Introduction to Program Verification

CSE 501

Spring 15

Announcements

- Project midpoint report due tonight at 11pm
 - Submit on dropbox

Course Outline

- Static analysis
- Language design
- Program Verification
 - Axiomatic semantics
 - Finding invariants
 - Verified compilers
- Dynamic analysis
- New compilers

What does verifying programs mean?

Consider the following program:

```
z = 0;
i = x;
while (i) {
  z = z + y;
  i = i - 1;
}
```

- What is the value of z when loop exits?
 - Does the loop actually terminate?

Tools we have seen are not sufficient

- Types
 - Proving program termination?
- Dataflow analysis
 - We assumed that loops will terminate when we create merge points!
- Abstract interpretation
 - What is a good abstraction function?

Axiomatic Semantics

A system for proving properties about programs

Key idea:

 Define the semantics of a construct by describing its effect on assertions about the program state.

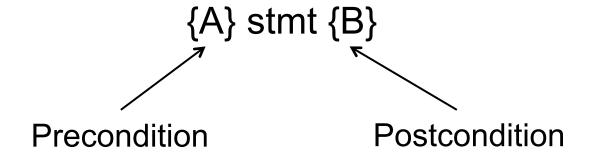
Two components

- A language for stating assertions ("the assertion logic")
 - First-Order Logic (FOL), separation logic, or Higher-Order Logic (HOL) etc
 - Many specialized languages developed over the years: Z, Larch, JML, Spec#
- Deductive rules ("the program logic") for establishing the truth of such assertions

A little history

- Early years: Unbridled optimism
 - Heavily endorsed by the likes of Hoare and Dijkstra
 If you can prove programs correct, bugs will be a thing of the
 past.
 - You won't even have to test your programs!
- The middle ages
 - 1979 paper by DeMillo, Lipton and Perlis:
 - "Proofs in math only work because there is a social process in place to get people to argue them and internalize them."
 - "Program proofs are too boring for social process to form around them."
 - "Programs change too fast and proofs are too brittle."
- The renaissance: new generation of automated reasoning tools
 - A handful of success stories: proving OS kernels, distributed algorithms, network protocols, etc.
 - Better appreciation of costs, benefits and limitations?

The basics



- Hoare triple
 - If the precondition holds before stmt and stmt terminates, postcondition will hold afterward.
- This is a partial correctness assertion.
- We sometimes use the notation

 [A] stmt [B]
 to denote a total correctness assertion
- which means you also have to prove termination

What do assertions mean?

- We first need to introduce a programming language
- Let's start with the following:

```
e := n | x | e1 + e2 | e1 - e2
c := x := e |
    c1; c2 |
    if e then c1 else c2 |
    while e do c
```

What do assertions mean?

- Language constructs defined in terms of big step operational semantics
- Expressions result in values given a state σ : $\langle c, \sigma \rangle \rightarrow \sigma'$
- Examples:

$$\langle 5, \sigma \rangle \rightarrow 5$$

 $\langle x := 5, \sigma \rangle \rightarrow \sigma[x \rightarrow 5]$

What do assertions mean?

The language of assertions:

```
A := true \mid false \mid e1 = e2 \mid

e1 \ge e2 \mid A1 \land A2 \mid \neg A \mid \forall x. A
```

- Notation $\sigma \models A$ means that the assertion holds on state σ .
 - This is defined inductively over the structure of A.
 - Ex. $\sigma \models A \land B$ iff $\sigma \models A$ and $\sigma \models B$
- Partial Correctness can then be defined in terms of operational semantics

$$\{A\}$$
 c $\{B\}$ iff
$$\forall \sigma \forall \sigma' (\sigma \vDash A \land \langle c, \sigma \rangle \rightarrow \sigma') \Rightarrow \sigma' \vDash B$$

Defining axiomatic semantics

 Establishing the truth of a Hoare triple in terms of the operational semantics is impractical

 The real power of AS is the ability to establish the validity of a Hoare triple by using deduction rules.

means we can deduce the triple from a set of basic axioms

Derivation Rules

Derivation rules for each language construct

$$\vdash \{A[x \rightarrow e]\} x := e \{A\}$$

$$\vdash \{A \land b\} c \{A\}$$

$$\vdash \{A\} \text{ while b do } c \{A \land \neg b\}$$

$$\vdash \{A \land b\} \ c_1 \ \{B\} \qquad \vdash \{A \land \neg b\} \ c_2 \ \{B\}$$

$$\vdash \{A\} \ \text{if b then } c_1 \ \text{else } c_2 \ \{B\}$$

$$\vdash \{A\} \ c_1 \ \{C\} \qquad \vdash \{C\} \ c_2 \ \{B\}$$

$$\vdash \{A\} \ c_1 \ ; \ c_2 \ \{B\}$$

Can be combined with the rule of consequence

$$\vdash A' \rightarrow A \vdash \{A\} \subset \{B\} \vdash \{B \rightarrow B'\}$$
$$\vdash \{A'\} \subset \{B'\}$$

