Abstract Interpretation

CSE 501

Spring 15

Distributivity of Frameworks

Ordering of evaluation matters!

Maximal Fixed Point (MFP) Solution

- Fact: the iterative solution to dataflow equations is the most precise
- Intuition:
 - Start with the top element at each program point
 - Refine during each iteration to satisfy all dataflow equations
 - Final result will be closest to the top
- Hence for any solution FP of dataflow equations:
 FP ≤ MFP

Meet Over Paths (MOP) Solution

- Another approach to solve the dataflow equations:
 - Enumerate each path $p_k = [entry, n_1, n_2, ..., n_k]$
 - Define $IN[p_k] = f_{nk-1}(... (f_{n1} (f_{n0}(d_0))))$, where d_0 is the flow element for entry
 - Compute final solution as
 IN[n] = U { IN[p] . p is a path from entry to p }

MFP and MOP

- Fact: MFP ≤ MOP
- Why not compute MOP in practice?

How many paths can reach B2?

MFP and MOP

 Fact: For transfer functions that are distributive, then MFP = MOP

- Recall: $f(x \wedge y) = f(x) \wedge f(y)$
- Hence $f(x_1) \wedge f(x_2) \wedge f(x_3) \dots = f(\bigwedge x_i)$

We can compute MOP using iterative algorithm!

Can we do even better?

• Fact: MFP, MOP are conservative

- Some paths are not possible
- IDEAL = solution that takes into account of feasible paths
- FP ≤ MFP ≤ MOP ≤ IDEAL
- Great!
 - but this is undecidable 😊

Summary

Dataflow framework = (G, L, F, M)

- Possible solutions: FP, MFP, MOP, IDEAL
 - $FP \le MFP \le MOP \le IDEAL$

In practice, compilers compute MFP using the iterative algorithm

ABSTRACT INTERPRETATION: A UNIFIED LATTICE MODEL FOR STATIC ANALYSIS OF PROGRAMS BY CONSTRUCTION OR APPROXIMATION OF FIXPOINTS

Patrick Cousot*and Radhia Cousot**

Laboratoire d'Informatique, U.S.M.G., BP. 53 38041 Grenoble cedex, France

Abstract Interpretation: A Unified Lattice Model for Static ... dl.acm.org/ft_gateway.cfm?id... Association for Computing Machinery ▼ by P Cousot - 1977 - Cited by 5755 - Related articles

Where it all started...

- Inspirations from
 - Dataflow analysis
 - Denotational semantics

- Enthusiastically embraced by the community
 - At least the functional community . . .
 - At least the first half of the paper . . .

Al by Example

with slides from Prof. Alex Aiken

A Tiny Language

Language with only integers and multiplication

$$\mu: Exp \rightarrow Int \leftarrow Denotation / meaning function
$$\mu(i) = i$$

$$\mu(e^*e) = \mu(e) \times \mu(e)$$$$

 Goal: define a semantics to compute the sign of all expressions without actually carrying out the computation

An Abstraction

 Define an abstract semantics that computes only the sign of the result.

$$\sigma$$
: Exp \rightarrow {+, -, 0}

+ if
$$i > 0$$

 $\sigma(i) = 0$ if $i = 0$
- if $i < 0$

$$\sigma(e^*e) = \sigma(e) \times \sigma(e)$$

×	+	0	-
+	+	0	-
0	0	0	0
_	_	0	+

Soundness

- We can show that this abstraction is correct in that it correctly predicts the sign of an expression.
- Proof is by structural induction on e.

$$\mu(e) > 0 \Leftrightarrow \sigma(e) = +$$
 $\mu(e) = 0 \Leftrightarrow \sigma(e) = 0$
 $\mu(e) < 0 \Leftrightarrow \sigma(e) = -$

Another View of Soundness

- The soundness proof is clunky
- Instead, directly associate each abstract value with the set of concrete values it represents.

$$\gamma : \{+,0,-\} \rightarrow 2^{\text{Int}}$$

$$\gamma(+) = \{ i | i > 0 \}$$

$$\gamma(0) = \{0\}$$

$$\gamma(-) = \{ i | i < 0 \}$$

Another View of Soundness

- The concretization function γ
 - Mapping from abstract values to (sets of) concrete values
- Let
 - D be the concrete domain
 - A be the abstract domain

$$\mu(e) \subseteq \gamma(\sigma(e))$$

Abstract Interpretation

- This is an abstract interpretation
 - Computation in an abstract domain
 - In this case {+,0,-}.
- The abstract semantics is sound
 - approximates the standard semantics.

 The concretization function establishes the connection between the two domains.

