Abstract Interpretation

CSE 501
Spring 15

Distributivity of Frameworks

* (G, L, F, M) is distributive iff
fix Ay) = f(x) A f(y) X A Y)

= f({3,2,?} A {2,3,?})
=f({T, T, ?})

T o

n n x
N W

g

— {T, T, T

>~ 7 Aty

i
C o

C o
N W

n Il <«

w N

=f({3, 2, ?}) A f({2, 3, ?})
=1{3, 2,5} A {2, 3,5}
= {T’ T, 5}

X=a+b

X T o
o
4 4 A

Ordering of evaluation matters!

Maximal Fixed Point (MFP) Solution

* Fact: the iterative solution to dataflow equations
is the most precise

* Intuition:
— Start with the top element at each program point

— Refine during each iteration to satisfy all dataflow
equations
— Final result will be closest to the top

* Hence for any solution FP of dataflow equations:
FP < MFP

Meet Over Paths (MOP) Solution

* Another approach to solve the dataflow
equations:
— Enumerate each path p, = [entry, n;, n, ..., n,]

— Define IN[p,] =1, {(... (f,; (f.,o(dg)))) , where d, is
the flow element for entry

— Compute final solution as
IN[n] = U {IN[p] . pisapath from entryto p}

MFP and MOP

* Fact: MFP £ MOP
 Why not compute MOP in practice?

‘ entry ‘

l

U1 | How many paths can reach B2?

L s |

MFP and MOP

Fact: For transfer functions that are
distributive, then MFP = MOP

Recall: f(x Ay) =f(x) A f(y)
Hence f(x,) A f(x,) A f(x;) ... = f(Ax)

We can compute MOP using iterative
algorithm!

Can we do even better?

* Fact: MFP, MOP are conservative

if (o)

N

Bl

B2

\/

if (c)

—

Bl

B2

 Some paths are not possible
* IDEAL = solution that takes

into account of feasible paths
e FP < MFP < MOP < IDEAL

e Great!
- but this is undecidable ®

Summary

* Dataflow framework = (G, L, F, M)

* Possible solutions: FP, MFP, MOP, IDEAL
— FP < MFP £ MOP < IDEAL

* |n practice, compilers compute MFP using the
iterative algorithm

ABSTRACT INTERPRETATION : A UNIFIED LATTICE MODEL FOR STATIC ANALYSIS
OF PROGRAMS BY CONSTRUCTION OR APPROXIMATION OF FIXPOINTS

Patrick Cousot*and Radhia Cousot**

Laboratoire d'Informatique, U.S.M.G., BP. 53
38041 Grenoble cedex, France

Abstract Interpretation: A Unified Lattice Model for Static ...

dl.acm.org/ft_gateway.cfm?id... Association for Computing Machinery

Where it all started...

* |nspirations from
— Dataflow analysis
— Denotational semantics

* Enthusiastically embraced by the community

— At least the functional community . ..
— At least the first half of the paper. ..

Al by Example

A Tiny Language

* Language with only integers and
multiplication

e=i|le*e

W : EXp — Int <—— Denotation / meaning function

(i) = i
u(e*e) = ule) x u(e)
* Goal: define a semantics to compute the sign of

all expressions without actually carrying out the
computation

An Abstraction

* Define an abstract semantics that computes
only the sign of the result.

o: Exp — {+, -, 0}

x |+ 0 -

+ ifi>0 + |+ 0 -
o(i)=0 ifi=0 010 O
- ifi<O 0

o(e*e) = o(e) x ofe)

Soundness

e We can show that this abstraction is correct in

that it correctly predicts the sign of an
expression.

* Proof is by structural induction on e.

u(e) >0 < o(e) = +
u(e) =0 < o(e) =0
u(e) <0 < o(e) =-

Another View of Soundness

* The soundness proof is clunky

* |nstead, directly associate each abstract value
with the set of concrete values it represents.

vy :{+,0,-} — 2"
v(+) ={ili>0}

v(0) ={0}
v(-) ={ili<0}

Another View of Soundness

* The concretization function y

— Mapping from abstract values to (sets of)
concrete values

e Let
— D be the concrete domain
— A be the abstract domain A

O
(e) € y(ofe)) Exp < !

W& 2P

Abstract Interpretation

* This is an abstract interpretation
— Computation in an abstract domain
— In this case {+,0,-}.

* The abstract semantics is sound
— approximates the standard semantics.

e The concretization function establishes the
connection between the two domains.

Adding -

* Extend our language with unary -

u(-e) = -u(e)

I
+

o(-e) = -o(e)

Adding +

* Adding addition is not so easy.

e The abstract values are not closed under
addition.

|+

ule; + e,) = uie,) + wle,)
o(e, +e,) =ole,) + ofe,)

© + | O

o +
D+ + |+

Solution

* We need another abstract value to represent a
result that can be any integer

* Finding a domain closed under all the abstract
operations is often a key design problem

* Recall: defining lattice for dataflow analysis

+ |+ 0 - T
| + |+ + T T
v (T) = all integers
O+ 0 - T
- |T - - T
T (T T T T

Extending Other Operations

e We also need to extend the other abstract
operations to work with T.

X[+ 0 - T
++ 0 - T

-+ 0 - 7T
00 00O :

- 0+ 7
- - 0+ 7
TIT O T T

Examples

* Abstract computation doesn’t lose information:

w((5 *5) +6) =31
o((5%35)+6)=(+x+)++=+

e Sometimes it does:

w((1+2)+-3)=0
o((1+2)+-3)=(+++4)+(-+)=T

Adding / (Integer Division)

* Adding / is straightforward except for the case
of division by 0.

* |f we divide each integer in a set by O, what
set of integers results?

