Intro to dataflow analysis

CSE 501
Spring 15



Announcements

* Paper commentaries
— Please post them 24 hours before class

* Application paper presentations
— Good training for conference talks!
— Will help go through slides the day before
— Part of class participation grade
— Will post sighups on course website



Control-flow Graph

* Directed graph

— Each node is a statement
— Edges represents possible

flow of control

e Statements
— Assignments

— Branches return p

— Enter / return
— Declarations usually omitted

l—'o

o
T
+ %
-




Dataflow Analysis

* Collect program information without actually
running it
— Too good to be true?

* Many uses:
— Compiler optimizations
— Bug detection
— (will see more in subsequent lectures)



Dataflow Framework

e <G, L, F, M>

* G =flow graph

* L= (semi-)lattice

* F/ M =flow / transfer functions



Example: Reaching Definitions

* Concept of definition and use
— 2 = X+y
— is a definition of z

—isauseofxandy

* A definition reaches a use if
— value written by definition
— may be read by use



Example: Reaching Definitions

* Problem:

— For each basic block,
find all definitions that reach it



Example
I entry I

T s= ;

a =4,

i=0;

k::O

b=1;
i<n
R

5=s+a*b} ’
, T return s




Why bother?

* |s ause of avariable a constant?
— Check all reaching definitions
— If all assign variable to same constant

— Then use is in fact a constant

* Can replace variable with constant



s @ constant in s = s+a*b?

W_.mm
L
o

o £

"

(on
I
N

Yes!

a=4

return s




Constant Propagation Transform

N -0
o
o

oL ro

Y

(on
1

N

return s

Yes!

a=4



Is b Constantins =s+a*b?

b

AN —- D
O\-

b=2;

=1

return s

No!



Computing Reaching Definitions
* Generate control flow graph of function

 Compute with sets of definitions
— represent sets using bit vectors
— each definition has a position in the bit vector

e At each basic block, compute
— definitions that reach start of block
— definitions that reach end of block



Setting up

* Boundary condition:
— Nothing get propagated out of the exit block

* |nitial assumptions:
— All blocks produce no definitions



1 1234567
- What has been defined 0000000
- What are we re-defining 1: s =05
2: a = 4,
3: 1 = 0;
k == 0
1234567
/ N\, 1110000
1234567 WB: b = 1; 5: b = 2;] 1234567
1111000 1110100
What do we do here? x
i <n 1234567
1111100
6: s = s + axb;
1234567 | 7: i =1+ 1; return s 1234567
0101111 1111100




J 1234567
0000000
Are we done? .
2: a = 4,
3: 1 = 0;
k == 0
1234567
/ N\, 1110000
1234567 WB: b = 1; 5: b = 2;] 1234567
1111000 \§ 1110100
1234567 1234567
1111111
0101111 i<n |1234567
1111100
6: s = s + axb;
1234567 | 7: i =1+ 1; return s 1234567
0101111 1111100




Are we done?

1234567

1111000

6:
1234567 7

1111111

¢ 1234567
0000000
1: s = 0;
2: a = 4,
3: 1 = 0;
k == 0
1234567
/ N\, 1110000
4: b = 1; 5: b = 2;] 1234567
\§ 1110100
i<n |1234567
1111111
S = s + a*b;
i=1i+1; return s 1234567
1111111




Dataflow Framework

e <G, L, F, M>

* G =flow graph

* L= (semi-)lattice

* F/ M =flow / transfer functions



Computing Reaching Definitions

* Generate control flow graph of function
™~ Flow graph

 Compute with sets of definitions
— represent sets using bit vectors <— Semi-lattice
— each definition has a position in the bit vector

* At each basic block, compute <— Transfer function

— definitions that reach start of block
— definitions that reach end of block



Transfer functions

 Each basic block has

— IN - set of definitions that reach beginning of block
— OUT - set of definitions that reach end of block

* For this analysis, define:

— GEN - set of definitions generated in block
— KILL - set of definitions killed in block

* Analyzer scans each basic block to derive GEN and
KILL sets for each function, and then compute OUT



\|/ 1234567
0000000
IN =1111100 Jie D)
GEN = 0000011 3.1 =0
KILL = 1010000 k == 0
OUT = 0101111

1234567
/ N\, 1110000
1234567 Y: b = 1; 5: b = 2;] 1234567

1111000 1110100

1 <n 1234567

1111100

6: s = s + axb;
1234567 | 7: i =1+ 1; return s 1234567

0101111 1111100




Dataflow Equations

* IN[b] =0UT[b1] U... UOUT[bn]

— where b1l, ..., bn are predecessors of b in CFG

OUTI[b] = (IN[b] - KILL[b]) U GEN[b]

IN[entry] = 0000000

e Result: system of equations from each basic block



Solving Equations

* |nitialize with solution of OUT[b] = 0000000
* Repeatedly apply equations

— IN[b] = OUT[b1] U ... U OUT[bn]

— OUT[b] = (IN[b] - KILL[b]) U GEN[b]

e Until reach fixed point

— Until equation application has no further effect

* Solve using iterative algorithm



Solving Equations

Input: flow graph (CFG)

// boundary condition

OUT[Entry] = 0...0

// initial conditions

for each basic block B other than entry
OUT[B] = 0...0

// 1iterate

while (any out[] changes value) {
for each basic block B other than entry {

IN[B] = U (OUTLpl), for all predecessor block p of B
OUT[B] = (IN[B] — KILL[B]) U GEN[B]

b
3



Reaching Definitions Summary

Lattice Sets of definitions represented by
bit-vectors

Transfer function OUT[B] = f,(IN[B])
fo(x) = (x = KILL[x]) U GEN[x]

Meet operation IN[B] =U OUT[Predecessors]

Boundary OUT[entry] =0....0
condition

Initial condition  OUTI[B] =0....0



Questions

* Does the algorithm halt?
— yes, because transfer function is monotonic
— if increase IN, increase OUT
— in limit, all bits are 1

* If bitis 0, does the corresponding definition ever
reach basic block?

* If bitis 1, does the corresponding definition always
reach the basic block?



