
CSE 501 !
Principles and Applications!

of Program Analysis!
"

Alvin Cheung"
Spring 15"

Welcome to CSE 501!"

The Cast"

Instructor"

Alvin Cheung"
CSE 530!
"

App–4 A. Cheung et al.

JhQ, D,�, hi, e

i

K ! hQ0
, D

0
,�, h

0i, (�0
, e

i

)

JhQ0
, D

0
,�, h

0i, e

a

K ! hQ00
, D

00
,�, h

00i, (�00
, e

a

)

force(Q

00
, D

00
, (�0

, e

i

)) ! Q

000
, D

000
, v

i

force(Q

000
, D

000
, (�00

, e

a

)) ! Q

0000
, D

0000
, v

a

JhQ, D,�, hi, e

a

[e

i

]K ! hQ0000
, D

0000
,�, h

00i, h

00
[v

a

, v

i

]

[Array deference]

JhQ, D,�, hi, eK ! hQ0
, D

0
,�, h

0i, (�0
, e) Q

000
= Q

00
[id ! (v , ;)]

force(Q

0
, D

0
, (�0

, e)) ! Q

00
, D

00
, v id is a fresh identifier

JhQ, D,�, hi, R(e)K ! hQ000
, D

00
,�, h

0i, ([], id)

[Read query]

Semantics of statements:

JhQ, D,�, hi, skipK ! hQ, D,�, hi
[Skip]

JhQ, D,�, hi, eK ! hQ0
, D

0
,�, h

0i, (�0
, e)

JhQ0
, D

0
,�, h

0i, e

l

K ! hQ00
, D

00
,�, h

00i, v

l

JhQ, D,�, hi, e

l

:= eK ! hQ00
, D

00
,�[v

l

! (�0
, e)], h

00i
[Assignment]

JhQ, D,�, hi, eK ! hQ0
, D

0
,�, h

0i, (�0
, e)

force(Q

0
, D

0
, (�0

, e)) ! Q

00
, D

00
, True

JhQ00
, D

00
,�, h

0i, s

1

K ! hQ000
, D

00
,�0

, h

00i
JhQ, D,�, hi, if(e) then s

1

else s

2

K ! hQ000
, D

000
,�0

, h

00i
[Conditional–true]

JhQ, D,�, hi, eK ! hQ0
, D

0
,�, h

0i, (�0
, e)

force(Q

0
, D

0
, (�0

, e)) ! Q

00
, D

00
, False

JhQ00
, D

00
,�, h

0i, s

2

K ! hQ000
, D

00
,�0

, h

00i
JhQ, D,�, hi, if(e) then s

1

else s

2

K ! hQ000
, D

000
,�0

, h

00i
[Conditional–false]

JhQ, D,�, hi, sK ! hQ0
, D

0
,�0

, h

0i
JhQ, D,�, hi, while(True) do sK ! hQ0

, D

0
,�0

, h

0i
[Loop]

JhQ, D,�, hi, eK ! hQ0
, D

0
,�, h

0i, (�0
, e)

force(Q

0
, D

0
, (�0

, e)) ! Q

00
, D

00
, v

update(D

00
, v) ! D

000

8id 2 Q

00
. Q

000
[id] =

⇢
D

000
[Q

00
[id].s] if Q

00
[id].rs = ;

Q

00
[id].rs otherwise

JhQ, D,�, hi, W (e)K ! hQ000
, D

000
,�, h

0i
[Write query]

JhQ, D,�, hi, s

1

K ! hQ0
, D

0
,�0

, h

0i JhQ, D

0
,�0

, h

0i, s

2

K ! hQ00
, D

00
,�00

, h

00i
JhQ, D,�, hi, s

1

; s

2

K ! hQ00
, D

00
,�00

, h

00i
[Sequence]

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

TA Extraordinaire!

Andre Baixo!
Office hours: TBD"

You!"

Course Communication"
•  Discussion board"
– HW help"
– Find project partners"

•  Course website: !
courses.cs.washington.edu/501

•  Email: cse501-staff@cs.washington.edu

Course Goals"
•  What are the techniques used to

understand programs?"
– Mix of classical and recent advances"

•  What can we use these techniques for?"
– Variety of applications across different

domains"
•  How do we build tools that utilize such

techniques?"

