Intro to dataflow analysis

CSE 501
Spring 15
Announcements

• Paper commentaries
 – Please post them 24 hours before class

• Application paper presentations
 – Good training for conference talks!
 – Will help go through slides the day before
 – Part of class participation grade
 – Will post signups on course website
Control-flow Graph

• Directed graph
 – Each node is a statement
 – Edges represents possible flow of control

• Statements
 – Assignments
 – Branches
 – Enter / return
 – Declarations usually omitted

Enter

\[p = 1 \]
\[i = 0 \]

\[i < n \]

\[p = p \times a \]
\[i = i + 1 \]

return p
Dataflow Analysis

• Collect program information without actually running it
 – Too good to be true?

• Many uses:
 – Compiler optimizations
 – Bug detection
 – (will see more in subsequent lectures)
Dataflow Framework

- \(<G, L, F, M>\)
- \(G = \) flow graph
- \(L = \) (semi-)lattice
- \(F / M = \) flow / transfer functions
Example: Reaching Definitions

• Concept of definition and use
 – \(z = x+y \)
 – is a definition of \(z \)
 – is a use of \(x \) and \(y \)

• A definition reaches a use if
 – value written by definition
 – may be read by use
Example: Reaching Definitions

• Problem:
 – For each basic block,
 find all definitions that reach it
Example

```
entry

s = 0;
a = 4;
i = 0;
k == 0

b = 1;
b = 2;
i < n

s = s + a*b;
i = i + 1;

return s
```
Why bother?

• Is a use of a variable a constant?
 – Check all reaching definitions
 – If all assign variable to same constant
 – Then use is in fact a constant

• Can replace variable with constant
Is a constant in \(s = s + a \times b \) ?

\[
\begin{align*}
 s &= 0; \\
 a &= 4; \\
 i &= 0; \\
 k &= 0 \\
 b &= 1; \\
 b &= 2; \\
 i &< n \\
 s &= s + a \times b; \\
 i &= i + 1; \\
 \text{return } s
\end{align*}
\]

Yes!

\[a = 4 \]
Constant Propagation Transform

Yes!

a = 4
Is \(b \) Constant in \(s = s + a \times b \)?

No!

- \(b = 1 \)
- \(b = 2 \)
Computing Reaching Definitions

• Generate control flow graph of function

• Compute with sets of definitions
 – represent sets using bit vectors
 – each definition has a position in the bit vector

• At each basic block, compute
 – definitions that reach start of block
 – definitions that reach end of block
Setting up

• Boundary condition:
 – Nothing gets propagated out of the exit block

• Initial assumptions:
 – All blocks produce no definitions
- What has been defined
- What are we re-defining

What do we do here?
Are we done?

1: s = 0;
2: a = 4;
3: i = 0;
 k == 0
4: b = 1;
5: b = 2;
 i < n
6: s = s + a*b;
7: i = i + 1;

return s
Are we done?

1. s = 0;
2. a = 4;
3. i = 0;
 k == 0
4. b = 1;
5. b = 2;
i < n
6. s = s + a*b;
7. i = i + 1;
return s
Dataflow Framework

- $<G, L, F, M>$
- $G =$ flow graph
- $L =$ (semi-)lattice
- $F / M =$ flow / transfer functions
Computing Reaching Definitions

• Generate control flow graph of function

• Compute with sets of definitions
 – represent sets using bit vectors
 – each definition has a position in the bit vector

• At each basic block, compute
 – definitions that reach start of block
 – definitions that reach end of block
Transfer functions

• Each basic block has
 – IN - set of definitions that reach beginning of block
 – OUT - set of definitions that reach end of block

• For this analysis, define:
 – GEN - set of definitions generated in block
 – KILL - set of definitions killed in block

• Analyzer scans each basic block to derive GEN and KILL sets for each function, and then compute OUT
IN = 1111100
GEN = 0000011
KILL = 1010000
OUT = 0101111

1: s = 0;
2: a = 4;
3: i = 0;
k == 0
4: b = 1;
5: b = 2;
i < n
6: s = s + a*b;
7: i = i + 1;

return s
Dataflow Equations

- $\text{IN}[b] = \text{OUT}[b_1] \cup \ldots \cup \text{OUT}[b_n]$
 - where b_1, \ldots, b_n are predecessors of b in CFG

- $\text{OUT}[b] = (\text{IN}[b] - \text{KILL}[b]) \cup \text{GEN}[b]$

- $\text{IN}[\text{entry}] = 0000000$

- Result: system of equations from each basic block
Solving Equations

• Initialize with solution of $\text{OUT}[b] = 0000000$
• Repeatedly apply equations
 – $\text{IN}[b] = \text{OUT}[b1] \cup \ldots \cup \text{OUT}[bn]$
 – $\text{OUT}[b] = (\text{IN}[b] - \text{KILL}[b]) \cup \text{GEN}[b]$

• Until reach fixed point
 – Until equation application has no further effect

• Solve using iterative algorithm
Solving Equations

Input: flow graph (CFG)

// boundary condition
OUT[Entry] = 0...0

// initial conditions
for each basic block B other than entry
 OUT[B] = 0...0

// iterate
while (any out[] changes value) {
 for each basic block B other than entry {
 IN[B] = U (OUT[p]), for all predecessor block p of B
 OUT[B] = (IN[B] - KILL[B]) U GEN[B]
 }
}

Reaching Definitions Summary

<table>
<thead>
<tr>
<th>Lattice</th>
<th>Sets of definitions represented by bit-vectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transfer function</td>
<td>(\text{OUT}[B] = f_b(\text{IN}[B])) (f_b(x) = (x - \text{KILL}[x]) \cup \text{GEN}[x])</td>
</tr>
<tr>
<td>Meet operation</td>
<td>(\text{IN}[B] = \cup \text{OUT}[\text{Predecessors}])</td>
</tr>
<tr>
<td>Boundary condition</td>
<td>(\text{OUT}[\text{entry}] = 0....0)</td>
</tr>
<tr>
<td>Initial condition</td>
<td>(\text{OUT}[B] = 0....0)</td>
</tr>
</tbody>
</table>
Questions

• Does the algorithm halt?
 – yes, because transfer function is monotonic
 – if increase IN, increase OUT
 – in limit, all bits are 1

• If bit is 0, does the corresponding definition ever reach basic block?

• If bit is 1, does the corresponding definition always reach the basic block?