Introduction to Program
Verification

Announcements

* Project midpoint report due tonight at 11pm

— Submit on dropbox

Course Qutline

e Static analysis

* Language design

* Program Verification
— Axiomatic semantics

— Finding invariants

— Verified compilers
* Dynamic analysis
* New compilers

«<—— We are here

What does verifying programs mean?

* Consider the following program:
zZ = 0;
1 = X;
while (i) {
Z = Z t YV,
1 =1—- 1;

}

 What is the value of z when loop exits?
— Does the loop actually terminate?

Tools we have seen are not sufficient

* Types

— Proving program termination?

e Dataflow analysis

— We assumed that loops will terminate when we
create merge points!

* Abstract interpretation
— What is a good abstraction function?

Axiomatic Semantics

* A system for proving properties about programs

 Key idea:

— Define the semantics of a construct by describing its effect on
assertions about the program state.

* Two components

— A language for stating assertions (“the assertion logic”)
* First-Order Logic (FOL), separation logic, or Higher-Order Logic (HOL) etc
* Many specialized languages developed over the years: Z, Larch, JML, Spec#

— Deductive rules (“the program logic”) for establishing the truth of such
assertions

A little history

* Early years: Unbridled optimism

— Heavily endorsed by the likes of Hoare and Dijkstra
If you can prove programs correct, bugs will be a thing of the
past.

— You won’t even have to test your programs!

* The middle ages
— 1979 paper by DeMillo, Lipton and Perlis:

— “Proofs in math only work because there is a social process in
place to get people to argue them and internalize them.”

— “Program proofs are too boring for social process to form
around them.”

— “Programs change too fast and proofs are too brittle.”
* The renaissance: new generation of automated reasoning tools

— A handful of success stories: proving OS kernels, distributed
algorithms, network protocols, etc.

— Better appreciation of costs, benefits and limitations?

The basics

{A} stmt {B}
Precondition Postcondition

* Hoare triple

— If the precondition holds before stmt and stmt terminates,
postcondition will hold afterward.

e This is a partial correctness assertion.

e We sometimes use the notation
[A] stmt [B]
to denote a total correctness assertion

* which means you also have to prove termination

What do assertions mean?

 We first need to introduce a programming
language

e Let’s start with the following:

e :=n | x| el +e2 | el - e2
C := X := e |
cl; c2 |

1f e then c1 else c2 |
while e do c

What do assertions mean?

* Language constructs defined in terms of big
step operational semantics

* Expressions result in values given a state O':
<c,0> > 0’

* Examples:
<5,0> 2> 5
<X :=5,0> > 0[x2>5]

What do assertions mean?

 The language of assertions:
A = true | false | el = e2 |
el>e2 | A1A A2 |-A| Vx A
 Notation o0 FA means that the assertion holds on
state o.
— This is defined inductively over the structure of A.

—Ex.0 A A Biff c FA and 0 =B

e Partial Correctness can then be defined in terms
of operational semantics
{A} c {B} iff

VoVo'(c EA A {(¢c,0) > 0c')=> 0" EB

Defining axiomatic semantics

e Establishing the truth of a Hoare triple in terms of
the operational semantics is impractical

* The real power of AS is the ability to establish the
validity of a Hoare triple by using deduction rules.

-{A} c {B}

means we can deduce the triple from a set of
basic axioms

Derivation Rules

* Derivation rules for each language construct
-{AAb}c, {B} +{AA-b}c, (B}

~{A[x > e]}x := e {A} - {A} if b then c, else c, {B}

-{AADb} c {A} ~{A} ¢ {&& ~{C}c, {B}

~{A} while b do ¢ {AA-b} -{A}c, ; c, {B}

* Can be combined with the rule of consequence
- A'> A-{A} c{B}+-{B > B}

-{A} c {B]}

13

Soundness and Completeness

 What does it mean for our deduction rules to be sound?
— You will never be able to prove anything that is not true
— truth is defined in terms of our original definition of {A} ¢ {B}

VoVo'(c EA A {c,0) > 0c')=>0" EB

— we can prove this, but it’s tricky

 What does it mean for them to be complete?

