Model Checking and
Predicate Abstraction

CSE 501
Spring 15

With slides from Emina Torlak (507)

Course Qutline

e Static analysis
* Language design
* Program Verification
* Dynamic analysis
— Model checking
— Concolic testing

* New compilers

«<—— We are here

Understanding programs

e Static analysis
— Abstract interpretation
— Formal verification

* IDynamic analysis
— Daikon: “Likely” invariants
— Model checking

— Testing

Why dynamic analysis?

e Static analysis is imprecise
— Branches, loops, gotos, ...

e Formal verification is hard
— How to find invariants?

* Implementing ynamic analysis
— Strawman: run program enough number of times and check

— Better: define metrics to make sure that all (i.e., sufficient) number of
paths are covered

— Even better: abstract the program into a finite set of states (i.e., a
model), run the abstracted program enough number of times and
check

* Hence, model checking

What is model checking

 An automated technique for verifying that a
finite state system satisfies a given property.

* M,skEP
— M: model of the system
— s: state of the system

— P: logic formula that specifies the property of
Interest

What is model checking

* M,sEP

* What are the possible outcomes?

— Checker returns false with a counter-example that
violates P

— Checker returns true
e What does that mean?

Model checking vs verification

* Model checking

— Fully automatic checking of properties in less
expressive logics (e.g., temporal)

* Verification
— Semi-automatic or bounded automatic checking
of properties in expressive logics (e.g., FOL)

Model checking vs testing

* Model checking:

— If checker terminates, then program guaranteed
to satisfy P

— What if it doesn’t?

* Testing

— If tests finish and no counter-examples found,
then P is satisfied with respect to the set of test
cases covered

Model checking: a history of logics

1960s:

— Modal logics (Kripke)

— Temporal logic (Arthur Prior)

1980-90s:

— Using linear temporal logic for concurrent programs (Pnueli)
— Explicit state model checking (Emerson & Clarke)

— Symbolic model checking (McMillan)

— Temporal logic of actions (Lamport)

1996:

— Pnueli wins the Turing award “for seminal work introducing temporal
logic into computing science and for outstanding contributions to
program and system verification.”

2007:

— Clarke, Emerson and Sifakis jointly win the Turing award “for their role
in developing model checking into a highly effective verification
technology that is widely adopted in the hardware and software
industries.”

Model checkers

* SPIN

e SMV

 BLAST

* Java Pathfinder
* TLA+

How does it work

Kripke structures

* Kripke structure is a tuple M =<S§, S, R, L>
— S is a finite set of states
— S, & Sis the set of initial states.

— R & SxSis the transition relation, which must be
total.

— L: S = 2APis a function that labels each state
with a set of atomic propositions that are true in that
state.

 Apathin M is a (potentially infinite) sequence of
states t = s, s,... such that for all i 2 0,
(Si' Si+1) € R.

Modeling systems

X := (X +y) %2

S=(x=0Vx=1)A(y=0Vy=1)
S = (x=1) A (y=1)
ROX, ¥, X, ¥)=(X'=(x+y) % 2) A (y =y)

* Variables range over a finite domain

e Can use FOL to describe the initial states and
transition relation

e Extract Kripke structure from FOL description

Expressing properties

Expressing properties in temporal logic

* Linear time: properties of

So computation paths
g\ S, >S,>S,>S,
1 SO S 25,225,258,

* Branching time: properties of
computation trees

7

/51—> SO\S
2
\S —> G5 —— S

2 2 2

S0

Computation tree logic (CTL*)

e Path quantifiers describe the branching
structure of the computation tree

— A (for all paths)
— E (there exists a path)

* Temporal operators
— X, (p holds “next time”)
—F, (p holds “eventually”)
— G, (p holds “always”)
—p U q (p holds “until” g holds)

Syntax of CTL*

e State formulas
— Atomic propositions: a € AP
—-f,f Ag fV g wherefand g are state formulas
— Ap and Ep, where p is a path formula

e Path formulas
— f, where f is a state formula
—=p,p A p,p V g, where p and g are path formulas
— Xp, Fp, Gp, p U g, where p and q are path formulas

Semantics of CTL*

e State formulas
— M, s=aiffa € L(s)
— M, s = Ap iff M, it = p for all paths it that start at s
— M, s=Ep iff M, t = p for some path mt that starts at s

* Path formulas (% is suffix of it starting at s,)
— M, nnEfiff M, sEfandsis the first state of
— M, mt=EXpiff M, tt = p
— M, mEFpiff M, i~ p for some k>0
— M, n=Gpiff M, tkEpforallk>0

CTL and LTL

e Both are subsets of CTL*
e CTL:

— Fragment of CTL* in which each temporal operator is
prefixed with a path quantifier.