Adding -

Extend our language with unary -

$$\mu(-e) = -\mu(e)$$

$$\sigma(-e) = -\sigma(e)$$

-	+	0	-
	_	0	+

Adding +

- Adding addition is not so easy.
- The abstract values are not closed under addition.

$$\mu(e_1 + e_2) = \mu(e_1) + \mu(e_2)$$

 $\sigma(e_1 + e_2) = \sigma(e_1) + \sigma(e_2)$

<u>+</u>	+	0	-
+	+	+	٠.
0	+	0	-
-	?	-	-

Solution

- We need another abstract value to represent a result that can be any integer
- Finding a domain closed under all the abstract operations is often a key design problem
- Recall: defining lattice for dataflow analysis

 γ (T) = all integers

+	+	0	_	Т
+ 0	+	+	Т	Т
0	+	0	T -	Т
-	Т	-	-	Т
Τ	Т	Т	Т	Т

Extending Other Operations

 We also need to extend the other abstract operations to work with T.

<u>x</u>	+	0	-	Т
+	+	0	_	Т
0	0	0	0	0
_	_	0	+	Т
Т	Т	0	Т	Т

_	+	0	_	Т
	-	0	+	Т

Examples

Abstract computation doesn't lose information:

$$\mu((5 * 5) + 6) = 31$$
 $\sigma((5 * 5) + 6) = (+ × +) + + = +$

Sometimes it does:

$$\mu((1+2)+-3)=0$$

$$\sigma((1+2)+-3)=(+++)+(-+)=T$$

Adding / (Integer Division)

- Adding / is straightforward except for the case of division by 0.
- If we divide each integer in a set by 0, what set of integers results?
 - The empty set.

$$\gamma(\perp)=\emptyset$$

7	+	0	-	Т	
+			-	Т	F
0	0	0	0	0	\perp
-	_	0	+	Т	\perp
Т	Т	0	Т	Т	\perp
上	上	1	T	1	\perp

Adding / (Integer Division)

- As before we need to extend the other abstract operations.
- In this case, every entry involving bottom is bottom
 - all operations are strict in bottom

$$\begin{array}{c} \bot + x = \bot \\ -\bot = \bot \end{array}$$

The Abstract Domain

- Our abstract domain forms a complete lattice.
 - A partial order $x \le y \Leftrightarrow \gamma(x) \subseteq \gamma(y)$
- Every finite subset has a least upper bound (lub, □) and greatest lower bound (glb, □).
- We write A for an abstract domain
 - a set of values + an ordering

The Abstraction Function

- The abstraction function maps concrete values to abstract values.
 - The dual of concretization.
 - The smallest value of A that is the abstraction of a set of concrete values.

```
\alpha: 2^{\text{Int}} \rightarrow A

\alpha(S) = \text{Iub}( \{-|i<0 \land i \in S\}, \{0 \mid 0 \in S\}, \{+|i>0 \land i \in S\} )
```

An Aside: Galois Connection

- (L, α, γ, M) is a Galois connection between complete lattices (L, ≤) and (M, ≤) iff:
 - $-\alpha$: L → M and γ : M → L are monotone functions

Furthermore:

- $-id \leq \gamma \circ \alpha$
- $-id \leq \alpha \circ \gamma$
- The function α o γ is called a **Galois insertion**

A General Definition

- An abstract interpretation consists of
 - An abstract domain A and concrete domain D
 - Concretization and abstraction functions forming a Galois insertion.
 - A (sound) abstract semantic function.

In our example:

$$\forall x \in 2^{D}$$
. $x \subseteq \gamma(\alpha(x))$ or $id \le \gamma \circ \alpha$
 $\forall a \in A$. $a = \alpha(\gamma(x))$ $id = \alpha \circ \gamma$

Galois Insertions

 The abstract domain can be thought of as dividing the concrete domain into non-disjoint subsets

 The abstraction function maps a subset of the domain to the smallest containing abstract value.

Pictorially

• In correct abstract interpretations, we expect the following diagram to commute.

General Conditions for Correctness

- Three conditions guarantee correctness in general:
 - $-\alpha$ and γ form a Galois insertion
 - id $\leq \gamma$ o α , id = α o γ
 - $-\alpha$ and γ are monotonic
 - $x \le y \Rightarrow \alpha(x) \le \alpha(y)$
 - Abstract operations op are locally correct:
 - $\gamma(\underline{op}(s_1,...,s_n)) \subseteq op(\gamma(s_1),...,\gamma(s_n))$

Generic Correctness Proof

• Proof by induction on the structure of e: $\mu(e) \in \gamma(\sigma(e))$

```
\mu(e_1 \text{ op } e_2)
= \mu(e_1) \text{ op } \mu(e_2) \qquad [definition of } \mu]
\subseteq \gamma(\sigma(e_1)) \text{ op } \gamma(\sigma(e_2)) \qquad [induction]
\subseteq \gamma(\sigma(e_1) \text{ op } \sigma(e_2)) \qquad [local correctness]
= \gamma(\sigma(e_1 \text{ op } e_2)) \qquad [definition of } \sigma]
```

Another Notion of Correctness

We can define correctness using abstraction instead of concretization.

