Directed Automated

Randomized Testing
(DART)

Viotivation

Verification is really hard

Unit testing is also hard and rarely done properly
* Have to check all corner cases
* Have to simulate external environment
e Have to set up a driver

Static analysis is imprecise
* Tools like lint generate a lot of false positives

Nhat does DART do?

Automatically extracts a programs interface

Automatically generates a test driver for all externally visible
functions

Automatically performs randomized testing

Randomized testing produces poor
overage

int f(int x) { return 2 * x; }
int h(int x, int y) {
if (X | = y>< Will happen w.h.p.

if (f(X) == +\Qi Hard to do
* /

abort () ;
Want a solution to
return O; x+10 == 2*x

} x=10

verview

Start with randomized input
. Determine predicates that must be satisfied to enter conditionals
Generate new input satisfying these constraints
. Repeat until all paths have been traversed

’rogram Model

Random Access Memory (RAM) Machine:
* A Memory M is a mapping between address and 32 bit words
* + denotes updating; M’ = M + [m -> v] means replace value at m with v

DART models

e Symbolic memory S, which maps addresses to expressions
* Concrete memory M, which maps addresses to concrete values

A program consists of statements which can either be:
* Assignment
e Conditional

[he instrumented program

ase (m «— e):
S=S8 + |m — evaluate_symbolic(e, M, S)|
v = evaluate_concrete(e, M)
M=M+m—v];£=0+1
ase (if (e) then goto 7'):
b = evaluate_concrete(e, M)
¢ = evaluate_symbolic(e, M, S)
if b then
path_constraint = path_constraint ~ (c)
stack = compare_and_update_stack(1, k stack)
(=1
else
path_constraint = path_constraint ~ (neg(c))
stack = compare_and_update_stack(0, k stack)
(=0+1
k=k+1

Update symbolic memory

Update concrete memory / PC

[he instrumented program

ase (m «— e):
S§= 8§ + [m > evaluate_symbolic(e, M, S)]
v = evaluate_concrete(e, M)
M=M+m—v];£=0+1
ase (if (e) then goto /)
b = evaluate_concrete(e, M)
¢ = evaluate_symbolic(e, M, S)
if b then
path_constraint = path_constraint ~ (c)

stack = compare_and_update_stack(1, k stack) Check to ensure that we’re on the
(=Y expected path and record if given

conditionals are “done”

Record a list of all constraints taken tc
get to this conditional

else
path_constraint = path_constraint ~ (neg(c))
stack = compare_and_update_stack(0, k stack)
(=0+1

k=k+ 1

[he stack

Kept as a record of execution so far

Stores two pieces of information for each conditional
* The branch taken (if = 1, else = 0)
 Whether the if and else branch have been explored (done)

Enables depth-first exploration of conditionals

Jpdating the stack

compare_and-update_stack(branch,k,stack) =

if & < |stack| then
if stack|k|.branch # branch then
forcing_ok = 0
raise an exception
else if £ = |stack| — 1 then
stack|k).branch = branch
stack|k|].done = 1
else stack = stack =~ ((branch,0))
return stack

All other conditionals exception the
one of interest should take the same
branch as the previous execution

If we successfully reached the
branch we were shooting for, that
conditional is done

New conditionals are
simply push on the top of
the stack

>olving for new path

olve_path_constraint(k,, path_constraint,stack) =
let 5 be the smallest number such that
for all h with —1 < j < h < kuy, stack[h|.done = 1
if 7 = —1 then
return (0, _,) / This directed search is over
else
path_constraint[j] = neg(path-constraint[j))
stack|j].branch= —stack|j|.branch
if (path_constraint|0, . .. , j] has a solution I”) then
return (1, stack[0..7], T + I')
else
solve_path_constraint(j path_constraint stack)

Find the first conditional
has not been fully explo

Flip the conditional to take
the opposite branch

Dverall Algorithm

run_DART () =
all_linear, all_locs_definite, forcing_ok =1, 1, 1
repeat
stack= (), I =[] ; directed = 1
while (directed) do

try (directed, stack, I') =
instrumented_program(stack, 1)
catch any exception —
if (forcing_ok)
print “Bug found”
exit()
else forcing_ok = 1
until all_linear N all Jocs_definite

Advantages over static analysis

1 foobar(int X, int y){ struct foo { int i; char c; }
2 if (xxx*x > 0){ bar (struct foo *a) {
. if (a->c == 0) {
3 if (X>O && y==10) *((char *)a + sizeof(int)) = 1;
4 abort () ; if (a->c != 0)
abort () ;
5 } else {)
6 if (x>0 && y==20) }
7 } abort () ; Can handle aliasing
8
9 }

Can function even when theorem solvers fail

_iImitations

Incomplete in the presence of non-linear path constraints
e e.g., x*x
 all_linear = 0 -> DART will run forever

Library functions

* Can be explored via execution
e Can’t be used to form path constraints; e.g., x = libFun(); if(x){} else {}

Results

Needham-Schoeder Protocol
* Protocol for handshake
* Has a known security vulnerability (man in the middle)

oSIP

* Was able to crash 65% of the external functions
* Most of these turned out to be due to non-uniform handling of NULL
* Found a security vulnerability that caused the parser to crash

J)ISCUSSIon

Their results on real oSIP aren’t very motivating
* Most of the errors are null pointers
* How successful would DART be on coreutils?

Can DART be applied to incremental codes changes?