Course Goals"
•  How to do research?"
– How to choose problems"
– How to devise solutions"
– How to evaluate"
– How to report results"

Course Non-Goals"
•  How to build a compiler from scratch"
– Check out CSE 401"

•  What are all the compiler optimizations
out there?"
– Check out list of references on website"

•  Cover all research topics in program
analysis"
– 35 years of PLDI but we only have 10 weeks!"

Class Format"
•  Two class meetings per week"
– Tuesday and Thursday 11am – 12:20 pm"
– Here!"

•  Occasional HW help and project feedback
sessions"

Class Format"
•  We will discuss 1-2 research papers during

each class meeting"
– Please read them beforehand"
– We ask you to write a small commentary

before class to share with everyone"
– Be prepared to ask questions!"

Grading"
•  Programming assignments (30%)"

–  Get to know available tools out there"
–  No late days"

•  Project (50%)"
–  Open-ended: find problems in your research area "
–  Work with a partner"
–  We will provide you with potential ideas"
–  Project milestones, end-of-quarter presentation, final

report"
•  Paper summaries (20%)"

–  Submit paper summary 24-hrs before lecture"
–  See details on course website"

Course Topics"
•  Dataflow frameworks"

•  Abstract interpretation"

•  Domain-specific languages"

•  Program verification"

•  Dynamic analysis"

Course Topics"
•  Dataflow frameworks & abstract interpretation"
– Pointer analysis"
– Compiler optimizations"
–  Information flow"
– Detecting malware"

•  Domain-specific languages"
– Parallel programming"
– High-performance computing"
– New hardware"

"

Course Topics"
•  Program verification"
– Finding program invariants"
– Provably-correct compilers"

•  Dynamic analysis"
– Program testing"
– Model checking"

•  Compiler construction"

Prerequisites"
•  Coding"

•  Data structures"
•  Mathematical logic"

•  [Optional] Knowledge about compilers"

Now the fun begins…"

Why understand programs?"
•  We all write code!"

•  It’s good to get some understanding about
what we are coding"

•  It’s good to develop a formal framework for
understanding programs"

•  It’s good to have somebody else do this for
us, perhaps automatically"

List of software bugs
From Wikipedia, the free encyclopedia

Many software bugs are merely annoying or inconvenient but some can have extremely serious consequences

– either financially or as a threat to human well-being. The following is a list of notable software bugs with

significant consequences:

Contents

1 Space exploration

2 Medical

3 Tracking years

4 Electric power transmission

5 Administration

6 Telecommunications

7 Military

8 Media

9 Video gaming

10 Encryption

11 Transportation

12 Business

13 References

Space exploration

A booster went off course during launch, resulting in the destruction of NASA Mariner 1. This was the

result of the failure of a transcriber to notice an overbar in a written specification for the guidance

program, resulting in the coding of an incorrect formula in its FORTRAN software. (July 22, 1962).
[1]

Note that the initial reporting of the cause of this bug was incorrect.
[2]

The Russian Space Research Institute's Phobos 1 (Phobos program) deactivated its attitude thrusters and

could no longer properly orient its solar arrays or communicate with Earth, eventually depleting its

batteries. (September 10, 1988).
[3]

The European Space Agency's Ariane 5 Flight 501 was destroyed 40 seconds after takeoff (June 4,

1996). The US$1 billion prototype rocket self-destructed due to a bug in the on-board guidance

software.
[4]

List of software bugs
From Wikipedia, the free encyclopedia

Many software bugs are merely annoying or inconvenient but some can have extremely serious consequences

– either financially or as a threat to human well-being. The following is a list of notable software bugs with

significant consequences:

Contents

1 Space exploration

2 Medical

3 Tracking years

4 Electric power transmission

5 Administration

6 Telecommunications

7 Military

8 Media

9 Video gaming

10 Encryption

11 Transportation

12 Business

13 References

Space exploration

A booster went off course during launch, resulting in the destruction of NASA Mariner 1. This was the

result of the failure of a transcriber to notice an overbar in a written specification for the guidance

program, resulting in the coding of an incorrect formula in its FORTRAN software. (July 22, 1962).
[1]

Note that the initial reporting of the cause of this bug was incorrect.
[2]

The Russian Space Research Institute's Phobos 1 (Phobos program) deactivated its attitude thrusters and

could no longer properly orient its solar arrays or communicate with Earth, eventually depleting its

batteries. (September 10, 1988).
[3]