Soundness and Completeness

- What does it mean for our deduction rules to be sound?
 - You will never be able to prove anything that is not true
 - truth is defined in terms of our original definition of $\{A\}$ c $\{B\}$

$$\forall \sigma \forall \sigma' (\sigma \vDash A \land \langle c, \sigma \rangle \rightarrow \sigma') \Rightarrow \sigma' \vDash B$$

- we can prove this, but it's tricky
- What does it mean for them to be complete?
 - If a statement is true, we should be able to prove it via deduction
- So are they complete?
 - yes and no
 - They are complete relative to the logic
 - but there are no complete and consistent logics for elementary arithmetic (Gödel)

Example

```
\vdash \{A \land b\}c_1 \{B\} \quad \vdash \{A \land not b\}c_2 \{B\}
   \vdash \{A[x \to e]\}x := e\{A\}
                                                                       \vdash \{A\} if b then c_1 else c_2 \{B\}
                                         \vdash A' \Rightarrow A \vdash \{A\}c \{B\} \vdash B \Rightarrow B'
                                                        \vdash \{A'\}c \{B'\}
            \vdash \{A \land b\}c \{A\}
                                                                                         \vdash \{A\}c_1\{C\} \quad \vdash \{C\}c_2\{B\}
\vdash \{A\} while b do c \{A \land not b\}
                                                                                                \vdash \{A\}c_1; c_2 \{B\}
                                                \{x=x_0 \text{ and } y=y_0\}
                                                if(x > y){
                                                    t = x - y;
                                                    while(t > 0){
                                                       x = x - 1;
                                                       y = y + 1;
                                                       t = t - 1;
                                                \{x_0 > y_0 \Rightarrow y = x_0 \text{ and } x = y_0\}
```

From partial to total correctness

Total correctness:

Same as before, but must also prove termination

$$\frac{\vdash [A \land b]c_1 [B] \quad \vdash [A \land not \ b]c_2 [B]}{\vdash [A]if \ b \ then \ c_1else \ c_2 [B]} \qquad \frac{}{\vdash [A[x \rightarrow e]]x := e \ [A]}$$

$$\frac{\vdash [A]c_1 [C] \vdash [C]c_2 [B]}{\vdash [A]c_1; c_2 [B]}$$

But what about loops??

Rank function

- Function F of the state that
 - a) Maps state to an integer
 - b) Decreases with every iteration of the loop
 - c) Is guaranteed to stay greater than zero
 - Also called variant function

$$\frac{\vdash [A \land b \land F = z]c [A \land F < z] \quad \vdash A \land b \Rightarrow F \ge 0}{\vdash [A]while \ b \ do \ c \ [A \land not \ b]}$$

Example

Can we prove this?

```
[ x=x_0 and y=y_0 ]
if(x > y){
  t = x - y;
  while(t > 0){
    x = x - 1;
    y = y + 1;
    t = t - 1;
[x_0 > y_0 \Rightarrow y = x_0 and x = y_0]
```

Soundness

 We gave a semantic soundness condition for {A} c {B}:

$$\forall \sigma, \sigma'. (A(\sigma) \land (\sigma, c) \rightarrow \sigma') \Rightarrow B(\sigma')$$

Then what does it mean for [A] c [B]?

(1)
$$\forall \sigma, \sigma'. (A(\sigma) \land (\sigma, c) \rightarrow \sigma') \Rightarrow B(\sigma')$$

(2)
$$\forall \sigma . A(\sigma) \Rightarrow \exists \sigma' . (\sigma, c) \rightarrow \sigma'$$

(i.e., c terminates whenever A is true)

Verification Pragmatics

 Constructing Hoare logic proofs manually is tedious. We should be able to automate most of it.

(At least that is the hope)



- P is the weakest predicate such that {P} c {A}
 - -P is weaker than Q iff $Q \Rightarrow P$
- wp(x := e, A) = A[$e \rightarrow x$]
- $wp(c_1; c_2, A) = wp(c_1, wp(c_2, A))$
- wp(if b then c_1 else c_2 , A) = $(b \land wp(c_1,A)) \lor (\neg b \land wp(c_2,A))$

- while is tricky!
- Let W = wp(while b do c, A)Then: $W \leftrightarrow (b \Rightarrow wp(c, W) \land \neg b \Rightarrow A)$
- This is a recursive equation, where it isn't obvious a solution exists!
- Pragmatic solution: ask programmers to annotate loops with loop invariants.
- c := x := e | c;c | if b then c else c | {I} while b do c

• wp(x := e, A) = A[$e \rightarrow x$] • $wp(c_1; c_2, A) = wp(c_1, wp(c_2, A))$ • wp(if b then c_1 else c_2 , A) = $(b \land wp(c_1,A)) \lor (\neg b \land wp(c_2,A))$ • $wp(\{I\})$ while b do c, A) = I \land written(c) = { $x_1, ..., x_n$ } $\wedge (\forall x_1, ..., x_n. I \wedge b \Rightarrow wp(c, I))$ $\wedge (\forall x_1, ..., x_n. I \wedge \neg b \Rightarrow A)$

Is this really the weakest?

