“Super”optimization

CSE 501
Spring 15

Course Qutline

Static analysis
Language design
Program Verification
Dynamic analysis
New compilers

— superoptimizers

— synthesis-based translation

«— We are here

Announcements

 HW1 scores out

e HW2 due on June 9t

— Post on forum if you have questions

* Project presentations next Thursday
— 10 min presentation for each group
— Signup will be posted

* Project final report due on June 9t

Why compilers

* Utilize everything we learned in this class
— Static analysis
— Verification

— Testing

* What this class was originally about!

Outline for today

* Classical optimizing compilers
* Superoptimization

— High-level idea

— Algorithms

— Examples
e Massalin

 Denali
e STOKE

Optimizing compilers

* Tools that generate optimal code
— Smallest executable size
— Shortest runtime

— Smallest footprint

e |ssues to consider
— Soundness
— Compilation time

— Optimality

Optimizing Compilers

| Input code | High-level IR
Parser 7 | Dead-code elimination
1, Syntax tree / 4 Loop transformations
Semantic analysis //
l syntaxtree 7 | High-level IR
Intermediate // IR translator
code generator // l Low-level IR
l Int. r;p{resentation Peephole transforms
Optimizer Register allocation
l Int. ;apTes\erFa%n‘ — — _ _| Instruction selection
Machine code l Low-level IR

generator
l Machine code

Peephole optimization

* Purely syntactic driven transformation rules
— Usually done on low-level IR

* Rules have the form:
— If instructions match pattern then apply rewrite

* “grep” over instruction sequence

Example: eliminate redundant stores

LD a, RO load address a into RO
ST RO, a store contents of RO to address a

v

LD a, RO

In general:
{LD %x, %y ; ST %y, %x }—=>{LD %x, %y}

e But store instruction must not have a label

Example: control-flow optimizations

goto L1 goto L2

- > ..

L1: goto L2 L1: goto L2

goto L1 if ¢ goto L2
> goto L3

L1: 1if ¢ goto L2
L3: L3:

Example: algebraic rewrites

add %x, © > (nhone)

mul %x, 2 > shl %x, 1

Example: machine idioms

add %x, 1 > 1nc %X

Example: GCC architecture

machine | |
code |
I

Middle End
Front End : :
l_______________H opt |
pass 1
G AST \ : | / :
| ;
|| . |
C++ AST — | Generic [t GIMPLE [—| SSA) un-SSA | RITL |
i s B el
|| | [——]
Java —| AST N opL |
|| |

e o e e e iy sl . o s | e e l

. — — —

Back End

12

GCC optimization passes

* Tree SSA passes
— Remove useless statements
— OpenMP lowering
— OpenMP expansion
— Lower control flow
— Lower exception
— Build the control flow graph
— Enter static single assignment form
— Warn for uninitialized variables
— Dead code elimination
— Dominator optimizations
— Forward propagation of single-use variables
— Copy Renaming
— PHI node optimizations
— Maye-alias optimization
— Profiling
— Static profile estimation

GCC optimization passes

 Lower complex arithmetic

e Scalar replacement of aggregates
* Dead store elimination

* Tail recursion elimination
 Forward store motion

* Partial redundancy elimination

* Full redundancy elimination

* Loop optimizations:

Loop invariant motion.
Canonical induction variable
creation.

Induction variable optimizations.
Loop unswitching.
Vectorization.

SLP Vectorization.
Autoparallelization.

Tree level if-conversion for vectorizer
Conditional constant propagation
Conditional copy propagation

Value range propagation

Folding built-in functions

Split critical edges

Control dependence dead code elimination
Tail call elimination

Warn for function return without value
Leave static single assignment form
Merge PHI nodes that feed into one another
Return value optimization

Return slot optimization

Optimize calls to __builtin_object_size
Loop invariant motion

Loop nest optimizations

Removal of empty loops

Unrolling of small loops

Predictive commoning

Array prefetching

Reassociation

Optimization of stdarg functions

GCC optimization pass manager

* The pass manager is located in passes.c, tree-

optimize.c and tree-pass.h. |t processes passes
as described in passes.def.

* |ts job is to run all of the individual passes in
the correct order, and take care of standard
bookkeeping that applies to every pass.

Issues with pass organization

* Pass ordering

e Software maintainability
— Dependencies among passes
— Adding / removing passes

* Code “optimality”?

— This is equivalent to inventing the best algorithm
for carrying out a certain task

— Problem is undecidable in general [Touati et al]

Alternatives

* CompCert
— Addresses soundness issue

* Superoptimization
— Addresses the ordering issue

Superoptimization

* Given code fragment C:

— exhaustively search through all semantically-
equivalent rewrites of C such that it is optimal

* |ssues
— Exhaustive: search space blows up?
— Semantically-equivalent: how to check?