$$\mu(e) \subseteq \gamma(\sigma(e)) \Leftrightarrow \alpha(\{\mu(e)\}) \leq \sigma(e)$$

```
Proof for \Rightarrow direction:

\mu(e) \in \gamma(\sigma(e))

\alpha(\{\mu(e)\}) \leq \alpha(\gamma(\sigma(e))) [monotonicity]

\alpha(\{\mu(e)\}) \leq \sigma(e) [\alpha o \gamma = id]
```

Another Notion of Correctness

$$\mu(e) \subseteq \gamma(\sigma(e)) \Leftrightarrow \alpha(\{\mu(e)\}) \leq \sigma(e)$$

```
Proof for \Leftarrow direction: \alpha(\{\mu(e)\}) \leq \sigma(e) \gamma(\alpha(\{\mu(e)\})) \leq \gamma(\sigma(e)) [monotonicity] \mu(e) \in \gamma(\sigma(e)) [id \leq \gamma o \alpha]
```

Extending Our Language

- Add input to the language
 - Modeled as a single free variable x in expressions

Semantics

The meaning function now has type

$$\mu: \mathsf{Exp} \to \mathsf{Int} \to \mathsf{Int}$$

 We write the function with the expression as a subscript.

```
\mu_{i}(j) = i

\mu_{x}(j) = j

\mu_{e1*e2}(j) = \mu_{e1}(j) * \mu_{e2}(j)

\mu_{e1+e2}(j) = \mu_{e1}(j) + \mu_{e2}(j)

...
```

Abstract Semantics

Abstract semantic function:

$$\sigma: \mathsf{Exp} \to \mathsf{A} \to \mathsf{A}$$

Also write this semantics in the same form.

$$\sigma_{i}(j) = \underline{i}$$

$$\sigma_{x}(j) = \underline{i}$$

$$\sigma_{e1*e2}(j) = \sigma_{e1}(j) * \sigma_{e2}(j)$$

$$\sigma_{e1+e2}(j) = \sigma_{e1}(j) + \sigma_{e2}(j)$$
...
$$\underline{i} = \alpha(\{i\})$$

Correctness

- The correctness condition needs to be generalized.
- This is the first real use of the abstraction function.
- The following are all equivalent:

$$-$$
 ∀i . $μ_e$ (i) ∈ $γ(σ_e(α({i})))$

$$-\mu_e \leq_D \gamma$$
 o σ_e o α

$$-\alpha \circ \mu_e \leq_A \sigma_e \circ \alpha$$

Local Correctness

 We also need a modified local correctness condition.

$$op(\gamma(\sigma_{e1}(\underline{i})), ..., \gamma(\sigma_{en}(\underline{i}))) \subseteq \gamma(\underline{op}(\sigma_{e1}(\underline{i}), ..., \sigma_{en}(\underline{i})))$$

Proof of Correctness

- Theorem: $\mu_e(j) \subseteq \gamma(\sigma_e(j))$
- Proof (by induction on the structure of e):

```
Base case: \mu_i(j) = i \in \gamma(\underline{i}) = \gamma \ (\sigma_i(\underline{j}))

\mu_x(j) = j \in \gamma(\underline{i}) = \gamma \ (\sigma_x(\underline{j}))
```

```
Induction on \mu_{op(e1,...,en)}(j):

= op(\mu_{e1}(j), ..., \mu_{en}(j)) \quad [definition of \mu]
\subseteq op(\gamma(\sigma_{e1}(j)), ..., \gamma(\sigma_{en}(j))) \quad [induction]
\subseteq \gamma \left(\underbrace{op(\sigma_{e1}(j), ..., \sigma_{en}(j))}\right) \quad [local correctness]
= \gamma \left(\sigma_{op(e1,...,en)}(j)\right) \quad [definition of \sigma]
```

If-Then-Else

• e =... | if e = e then e else e | ...

•
$$\mu_{\text{if e1=e2 then e3 else e4}}$$
 (i) = μ_{e3} (i), if μ_{e1} (i) = μ_{e2} (i) = μ_{e4} (i), otherwise

- $\sigma_{if e1=e2 then e3 else e4} (\underline{i}) = \sigma_{e3} (\underline{i}) \sqcup \sigma_{e4} (\underline{i})$
- Recall that the abstract domain forms a complete lattice

Correctness of If-Then-Else

- Need to show that: $\mu_e(j) \in \gamma(\sigma_e(j))$
 - Where e is an if-then-else
- Assume the true branch is taken.
- (The argument for the false branch is symmetric.)

Designing an Abstract Interpretation

- Define abstract domain
 - Needs to be a lattice
- Define the abstraction and concretization functions
 - $-\sigma: \mathbf{D} \to \mathbf{A}$
 - $-\alpha:2^{D}\rightarrow A$
 - $\alpha(S) = \text{lub}(\sigma(s))$, for all $s \in S$
 - $-\gamma$: $\mathbf{A} \rightarrow 2^{\mathrm{D}}$
- For every expression, define how to operate in the abstract domain