus

• Detects patterns of previously known malicious
software.

• Limited protection against new attacks.

11

Information-flow
• Information-flow control lets you reason about how

programs that have access to sensitive data,
handle that sensitive data.

• None of these other approaches can do that.

12

Overview
• Information-flow: what and why

• JFlow: Intro

• JFlow: How it works

• JFlow: Characteristics and limitations

• Discussion

13

JFlow: Intro
• Information-flow control mechanism

• By Andrew Myers (Cornell)

• > 40 papers

• Badass

• JFlow’s successor “Jif” is still active

14

JFlow: Intro
• “JFlow: Practical Mostly-Static Information Flow

Control”

• JFlow: Java language extension

• Practical: expressiveness, easy-of-use, and run-
time performance are important goals for JFlow

• Mostly-static: most policy checking is done
statically; great runtime performance

15

Overview
• Information-flow: what and why

• JFlow: Intro

• JFlow: How it works

• JFlow: Characteristics and limitations

• Discussion

16

JFlow: How it works
• Type annotations

• Assignment

• Definitions

• Implicit Flow

• Runtime labels

• Runtime principles

• Authority

• Declassification

• passwordFile example

• Parameterization

• Vector example

• Method labels

• [SKIPPING] Static checking

• Translation

17

JFlow: Type Annotations
• JFlow works by adding policies as type annotations

• Checked statically (mostly)

• Example:  
int{o1:r1, r2; o2:r2, r3} x;

• Only r2 can read x

• Every object/value has a label

• most are inferred or have sensible defaults

• {} is the least-restrictive / most-public label

• (no owner has expressed an interest in restarting the data)

18

JFlow: Assignment
• Example:  
int{o1:r1, r2; o2:r2, r3} x;  
x = v;

• Legal only if x’s label is at least as restrictive as v’s
label

19

JFlow: Definitions
• Principle: user, role, group, …

• Policy: {owner: [readers…]}

• Owners and readers are principles

• Label: {policy1; policy2; var1; …}

• Copies(?) all policies from var1’s label

20

JFlow: Implicit Flow
• Example:  
int{public} x;  
boolean{secret} b;  
…  
int x = 0;  
if (b) {  
 x = 1;  
}

• Secret information has leaked! (x = b ? 1 : 0).

• Solution? Program-counter (pc) labels.

21

JFlow: Implicit Flow
• Example:  
{} int{public} x;  
{} boolean{secret} b;  
…  
{} int x = 0;  
{} if (b) {  
{b} x = 1;  
{} }

• The literal “1” actually has the label {b}. (All literals do this.)

• Compiler error because 1’s label is more restrictive than x’s

22

JFlow: Runtime labels
• Labels are also first-class values

• Examples:

• File systems: each file has its own permissions.

• Bank accounts: each account has its own privacy
requirements.

• Necessary also if you want to compute labels.

• Label variables are always immutable (aka final).

23

JFlow: Runtime labels
• Example:  
static float{*lb} compute(int x{*lb}, label lb)

• lb is both a value and a label for other types

• *lb means the label inside lb.

• Note: JFlow function arguments are immutable (aka
final).

24

JFlow: Runtime labels
• “switch label” construct lets you branch on labels at runtime

• Example:  
label{L} lb;  
int{*lb} x;  
int{p:} y;  
switch label(x) {  
 case (int{y} z)  
 y = z;  
 else throw new UnsafeTransfer();  
}

• Note: PC label at “y = z” includes L

• Only legal if {L} is less restrictive than {y}

• (switch label is evaluated at run-time)

25

JFlow: Runtime principles
• Principles are also first-class values

• Examples:

• Bank accounts: each account is a different
customer; each customer is a different principle.

• Necessary also if you want to compute principles.

• Principle variables are always immutable (aka
final).

26

JFlow: Runtime principles
• Example:  
class Account {  
 final principle customer;  
 String{customer:} name;  
 float{customer:} balance;  
}

27

JFlow: Authority
• Each principle has some “authority”.

• Authority grants the ability to act for some set of
principles.

• This creates a principal hierarchy.

