Dynamic Languages

CSE 501
Spring 15

With materials adopted from John Mitchell

Dynamic Programming Languages

* Languages where program behavior, broadly
construed, cannot be determined during

compilation

— Types

— Code to be executed (eval in Javascript)
— Loading external libraries

* Language examples
— Javascript
— Python
— PHP
— Smalltalk
— Matlab

History of Self

* Prototype-based pure object-oriented language.

* Designed by Randall Smith (Xerox PARC) and
David Ungar (Stanford) in 1987.

— Successor to Smalltalk-80

— Vehicle for implementation research

— Later implementation by Craig Chambers and others
at Stanford <—— This is the one we are studying

History of SELF

Lisp Simula

~ .

Smalltalk-80

Self

/\

Java (VM) Javascrlpt

« - C [D www.selflanguage.org|

Here is where to get Self:
Download for OS X

i

Includes the Self Control.app, Self VM
and a prebuilt snapshot.

elf

Self Mallard Released!

The latest version of Self is Self "Mallard" 4.5.0 released January 2014. Download now!

Download for Linux x86

Includes a Self VM and a prebuilt
snapshot.

fun through simplicity

Use the Source, Luke

All of the Self sources for the VM and for
the default Self World are on Github.

Design Goals

* Conceptual economy
— Everything is an object
— Everything done using messages
— No classes
— No variables

* Concreteness
— Objects should seem “real”

— GUI to manipulate objects directly

Language Overview

 Dynamically typed

— Users do not declare types
* All computation via message passing
* Objects are organized into slots

* Operations on objects:
— send messages
— add new slots
— replace old slots
— remove slots

Objects and Slots

Object consists of named slots.

— Data

* Such slots return contents upon evaluation; so act like
instance variables

— Assignment
e Set the value of associated slot

— Method

e Slot contains Self code

— Parent
* Point to existing object to inherit slots

Messages and Methods

 When message is sent,
object searched for slot
with name.

* If none found, all parents
are searched.

— Runtime error if more than
one parent has a slot with
the same name.

e |fslotis found, its

contents evaluated and
returned.

— Runtime error otherwise

Messages and Methods

obj print — print point object

after setting
xtod4.

Mixing State and Behavior

Creating Objects

* To create an object, we copy an old one

* We can add new methods, override
existing ones, or even remove methods as
the program executes

* These operations also apply to parent
slots as well

Changing Parent Pointers

prince -

frog

p jump.
p eatFly.
p parent: prince.

p dance.

Changing Parent Pointers

: - .

p jump.
p eatFly.
p parent: prince.

p dance.

Why no classes?

* Classes require programmers to understand a
more complex model.

— To make a new kind of object, we have to create a
new class first.

— To change an object, we have to change the class.
— Infinite meta-class regression.

But: Does Self require programmer to reinvent
structure?

— Common to structure Self programs with traits:
objects that simply collect behavior for sharing.

Contrast with C++

 C++

— Restricts expressiveness to ensure efficient
implementation

 Class hierarchy is fixed during development

* Self

— Provides high-level abstraction of underlying
machine

— Compiler does fancy optimizations to obtain
acceptable performance

Implementation Challenges I

« Many, many slow function calls:
— Function calls generally expensive.

— Dynamic dispatch makes message invocation
even slower than typical procedure calls.

— OO0 programs tend to have lots of small
methods.

— Everything is a message: even variable access!

C++ Object Layout

Point class Template

Point object
Virtual method table

ColorPoint object ColorPointiclass - Template

Virtual method table

&

Naive Self Object Layout

ColorPoint object Point object

Implementation Challenges Il

* No static type system

— Each reference could point to any object, making
it hard to find methods statically.

* No class structure to enforce sharing

— Each object having a copy of its methods leads to
space overheads.

Optimization Strategies

* Avoid per object space requirements
* Avoid interpreting
— Compile code instead

* Avoid method lookup
* |Inline methods wherever possible

— Saves method call overhead

— Enables further optimizations

CIOne Fam|||es Avoid per object data

Implementation

prototype
map

clone family

Dynam|c COmp”ahOn Avoid interpreting

Source Byte Code Machine Code
> >
Method First
____— isentered ___— method S
execution

e Method is converted to byte codes when entered
e Compiled to machine code when first executed
e Code stored in cache
e if cache fills, previously compiled method flushed
e Requires entire source (byte) code to be available

I_O()ku P Cache Avoid method lookup

e Cache of recently used methods, indexed by
(receiver type, message name) pairs.

* When a message is sent, compiler first
consults cache

— if found: invokes associated code

— if absent: performs general lookup and
potentially updates cache

Sta'l_'ic Type Predicﬁon Avoid method lookup

* Compiler predicts types that are unknown but
likely:

— Arithmetic operations (+, -, <, etc.) have small
integers as their receivers 95% of time in
Smalltalk-80.

— ifTrue had Boolean receiver 100% of the time.

 Compiler inlines code (and test to confirm
guess):

|n|ine CaCheS Avoid method lookup

* First message send from a call site :
— general lookup routine invoked

— call site back-patched

* is previous method still correct?

— yes: invoke code directly
— no: proceed with general lookup & backpatch

e Successful about 95% of the time

e All compiled implementations of Smalltalk
and Self use inline caches

Avoid method lookup

Polymorphic Inline Caches

e Typical call site has <10 distinct receiver types
— So often can cache all receivers

* At each call site, for each new receiver, extend
patch code:

* After some threshold, revert to simple inline
cache (megamorphic site)

e Order clauses by frequency
* |nline short methods

Customized Compilation

Inline methods

Compile several copies of each method, one

for each receiver type

Within each copy:
— Compiler knows the type of self

— Calls through self can be statically selected and

inlined
Enables downstream optimizations
Increases code size

Type Ana |y5i5 Inline methods

e Constructed by compiler by flow
analysis.

* Type: set of possible maps for object

— Singleton: know map statically

— Union/Merge: know expression has one of
a fixed collection of maps.

— Unknown: know nothing about expression.
* If singleton, we can inline method.

* If typeis small, we can insert type test
and create branch for each possible
receiver (type casing)

Performance Improvements

* |nitial version of Self was 4-5 times slower
than optimized C.

* After optimizations, implementation
described in paper is within a factor of 2 of

optimized C.

How successful?

* Few users: not a popular success
— No compelling application, until JavaScript

— Influenced development of object calculi w/o
classes

* However, many research innovations
— Very simple computational model
— Enormous advances in compilation techniques
— Influenced the design of Java compilers
— Direct influence on design of Javascript

Lessons

Pochoir / Halide (DSL)

Design specific constructs
for domain

Constructs need to easily
map to underlying target
language
— Otherwise implementation
might be a nightmare

Expose high-level structure
allows domain-specific
optimizations

Self / Javascript
(Dynamic Languages)

“Power of simplicity”
— Everything is an object
— No classes, no variables

Implementation specific to
program constructs

Uses various optimization
tricks to recover
performance