— If a statement is true, we should be able to prove it via
deduction

* So are they complete?

— yes and no
* They are complete relative to the logic

* but there are no complete and consistent logics for elementary
arithmetic (Godel)

Example

H{A[x — e]}x := e {4}

A

-{A Ab}c, {B}

- {A Anot b}c, {B}

- {A}if b then c,else c, {B}

— AF{A)c{B}-B=B

F{AADb}c{A}

- {A}while b do c {A A not b}

- {A'}c{B'}

F{A}c; {C} +{C}c, {B}

{ x=x, and y=y, }

if(x > y){
t=Xx-y;
while(t > 90){

X =x = 1;

~+ <
|+
—_

{ X0 >Yyo = y=Xq and x=y, }

= 14}ci; ¢ {B)

From partial to total correctness

* Total correctness:
- [A] c [B]

— Same as before, but must also prove termination

F[AADb]cy [B] + [AAnotb]c, [B]

- [A]if b then cyelse ¢, [B] F[A[x — e]]x := e |A]

But what about loops??

16

Rank function

* Function F of the state that
a) Maps state to an integer
b) Decreases with every iteration of the loop

c) Is guaranteed to stay greater than zero

— Also called variant function

FIAADAF =z|c|[ANF<z] FAAbD=>F=0
- [A]while b do c |[A A not b]

Example

* Can we prove this?
[X=X and y=y |

if(x > y){
T = x -
while(t
X = X
y =Y
t t
3

3

Q)
1;

I + | V <

[X0 > Yo = Y=Xp and x=y,]

Soundness

 We gave a semantic soundness condition for

{A} c {B}:
Vo o.(Alo) A (g, c) 2> d)= B(0)

* Then what does it mean for [A] c [B]?
(1) Vo, 0. (Alo) A (o,c) 2 o) = B(0)
(2) Vo.A(o) =30 .(0,c) > 0)

(i.e., c terminates whenever A is true)

Verification Pragmatics

* Constructing Hoare logic proofs manually is
tedious. We should be able to automate most
of it.

e (At least that is the hope)

Weakest Preconditions
P =wp(c, A)

Commend T prcte

 Pisthe weakest predicate such that {P} c {A}
—Pis weaker than Q iff Q = P

* wp(x := e, A) = Ale>x]
* wp(c;;c,, A) = wp(c,, wp(c,, A))

* wp(if b then c, else c,, A) =
(bAwp(c;,A)) V (-bAwp(c,,A))

Weakest Preconditions
* while is tricky!

* LetW = wpgwhlle b do c, A)
Then: W < (b=wp(c, W) A Sb=A)

* This is a recursive equation, where it isn't obvious a
solution exists!

* Pragmatic solution: ask programmers to annotate
loops with loop invariants.

e C := = e | c;c | if b then ¢ else ¢ |
{I} while b do c

Weakest Preconditions

« wp(x := e, A) = Ale=>X]

* wp(c;;c,, A) = wp(c,, wp(c,, A))
* wp(if b then c, else c,, A) =
(bAWp(C11A)) v ("b/\Wp(CZ,A))
* wp({I} while b do ¢, A)=1I
A written(c) = {xq, ..., X}
AV Xy, ... X,. I A b= wp(c, I))
A(VXq, ..., x,. T A-b=A)

s this really the weakest?

* Theorem (Completeness of wpc):
For any command c and postcondition B,
there exists a command ¢’ annotated with

proper loop invariants, such that for any
candidate precondition A,

o if -{A} c {B},
then A = wp(c’, B)

s this really the weakest?

« if - {A} c{B},
!chen{A}=C> {wg(c’, B)

* Proof: By structural induction on c.

* Trickiest case: “while” (unsurprisingly)

Need to pick a good loop invariant for arbitrary
while b do ¢ and B.