• Authority also grants the ability to declassify data.

• Declassification reduces the strictness of a label.

28

JFlow: Authority
• Each code location also has some authority.

• Classes are given authority by an “authority clause”

• Restricts who is allowed to create instances

• (Note: It is not possible to obtain authority by inheriting from a superclass.)

• Methods are given authority by an “authority constraint”

• Authority constraints are a subset of class authorities

• principle of least privilege: not all the methods of a class need to possess
the full authority of the class.

• Or by “caller constraint”

• Caller grants authority to method (works for dynamic principles too)

29

JFlow: Authority
• Authority can be tested dynamically using the “actsFor”

construct

• Example:  
actsFor(p1, p2) S;

• S is a statement.

• S only executes if p1 can act for p2

• If S’s authority includes p1, then it is augmented with p2

• (actsFor is evaluated at run-time)

30

JFlow: Authority
• Authority can be also be tested at method call-sites

using the “actsFor constraint”

• (evaluated statically)

31

JFlow: Declassification
• declassify(e, L)

• Relabels the result of expression e with label L

• declassify is checked statically.

• Legal only if the static authority at the code location can
act for all the principles in the policies being relaxed.

• Doesn’t need authority to act for ALL principles
mentioned in e’s policies.

32

JFlow: passwordFile Ex.
• class passwordFile authority(root) {  
 public boolean  
 check (String user, String password)  
 where authority(root) {  
 boolean match = false;  
 try {  
 for (int i = 0; i < names.length; i++) {  
 if (names[i] == user && passwords[i] == password) {  
 //PC: {user; password; root:}  
 match = true;  
 break;  
 }  
 }  
 }  
 catch (NullPointerException e) {}  
 catch (IndexOutOfBoundsException e) {}  
 return declassify(match, {user; password});  
 }  
 private String[] names;  
 private String{root:}[] passwords;  
}

33

JFlow: Parameterization
• Classes may be generic with respect to some set

of labels and/or principles

• Necessary for general purpose data structures

• Otherwise, you’d need to reimplement “Vector”
for every possible label that elements might
have.

• Note: parameterization makes JFlow classes
simple “dependent types” (types contain values)

34

JFlow: Parameterization
• Sub-typing is generally invariant in label

parameters

• Unless a parameter is declared “covariant” (this
places additional restrictions.)

• A class always has an implicit {this} label
parameters which is covariant.

35

JFlow: Vector Ex.
• public class Vector[label L] extends AbstractList[L] {  
 private int{L} length;  
 private Object{L}[]{L} elements;  
  
 public Vector() …  
 public Object elementAt(int i):{L; i}  
 throws(ArrayIndexOutOfBoundsException){  
 return elements[i];  
 }  
 public void setElementAt{L}(Object{} o, int{} i) …  
 public int{L} size() { return length; }  
 public void clear{L}() …  
}

36

JFlow: Parameterization
• Methods may also be generic with respect to some

set of labels and/or principles

• Necessary for general purpose library functions

• Otherwise, you’d need to reimplement
“Math.Add” for every possible label that inputs
might have.

37

JFlow: Parameterization
• static int{x;y} add(int x, int y) { return x+y; }  
boolean compare_str(String name, String pwd)  
 :{name; pwd}  
 throws(NullPointerException){…}  
boolean store{L}(int{} x)  
 throws(NotFound){…}

• “implicit label polymorphism”: When an argument
label is omitted, the method is generic with respect
to the label of the argument

38

JFlow: Method labels
• Methods may optionally specify a “begin-label” and

“end-label”

• begin-label: restricts the pc label at the call-site

• end-label: specifies information that may be
learned by observing normal termination

• termination: Normal termination, return values,
and exceptions all have labels

39

JFlow: Method labels
• static int{x;y} add(int x, int y) { return x+y; }  
boolean compare_str(String name, String pwd)  
 :{name; pwd}  
 throws(NullPointerException){…}  
boolean store{L}(int{} x)  
 throws(NotFound){…}

• The default end-label is the PC label at the end of
the method.