Theorem (Completeness of wpc):
 For any command c and postcondition B,
 there exists a command c' annotated with
 proper loop invariants, such that for any
 candidate precondition A,

```
    if ⊢ {A} c {B},
    then A ⇒ wp(c', B)
```

Is this really the weakest?

- if $\vdash \{A\} \in \{B\}$, then $A \Rightarrow wp(c', B)$
- **Proof:** By structural induction on c.
- Trickiest case: "while" (unsurprisingly)
 Need to pick a good loop invariant for arbitrary while b do c and B.
- This one works: Given a program state σ , then $\forall \sigma'$. <while b do c, $\sigma > \rightarrow \sigma' \Rightarrow B(\sigma')$

```
• wp({I}) while b do c, A) = I

\land written(c) = {x_1, ..., x_n}

\land (\forall x_1, ..., x_n. I \land b \Rightarrow wp(c, I))

\land (\forall x_1, ..., x_n. I \land \neg b \Rightarrow A)
```

- But who comes up with I?
 - See next lecture for details

Language with arrays

```
• e := n | x | e1 + e2 | e1 - e2 | a[e]
c := x := e |
c1; c2 |
if e then c1 else c2 |
while e do c
```

Problem with arrays

```
{true}
{true}
                                              Now what?
                    a[k]=1;
a[k]=1;
                                            Can we use the
                    a[j]=2;
a[j]=2;
                                            standard rule for
                    {a[k]+a[j]=3}
x=a[k]+a[j];
                                            assignment?
{x=3}
                    x=a[k]+a[j];
                                      wp(x := e, A) = A[e \rightarrow x]
                    {x=3}
```

Problem with arrays

```
{true}
                   {true}
{true}
                                           {1+2=3}
                   a[k]=1;
a[k]=1;
                                           a[k]=1;
                                           \{a[k]+2=3\}
                   a[j]=2;
a[j]=2;
                                           a[j]=2;
                   {a[k]+a[j]=3}
x=a[k]+a[j];
                                           {a[k]+a[j]=3}
{x=3}
                   x=a[k]+a[j];
                                           x=a[k]+a[j];
                   {x=3}
                                           \{x=3\}
```

What if k = j??

Theory of arrays

Extend the language of assertions with array expressions

- Let a be an array
- a{i → e} is a new array whose ith entry has value e
 - $-a(i \rightarrow e)[k] = a[k]$ if $k \neq i$, or e otherwise

Theory of arrays

 We can then reason about TOA expressions assuming Zero is the zeroed out array

- Example:
- $-\operatorname{Zero}\{i \rightarrow 5\}\{j \rightarrow 7\}[k] = 5 \Leftrightarrow i = k \wedge i \neq j$

Assignment rule with TOA

Arrays and loops

Proving with loop invariant

```
• Recall wp({I} while b do c, A) = I

\land written(c) = {x_1, ..., x_n}

\land (\forall x_1, ..., x_n. I \land b \Rightarrow wp(c, I))

\land (\forall x_1, ..., x_n. I \land \neg b \Rightarrow A)
```

• Let's check $I \land b \Rightarrow wp(c, I)$

Proving with improved invariant

Improved I:

```
\{ a[i] = \sum_{i \le k < i} a_0[k] \land \forall j \le k < n . a[k] = a_0[k] \}
 { a\{i \rightarrow a[i] + a[j]\}[i] = \sum_{i \le k < j+1} a_0[k] \land \forall j+1 \le k < n . a\{i \rightarrow a[i] + a[j]\}[k] = a_0[k] }
    a[i] = a[i] + a[i]
\{ a[i] = \sum_{i \le k < i+1} a_0[k] \land \forall j+1 \le k < n : a[k] = a_0[k] \}
    j = j + 1
\{ a[i] = \sum_{i \le k < i} a_0[k] \land \forall j \le k < n . a[k] = a_0[k] \}
```

Proving with improved invariant

Still need to check

An even better invariant

Check this:

```
 \{ a[i] = \sum_{i \le k < j} a_0[k] \land \forall j \le k < n . a[k] = a_0[k] \land i < j \}
```

Bottom line:

Coming up with good invariants is hard!

We will see how to deal with that next time