Pointer Analysis

CSE 501
Spring 15

Course Qutline

Static analysis
— Dataflow and abstract interpretation

— Applications < We are here
Beyond general-purpose languages
Program Verification

Dynamic analysis

New compilers

Today

* |Intro to pointer analysis
— What's the big deal?

* Different aspects of the problem

* Two solutions
— Andersen-style

— Steensgaard-style

Pointer Analysis

What’s the problem?

int * p

int * ¢

*p = Qq;
foo(p)

malloc(...)

Uses

* Alias analysis:

— For every pair of pointers in the program,
determine if they can ever point to the same
memory location

 Compiler optimization
—*p=a+b;
X=a+b;
—a + bis not redundant if *p aliasesaorb

— Same for constant propagation, dead code
elimination, etc

Uses

* Program parallelization

— Converting sequential code into parallel
implementations automatically

e Shape analysis
— Find properties of data structures in the heap

* Detecting memory problems
— Leaks, *NULL, security holes

Why is it hard?

 Complexity: huge in both space and time
— How many pointers are there in a program?
— Analyze every program point
— Need to consider all paths to each program point

 Whole / part of the program?
— Issues with external libraries

 The problem is undecidable
[Landi 92, Ramalingam 94]

Designing a pointer analysis

* Must vs may

* Model programs and heap
* Model aggregates

* Analysis sensitivities

Representing points-to information

e Variable pairs that refer to the same memory location
— <*3, b>, <*c, b>, <*a, *c>
— *a and b alias, same with *cand b
* Points-to pairs:
—<a=2> b> <c=> b>
— a points to b, and c points to b (hence *a and *c are alias)
* Alias sets:
— {*a, b, *c}
— They all point to the same memory location

e Convert from one to another?
— What are the tradeoffs?

Modeling the heap

 Lump everything into one

* By allocation site
— Each call to new / malloc is a node

— Doesn’t differentiate between multiple objects
allocated by the same site

e Specialized data structures
— Map of “memory address” to object

Modeling Aggregates

* Arrays
— Each element is treated as individual location
— Entire array as a single location

— First / last element distinct from others

e Classes / Structures
— Each field is treated as individual location
— Lump all fields together

Sensitivity

* Flow sensitive e Path sensitive
X =y zZ =X if (c) if (c)
Z = X X =Y X = Z X =Yy
else else
X =y X = Z
e 1-Context sensitive
x = foo(y) * Field sensitive
z = foo(q)
o.f = x o.f = x
foo (x) { o.f =y 0.8 =y
return Xx;
}

Pointer-induced Aliasing: A Problem
Classification [Landi and Ryder, POPL 90]

Intraprocedural | Intraprocedural | Interprocedural Interprocedural
Alias Mechanism May Alias Must Alias May Alias Must Alias
Reference Formals, - - Polynomial(l, 5] | Polynomial[l, 5]
No Pointers,
No Structures
Single level pointers, Polynomial Polynomial Polynomial Polynomial
No Reference Formals,
No Structures
Single level pointers, - - Polynomial Polynomial
Reference Formals,
No Pointer Reference Formals,
No Structures
Multiple level pointers, N P-hard Complement NP-hard Complement
No Reference Formals, is AP-hard is N'P-hard
No Structures
Single level pointers, - - NP-hard Complement
Pointer Reference Formals, is N'P-hard
No Structures
Single level pointers, N'P-hard|14] Complement N'P-hard|14] Complement
Structures, is NP-hard is N'P-hard

No Reference Formals

Table 1: Alias problem decomposition and classification

A Pointer Language

(Assume x and y are pointers)

y = &X

— Yy points to x

y =X

— If x points to z then y points to z

*y = X

— If y points to z and z is a pointer, and if x points to
w then z now points to w

y =X

— If x points to z and z is a pointer, and if z points to
w then y not points to w

A Pointer Language

e points-to(x): set of variables that pointer
variable x may point to

 Example: points-to(x) = {y, z}

— X can point to eithery or z

Andersen’s-style Pointer Analysis

* Flow, context insensitive, inclusion-based
algorithm

Statement | Constraint Meaning

y = &x y =2 {x} X E points-to(y)

Y =X y 2 X points-to(y) 2 points-to(x)

y = *X y =2 *X V' vE points-to(x).
points-to(y) =2 points-to(x)

*y =X *y 2 X V' vE points-to(y).
points-to(v) 2 points-to(x)

An Example

p = &a;
q=p,
p = &b;
r=p;

Solving the
equations:

Example from Prof. Stephen Chong

p =2 {a}

q=20p

p =2 {b}

r=20p

Points-to

P {a, b}
g {a, b}
r {a, b}
a {}

b {}

Another Example

p = &a; p =2 {a} |points-to

q = &b; q=2p P ta}
*pP=0q; *p 2 @ 3 b}
r = &c; - r tc)
) r = {C} S {a}

S=P; s20p t {b, c}

= *p; t2*p |2 b,
*g = r- *c O b {}
S 2T) 0

Precision

p = &a; Pp— a

— . Pp—> a

. &b' qg— b

*p = P—> a

p=aq; P—> 3

r = &c; p—> a r—s ¢
Q—>b>

S =p; 5\
p—>a> r— C
CI—>b

t="*p;
s\)_/\/
p—>a> r— C

*s=r; q—> b

Points-to

P {a}
q {b}
r {c}
S {a}
t {b, c}
a {b, c}
b {}

C {}

Precision

p = &a; Pp— a

— . Pp—> a

. &b' qg— b

*p = P—> a

p=aq; P—> 3

r = &c; p—> a r—s ¢
Q—>b>

S =p; 5\
p—>a> r— C
CI—>b

t="*p;
s\)_/\/
p—>a> r— C

*s=r; q—> b

Points-to

P {a}
q {b}
r {c}
S {a}
t {b, c}
a {b, c}
b {}

C {}

Precision

p = &a; p— a

— . pPp—> a

. &b' qg— b

p=aq; P—> 3

r = &c; p—>a> r—s ¢
Q—>b

S =p; 5\
Pp—> a> r— C
CI—>b

t="*p;
s\)_/\/
Pp—> a> r— C

*s=r; qg—s b

Points-to

P {a}
q {b}
r {c}
S {a}
t {b, c}
a {b, c}
b {}

C {}

Andersen as Graph Closure

* One node for each memory location
— i.e., elements in any points-to set

* Each node contains a points-to set

* Solve equations by computing transitive
closure of graph, and add edges according to
constraints

Andersen as Graph Closure

Statement | Constraint | Meaning Graph Operation

y = &X y 2 {x} X € points-to(y) Nothing

Y = X y 2 X points-to(y) = points- Add edge from xtoy
to(x)

y = *x y 2 *x V' vE points-to(x). Nothing
points-to(y) 2 points-
to(x)

*y = x *y 2 X V' vE points-to(y). Nothing

points-to(v) 2 points-
to(x)

Same Example, as Graph

p=&a; p=21a} P s

qg=&b; q=2p G ()

*p=0;, *p2q

r=&¢ 2 {c t

S=p; s=20p /{b})

t="p;, 2 *p b
*S=r, *s Dy (b}

V=X y =2 X points-to(y) 2 points- Add edge from xtoy

to(x)

Same Example, as Graph

p=&a;, p=21{a} P S

q=&b; g=2p {;} {;}

*p=0;, *p2q

r=&c r2{c} 3 t

S=p; s2p /b,c} {b,c}
t=*p; 2 *p ! q :
*s=r; *g Dy {c} (b}

V=X y =2 X points-to(y) 2 points- Add edge from xtoy

to(x)

Worklist Algorithm

// Init graph and points-to sets using base constraints
W = { nodes with non-empty points-to sets }
while W is not empty {
v = choose from W
for each constraint v 2 x
add edge x =2 v, and add x to W if edge is new
for each a € points-to(v) do {
for each constraint p 2 =*v
add edge a 2 p, and add a to W if edge is new
for each constraint *v =2 ¢

add edge q 2 a, and add g to W if edge is new
3

for each edge v =2 q do {
points-to(q) = points-to(q) U points-to(v),
and add g to W if points-to(q) changed

Worklist Algorithm

* Complexity is O(n3), where n = number of nodes
in graph

* |n practice, improve by eliminating cycles

— Detect strongly connected components in points-to
graph and collapse to single node

* How to detect cycles?

— Some reduction can be done statically, some on-the-
fly as new edges added

— See The Ant and the Grasshopper: Fast and Accurate
Pointer Analysis for Millions of Lines of Code,
Hardekopf and Lin, PLDI 2007

Steensgaard-style Analysis

* Similar to Andersen, except that each node
can only point to one other node in points-to
graph

Steensgaard-style Analysis

* Flow, context insensitive, unification-based
algorithm

Statement | Constraint Meaning

y = &X y 2 {x} X E points-to(y)

Y =X Y =X points-to(y) = points-to(x)

y = *X y = *X Vv E points-to(x).
points-to(y) = points-to(x)

*y =X *y =X V' vE points-to(y).
points-to(v) = points-to(x)

Steensgaard-style Analysis

* Flow, context insensitive, unification-based
algorithm

Statement | Constraint Meaning

y = &X y 2 {x} X E points-to(y)

Y =X Y =X points-to(y) = points-to(x)

y = *X y = *X Vv E points-to(x).
points-to(y) = points-to(x)

*y =X *y =X V' vE points-to(y).
points-to(v) = points-to(x)

Steensgaard-style Analysis

* Implications for using equality constraints
— Each statement is processed exactly once
— Only one iteration of the worklist algorithm
— Union-find / disjoint set data structure

— Worst case complexity: O(n) (almost), where n =
number of nodes in graph

— Less precise than Andersen’s

Example

X =*y
Statement | Constraint Meaning
X =*y X =*y V' vE points-to(y).

points-to(x) = points-to(y)

Example

X =*y
Statement | Constraint Meaning
X =*y X =*y V' vE points-to(y).

points-to(x) = points-to(y)

Example

X

rZ —4d

X =*y
Statement | Constraint Meaning
X =*y X =*y V' vE points-to(y).

points-to(x) = points-to(y)

Example

—> Precision?

— X
=Y
Statement | Constraint Meaning
X =*y X =*y V' vE points-to(y).

points-to(x) = points-to(y)