40

JFlow: Method labels
• static int{x;y} add(int x, int y) { return x+y; }  
boolean compare_str(String name, String pwd)  
 :{name; pwd}  
 throws(NullPointerException){…}  
boolean store{L}(int{} x)  
 throws(NotFound){…}

• The default label for a return value is the end-label
joined with the labels of all arguments

41

JFlow: Method labels
• static int{x;y} add(int x, int y) { return x+y; }  
boolean compare_str(String name, String pwd)  
 :{name; pwd}  
 throws(NullPointerException){…}  
boolean store{L}(int{} x)  
 throws(NotFound){…}

• The default label for an exception is the end-label.

42

JFlow: Static checking
• SKIPPING: (most of section 3)

• Exceptions

• “Path labels” (n, r, nv, nr, <goto l>, <goto e>, …)

• Type checking vs. label checking

• Subtype rules

• Label-checking rules

• Throwing and catching exceptions

• Run-time label checking

• Checking method calls

• Constraint solving
• O(nh) and O(nd)

• h: max height of lattice

• d: max back-edges in depth-first traversal of constraint dependency graph)

43

JFlow: Translation
• JFlow is compiled to Java

• All type labels are erased

• All class parameters are erased

• declassify expressions are replaced by their contained statement

• label goes to jflow.lang.Label

• principal goes to jflow.lang.Principal

• actsFor and switch label become dynamic tests

44

Overview
• Information-flow: what and why

• JFlow: Intro

• JFlow: How it works

• JFlow: Characteristics and limitations

• Discussion

45

JFlow: Characteristics
• “Decentralized label model”

• Allows safe, statically-checked declassification even with mutual distrust

• Access control (code privilege can be controlled statically or dynamically)

• Label polymorphism (parameterization/generics)

• Label & parameters inference & defaults (makes it easier for the developer)

• Exception & termination precision (adds expressiveness)

• Runtime support (can compute with labels and principles)

• Mostly-static (low run-time costs; immediate validation)

• Fast compilation (O(hn); h = height of lattice)

• Java extension (uses Java infrastructure)

• Dependent types (neat)

46

JFlow: Limitations
• Java language extension

• JFlow can’t verify programs not written in JFlow

• Limited use of libraries not written in JFlow (e.g. the entire Java standard library)

• Mostly-static

• Most policies only checked at compile time (doesn’t carry proof)

• Output is frozen

• Policy specification: {owner: [readers, …]}

• Is it a natural way to express all desired policies?

• Allows declassification (feature and liability)

• Lazy programmer might declassify something inappropriately to shut up the compiler.

• Other Java feature limitations: HashCode, static variables, finalizers, casts & instanceof, immutable
arguments

• Mostly sound

47

JFlow: Limitations
• Mostly-sound

• Soundness: only correct programs are admitted

• Completeness: only incorrect programs are
rejected

• JFlow is also incomplete

• (But so is every type system)

48

JFlow: Limitations
• Mostly-sound

• System clock (more generally: timing channels)

• Multiple threads

• Resource exhaustion

• Power channels

49

Overview
• Information-flow: what and why

• JFlow: Intro

• JFlow: How it works

• JFlow: Characteristics and limitations

• Discussion

50

Discussion
• Limitations. How big of an issue are they, and what can we do about them?

• How expressive are JFlow policies?

• What about write-only permissions?

• Incompleteness: What programs satisfy our policies that JFlow rejects?

• What are some broader applications of information-flow?

• Program optimization?

• Other forms of correctness?

• Can we ensure integrity?

• Is JFlow provably sound?

51

Appendix

52

JFlow: Protected Ex.
• class Protected {  
 final label{this} lb;  
 Object{*lb} content;  
  
 public Protected{LL}(Object{*LL} x, label LL) {  
 lb = LL; //must occur before all to super()  
 super();  
 content = x; //checked assuming lb == LL  
 }  
 public Object{*L} get(label L):{L}  
 throws (IllegalAccess) {  
 switch label(content) {  
 case (Object{*L} unwrapped) return unwrapped;  
 else throw new IllegalAccess();  
 }  
 }  
 public label get_label() {  
 return lb;  
 }  
}

53