— AG(EF p): From any state, it is possible to get to a
state where p holds.

* LTL:

— Fragment of CTL* with formulas of the form Ap,
where p contains no path quantifiers.

— A(FG p): Along every path, there is some state from
which p will hold forever.

Complexity of checking M, s

* Polynomial Time for CTL
— Best known algorithm: O(|M| * |P])

 PSPACE-complete for LTL
— Best known algorithm: O(|M| * 2|P])

 PSPACE-complete for CTL*
— Best known algorithm: O(|M]| * 2|P|)

Example checker: SLAM

The SLAM process

»
SLAM -

Software, programming Languages,
Abstraction, and Model checking

Safety
property S

22

The SLAM process

A sequential program
(device driver)
implemented in C.

»
SLAM -

Software, programming Languages,
Abstraction, and Model checking

Safety
property S

The SLAM process

A sequential program
(device driver)
implemented in C.

Program P

Safety
property S

Temporal property (an API

usage rule) written in SLIC,

such as “a lock should be
alternatively acquired and
released.”

- SLAM -+

Software, programming Languages,
Abstraction, and Model checking

A trace of P
that violates S

The SLAM process

Abstraction

l program B
Instrumentation “

Safety
property S

25

The SLAM process

Abstraction

l program B

Instrumentation “ Model checking

Safety
property S

26

The SLAM process

Abstraction

l program B
Instrumentation “ Model checking > J

Safety
property S

27

The SLAM process

l
Instrumentation “

Safety
property S

Abstraction

boolean
program B

Model checking

error trace
for B

Trace validation

28

The SLAM process

Abstraction

program B
v
Instrumentation “ Model checking

f error trace
Safety for B

property S

Trace validation

l

A trace of P
that violates S

29

The SLAM process

Abstraction

l program B
Instrumentation “ Model checking > J

error trace
for B

Safety
property S

new

Trace validation predicates

l

A trace of P
that violates S

30

The SLAM process

C2BP

l program B
Instrumentation “ Bebop > J

error trace

Safety for B
property S
new
Newton predicates
A trace of P

that violates S

31

Predicate Abstraction
in BLAST

Predicate Abstraction for M, s P

* We need a simple way to come up with
abstractions

 Qur abstractions must be flexible
— We need to be able to refine them on demand

— This is how we identify spurious paths and
eliminate them

Predicate Abstraction for M, s P

e Abstract state s defined by a set of predicates

— Examples: x > 0, p.next # null, p.next.val >0
* Transition function can be computed by a theorem prover

* Bigidea:

— We can refine the abstraction by introducing more predicates!

x>0 x>0
\\{ X = X_1 <
not(x>0)

Example

Example () {
7: do{
lock();
old = new;
g = g->next;
2: if (q !'= NULL){
3. g->data = new;

unlock(); unlock ‘ lock
new ++;
)

4: } while(new != old);
5: unlock ();
return;

Henzhinger, Jhala, Majumdar

What a program really is...