— Optimality: how to evaluate?

Superoptimizer, the original version
[Massalin, ASPLOS 87]

* Finds shortest program that computes the
same function as C

* Cis asequence of assembly instructions

— Straight-line code, no loops, jumps etc

Algorithm

L = generateCandidates(C);
best = C;
for (1 in L) {
if (1 == C)
best = 1;
)

return best;

Generating candidates

* Choose subset of target machine’s instruction
set

 Enumerate instructions of length 1, 2, ...,
length of original code
— Is this a good strategy?
* Optimization:
— Remove obvious “non-candidates”
—MOV A, B; MOV B, A

Proving program equivalence

e Strategy 1: Encode inputs as boolean vectors

* Encode instruction semantics as functions on
boolean vectors

 Example:
— AND R,, R, :
<a,3,2,333,3a:a¢a,> & <b,b,b,b;b,b.b.b,>
=<a,&b,a,&b,, ..., a,&b,>

* Represent functions as minterms

Minterms

 Product of all variables in function s.t. it is
equal to 1 on exactly one row in the truth
table

* Example:
0 0 0 0 Minterms:
0 0 1 1 SA-BC
0 1 0 1
0 1 1 0 —ABC
1 0 0 1 A-B-C
1 0 1 0 ABC
1 1 0 0
1 1 1 1

Minterms

 Can compare implementations semantically
by matching minterms

* |ssue:
— Number of minterms might blow up

— Model 8-bit register addition as 8 bit-wise
functions

* How many minterms will there be?

Proving program equivalence

Strategy 2: random testing

Small-scope hypothesis:

— a high proportion of errors can be found by
testing a program for all test inputs within some
small scope

Choose random test inputs
Run boolean verification if no errors found

Denali [Joshi et al, PLDI 02]

e Same setup as Massalin
— Optimize straight-line code
— Search for semantic-equivalent sequence of

instructions that can be executed using the fewest
number of cycles

* Better ways to generate candidates

— Specialized data structure for storing functional
equivalences

e Use SAT solver for find sequence of instructions

Generating candidates

* Algebraic axioms
—V x,y.add64(x, y) = add64(y, x)
— Basically functional equivalences

* Architectural axioms
—V x,y.add(x, y) = add64(add64(x, y), carry(x, v))

— Basically architecture-specific peephole
optimizations

Generating candidates

* E-graph encodes all equivalent expressions

s4agd1

Generating candidates

* Generation process is non-deterministic

— “IDenali generates all semantically equivalent
expressions] if the matching phase is allowed to
run long enough, and if the heuristics that are
designed to keep the matcher from running
forever don’t mistakenly stop it from running long

enough”

Search for the optimal sequence

assert(rewrite axioms);
assert(instruction constraints);

best = c;
for (k = (# cycles need to execute C—1) = 0) {

r = assert(— 3 k cycle instruction that
implements C);

if (r == UNSAT) { break; }
else { best=r; }

}

Details

* Profile program for memory timings
— Might not be accurate but results are still sound

 Candidate generation might not be complete
due to non-determinism

* Bottomline: output is “near-optimal”

STOKE [Schkufza et al, ASPLOS 13]

* Same setting as before
— Sequence of straight-line machine instructions
— Goal: find faster versions as compared to original

* |nstead of writing equivalence axioms and
generating all candidates, use random search

— However, use “controlled” random search

Search algorithm

* Key: generate random seed candidates
— Not care about correctness

* Mutation operator randomly adds / removes / or
swaps instructions

* Runs test cases to prune away incorrect candidates
— Formal verification afterwards

* Once a candidate is proven to be correct, optimize as
before

Speedup

Some results

“Hacker’s delight” benchmarks

7
gcc -0O3
6 —— m— icc -O3
mm STOKE
5 —— llvm -O0
: -
3
al . l H
07
4 o o ¥ 1w © N~ © 9o O +H o ® ¢ ;»w © ~ ©o o O d4 o o T v 2 L X
Q Q@ Q@ 9 2 Q@ 9 Q@ Q@ d o d d o o9 oA oS oS 4 & o N N « o §F 2 g
O o a o =003
x x o x x -kE)
x
x

Discussion

* Extending to other architectures

* Crafting axioms

* Using domain knowledge

Summary

* Pass scheduling problem is hard

e Superoptimization: cast optimization as search
— How to generate candidates
— How to verify correctness

* Handling non straight-line code?

* Next (and last) lecture: synthesis-based
compilation