— The empty set.

[|+ O T 1
+ O - T L
O/0 0 0 0 L
T|T O T T L
/L 1 1 1L 1

Adding / (Integer Division)

e As before we need to extend the other
abstract operations.

* |n this case, every entry involving bottom is
bottom

— all operations are strict in bottom

1l +x=_1
Xx1l=1

The Abstract Domain

* Our abstract domain forms a complete lattice.
— A partial orderx =y < v (x) C v (y)

* Every finite subset has a least upper bound
(lub, 1) and greatest lower bound (glb, ™).

e We write A for an abstract domain

— a set of values + an ordering

T
I
W

1

The Abstraction Function

* The abstraction function maps concrete values
to abstract values.

— The dual of concretization.

— The smallest value of A that is the abstraction of a
set of concrete values.

o: 2Nt — A
a(S) = lub({-|i<0 A i€S}, {0|0&€S}, {+]|i>0 A iES})

An Aside: Galois Connection

* (L, a,y, M) is a Galois connection between
complete lattices (L, <) and (M, <) iff:
—o: L—= Mandy: M — L are monotone functions

Furthermore:
—id=syoa«

—id=aoy

— The function o, 0 vy is called a Galois insertion

A General Definition

* An abstract interpretation consists of
— An abstract domain A and concrete domain D

— Concretization and abstraction functions forming
a Galois insertion.

— A (sound) abstract semantic function.
In our example:
Vx &2P . x Cy(a(x)) . id<yooa
VaEA. a=a(y(x)) id=aoy

Galois Insertions

 The abstract domain can be thought of as
dividing the concrete domain into non-disjoint
subsets

* The abstraction function maps a subset of the
domain to the smallest containing abstract
value.

Pictorially

* |n correct abstract interpretations, we expect
the following diagram to commute.

O
Exp v

ue 2P

IA

Q

General Conditions for Correctness

* Three conditions guarantee correctness in
general:

—a and y form a Galois insertion
*id=syoo,id=aoy
—o and y are monotonic
* x <y =>a(x) =aly)
— Abstract operations op are locally correct:
v(op(sy,---,S,)) & op(y(sy),---,Y(sS,))

Generic Correctness Proof

* Proof by induction on the structure of e:
u(e) € y(ol(e))

M(el Op e2)

= u(e,) op wle,) [definition of u]

e vy(o(e,)) op y(o(e,)) [induction]

C y(o(e,) op ofe,)) [local correctness]

=y(o(e; op e,)) [definition of O]

Another Notion of Correctness

 We can define correctness using abstraction
instead of concretization.

u(e) Ey(ole)) = alinle)}) = ofe)

Proof for = direction:

u(e) € y(o(e))

a({u(e)}) = aly(o(e))) [monotonicity]
a({u(e)}) = o(e) [0y =id]

Another Notion of Correctness

u(e) € y(o(e)) < al{ule)}) = ole)

Proof for < direction:

a({u(e)}) = ole)

v(a({w(e)}) = y(o(e)) . monotonicity]
u(e) € y(o(e)) id=syoa]

Extending Our Language

* Add input to the language

—Modeled as a single free variable x in
expressions

e=i|le*e|-e|le+e|..|x

Semantics

* The meaning function now has type
w:Exp —= Int — Int
* We write the function with the expression as a
subscript.

w(j) =i
w,(j) =]
Wepreali) = Uer(i) * Uey(i)
Me1+ez(j) = Me1(j) + Mez(j)

Abstract Semantics

e Abstract semantic function:
O.Exp—=A—=A
* Also write this semantics in the same form.
Oi(j.) = l
o,(i) =1
Oepreall) = Ogy(l) X Oyl
Og1102(l) = Og1(i) + 0,,(1)

Correctness

e The correctness condition needs to be
generalized.

 This is the first real use of the abstraction
function.

* The following are all equivalent:

— Vi. u.(i) € ylo.(a({i}) A A
—Ue=pY O G.0Q [O
— Q0 U,<,0,00 o !

Local Correctness

e We also need a modified local correctness
condition.

op(Y(Oey (D)) -+ V(Oen(D) & v(0B(Tes(), .. Oenli)))

Proof of Correctness
* Theorem: u,(j) € y(o.(j))

* Proof (by induction on the structure of e):

Base case: w,(j) =i €vy(i) =y (oi(j)
w,(j) =i €v(i) =y (o)

Induction on W, e1 . eni):

= op(Ueq(j), s Wapli)) definition of u]

€ op(Y(Ogy(D)), -+ Y(Ogn(i)) [induction]

C v (op(o.4(j), ..., 0.,(i))) [local correctness]
= Y (Ogpie1,...en)l) definition of 0]

If-Then-Else

e e=.|ife=etheneelsee]..

* Wit el=e2 then e3 else e4 (I) = Me3(i)' if Mel(i) = Mez(i)
= W4(i), otherwise

° Oife1=e2 then e3 else e4 (1) = OeB(i) - Oe4(i)

 Recall that the abstract domain forms a
complete lattice

Correctness of If-Then-Else

* Need to show that: u(j) € y(0.(i))
— Where e is an if-then-else

e Assume the true branch is taken.

* (The argument for the false branch is
symmetric.)

Me3(i)
€ v (0(i)) [by induction |

C y(0u3(1)) Y y(Og4l(i))
C y(ou(i) o) [by monotonicity of y]

Designing an Abstract Interpretation

 Define abstract domain
— Needs to be a lattice

* Define the abstraction and concretization
functions
—0:D—A
—a:2P—= A
* aS) =lub(o(s)), foralls& S
—v:A—2P
* For every expression, define how to operate in
the abstract domain