, [_./_V.L/_._,\K—l ctate Transition
,/I D S B B AN J > @

[JEN p— SN] E pc B3 3: unlock(); pc —4

T T T lock H‘ neW++; lock HO

1S AN e e o s

L—» 3 > > el new =5 new i 6
V | 1\ q > 0x133a q > 0x133a

/e \L
T I) T i g Example () {
L . N 7: dof{
— /) yals A P
o . S an L old = new;

by - q = gq->next;
T I I T K//// K\\\\ I X 2 if (q != NULL){
. —)—>)] D D— 99— 9 3: g->data = new;
unlock();
new ++;
}
4: } while(new != old);
5: unlock ();

return;}

The Safety Verification Problem

2y
'?éé

Initial

et

i /ﬁl -
AP
%

|

i

I

L=
b

: Safe

——®

\g\;
IZ;QéJ

Error

Is there a path from an initial to an error state ?
Problem: Infinite state graph
Solution : Set of states = logical formula

ldea 1: Predicate Abstraction

=

—®—9

A S A I M
S B I R —
A D N
A SN RN B
7 __’| __»I | |_>| |
> T T Y > > ,/,
2 4ﬂf“’—r /e i
|__’:/_>'/__’| 1. I/__»,/ |
BN

» Predicates on program state:

lock
old = new

States satisfying same predicates
are equivalent
- Merged into one abstract state

e # abstract states is finite

Abstract States and Transitions

State
>
3: unlock();
new++;
E 4:} -
>
Theorem Prover

lock llock
old=new ! old=new

Abstraction

14 1 4 [4 | 4 [4

v | _»l__»l |
A \ } |
_Li

l_ A__»A__\»A \?
A

? fl vA -1 /J

Existential Lifting

State
>
3: unlock();
new++;
4} ...
>
Theorem Prover
lock ! lock
old=new

! old=new

Abstraction

— e e — 1y 1 State

A A A | 3: unlock();
| * new++;
| N
b T
I/ Y . / l >
- > -

lock ! lock
old=new ! old=new

Analyze Abstraction

Analyze finite graph

No false negatives

Problem

Spurious counterexamples

ldea 2: Counterex.-Guided Refinement

Solution
Use spurious counterexamples
? to refine abstraction !
?
—— ——

ldea 2: Counterex.-Guided Refinement

J

f/
~
_* —

Solution
Use spurious counterexamples
to refine abstraction

1. Add predicates to distinguish
states across cut
2. Build refined abstraction

Imprecision due to merge

lterative Abstraction-Refinement

Solution
Use spurious counterexamples
to refine abstraction

1 1. Add predicates to distinguish
\$ states across cut

S _IFI> 2. Build refined abstraction

/ al N -eliminates counterexample

3. Repeat search
Till real counterexample

or system proved safe

[Kurshan et al 93] [Clarke et al 00]
[Ball-Rajamani 01]

Lazy Abstraction

C Program —>

Property ——

BLAST

No

> Safe

>
Trace

Problem: Abstraction is Expensive

Problem

#abstract states = 2#predicates
Exponential Thm. Prover queries

|/

—

Reachable

Observe

Fraction of state space reachable
#Preds ~ 100’s, #States ~ 2190
#Reach ~ 1000’s

Solution1: Only Abstract Reachable States

L/

—_—

Problem

#abstract states = 2#predicates
Exponential Thm. Prover queries

Safe

Solution
Build abstraction during search

Solution2: Don’t Refine Error-Free Regions

%
meé

Problem Solution

#abstract states = 2#predicates Don’t refine error-free regions
Exponential Thm. Prover queries

Key Idea: Reachability Tree

Initial

1

\ 4

2

Unroll Abstraction

1. Pick tree-node (=abs. state)
2. Add children (=abs. successors)
3. On re-visiting abs. state, cut-off

Find min infeasible suffix

- Learn new predicates
- Rebuild subtree with new preds.

Key Idea: Reachability Tree

Initial

1

A\ 4

2

Error Free

4

Unroll Abstraction

1. Pick tree-node (=abs. state)
2. Add children (=abs. successors)
3. On re-visiting abs. state, cut-off

Find min infeasible suffix

- Learn new predicates
- Rebuild subtree with new preds.

Key Idea: Reachability Tree

Initial
1
;
3 6
L\ N\
NN
i 3_ 1 8 1
Error Free
S1:
SAFE | <9

Unroll

1. Pick tree-node (=abs. state)

2. Add children (=abs. successors)
3. On re-visiting abs. state, cut-off

Find min spurious suffix

- Learn new predicates
- Rebuild subtree with new preds.

Only Abstract Reachable States

Don’t refine error-free regions