* This one works:
Givqn a program state g, then
Vo'.<while b do c, o> 2> ¢ = B(0)

Weakest Preconditions

* wp({I} while b do ¢, A)=1I
A written(c) = {Xxy, ..., X}
A(V Xy, ..., X,. I A b= wp(c, I))
AV Xy, ..., x,. I A-b=A)

* But who comes up with I?

— See next lecture for details

26

Language with arrays

cee :=n| x| el +e2 | el - e2 | alel
C := X := e |
cl; c2 |

1f e then c1 else c2 |
while e do c

Problem with arrays

{True} {True} Now what?
=1- k =1

:E?%—;i :Ejgzzi Can we use the
-4, ’ . :> tandard o f

x=alkl+a[j]; = {a[kl+a[j]=3} assignment?

{x=3} x=alkl+a[3];

{x=3} wp(x := e, A) = Ale>x]

Problem with arrays

{true}
alkl=1;
aljl=2;
x=alkl+al[j1;
{x=3}

{true}

{’rr'ue} {1+2:3}
alkl=1; alk]=1;
aljl=2; {a[k]+2=3}
(a[Kl+a[jl=3} — alil=2;
x=alkl+a[j]: {a[k]+a[j]=3}

_ x=alk]+alj]l;
(x=3} (x=3)

What ifk = 27

29

Theory of arrays

* Extend the language of assertions with array
expressions

* Letabe an array

« a{i > e} isanew array whose it entry has
value e
—a{i 2 e}[k] = a[k]if k 2 i, or e otherwise

Theory of arrays

* We can then reason about TOA expressions
assuming Zero is the zeroed out array

— Example:

—Zero{i>b}j>7}k]=H =ik Aiz]j

Assignment rule with TOA

- {P[a 2 a{i=e}]} al[i]l = e {P}

{k zj}
{true} {a{k>1Hj>2}[Kk] + afk>1}{j>2}[j1=3)
alk]=1; alkl=1;
alil=2; T (520K o323
x=alkl+al[j]; a)e
(x=3) (alk]+alj1=3}

x=alk]+aljl;
{x=3}

32

Arrays and loops

{O<i<n}

J = 141

while j<n do Reasonable I:

alil = alil + al31; |{afi] = ¥4 GolK1)

J = J*1;
{ali] = Ziynaolk] }

Proving with loop invariant
* Recall wp({I} while b do ¢, A)=1I

A written(c) = {xq, ..., X}

AV Xy, ... X. I A b= wp(c, I))
/\(VXI, cosy Xn. I /\ "'b — A)

* Let’'scheck T A b = wp(c, I)

{ ali>ali*alj i1 = Z i GolK])

ali] = ali] + aljl;
Jj = J+1;
{ a[i]= Ty aolk] }

Do we know
alj] =agly] ?

Make it part of I!

34

Proving with improved invariant

Improved I:

{ali]= Ziq aolk] AVj <k <n . alk]= aglK])
J

{ afi>alilal il = Zigejor Glk] A
Vijtl <k<n.a{i=ali]+a[jI}[K] = ap[K] }

ali] = ali] + al[j]
{ G[I] - Zi$k<j+1 Go[k] A VJ"‘].ﬁk(n . Cl[k] - Go[k] }

J =3+
{ali]=Z 4 a0lk] AVj<k<n.a[k]=aglk]}

Proving with improved invariant

e Still need to check

{O<i<n}
{ G[l"‘].] - Ziﬁkqﬂ Go[k] /\

Vi+l < k<n.a[k] = ay[K] }
J=1+1
{ali]= Zya0lk] AVj<k<n. a[k]=aglk]}
while j < n do ali] = ali] + aljl; jJ = j+1;
{ Cl[l] - Zigkm aO[k] }

36

An even better invariant

Check this:

{ali]= Z 4 a0lk] AVj<k<n.a[k]=ag[k] A
i< j}

Bottom line:
Coming up with good invariants is hard!

We will see how to deal with that next time

37