The European Space Agency's Ariane 5 Flight 501 was destroyed 40 seconds after takeoff (June 4,

1996). The US$1 billion prototype rocket self-destructed due to a bug in the on-board guidance

software.
[4]

In 1997, the Mars Pathfinder mission was jeopardised by a bug in concurrent software shortly after the

rover landed, which had not been found in preflight testing because it only occurred in certain

unanticipated heavy-load conditions.
[5]

 The problem, which was identified and corrected from Earth,

was due to computer resets caused by priority inversion.
[6][7]

The European Space Agency's CryoSat-1 satellite was lost in a launch failure in 2005 due to a missing

shutdown command in the flight control system of its Rokot carrier rocket.
[8]

NASA Mars Polar Lander was destroyed because its flight software mistook vibrations due to

atmospheric turbulence for evidence that the vehicle had landed and shut off the engines 40 meters from

the Martian surface (December 3, 1999).
[9]

Its sister spacecraft Mars Climate Orbiter was also destroyed, due to software on the ground

generating commands in pound-force (lbf), while the orbiter expected newtons (N).

A mis-sent command from Earth caused the software of the NASA Mars Global Surveyor to incorrectly

assume that a motor had failed, causing it to point one of its batteries at the sun. This caused the battery

to overheat (November 2, 2006).
[10][11]

NASA's Spirit rover became unresponsive on January 21, 2004, a few weeks after landing on Mars.

Engineers found that too many files had accumulated in the rover's flash memory. It was restored to

working condition after deleting unnecessary files.
[12]

Medical

A bug in the code controlling the Therac-25 radiation therapy machine was directly responsible for at

least five patient deaths in the 1980s when it administered excessive quantities of X-rays.
[13][14][15]

A Medtronic heart device was found vulnerable to remote attacks in March 2008.
[16]

Tracking years

The year 2000 problem spawned fears of worldwide economic collapse and an industry of consultants

providing last-minute fixes.
[17]

A similar problem will occur in 2038 (the year 2038 problem), as many Unix-like systems calculate the

time in seconds since 1 January 1970, and store this number as a 32-bit signed integer, for which the

maximum possible value is 2
31

 − 1 (2,147,483,647) seconds.
[18]

An error in the payment terminal code for Bank of Queensland rendered many devices inoperable for

up to a week. The problem was determined to be an incorrect hexadecimal number conversion routine.

When the device was to tick over to 2010, it skipped six years to 2016, causing terminals to decline

customers' cards as expired.
[19]

In 1997, the Mars Pathfinder mission was jeopardised by a bug in concurrent software shortly after the

rover landed, which had not been found in preflight testing because it only occurred in certain

unanticipated heavy-load conditions.
[5]

 The problem, which was identified and corrected from Earth,

was due to computer resets caused by priority inversion.
[6][7]

The European Space Agency's CryoSat-1 satellite was lost in a launch failure in 2005 due to a missing

shutdown command in the flight control system of its Rokot carrier rocket.
[8]

NASA Mars Polar Lander was destroyed because its flight software mistook vibrations due to

atmospheric turbulence for evidence that the vehicle had landed and shut off the engines 40 meters from

the Martian surface (December 3, 1999).
[9]

Its sister spacecraft Mars Climate Orbiter was also destroyed, due to software on the ground

generating commands in pound-force (lbf), while the orbiter expected newtons (N).

A mis-sent command from Earth caused the software of the NASA Mars Global Surveyor to incorrectly

assume that a motor had failed, causing it to point one of its batteries at the sun. This caused the battery

to overheat (November 2, 2006).
[10][11]

NASA's Spirit rover became unresponsive on January 21, 2004, a few weeks after landing on Mars.

Engineers found that too many files had accumulated in the rover's flash memory. It was restored to

working condition after deleting unnecessary files.
[12]

Medical

A bug in the code controlling the Therac-25 radiation therapy machine was directly responsible for at

least five patient deaths in the 1980s when it administered excessive quantities of X-rays.
[13][14][15]

A Medtronic heart device was found vulnerable to remote attacks in March 2008.
[16]

Tracking years

The year 2000 problem spawned fears of worldwide economic collapse and an industry of consultants

providing last-minute fixes.
[17]

A similar problem will occur in 2038 (the year 2038 problem), as many Unix-like systems calculate the

time in seconds since 1 January 1970, and store this number as a 32-bit signed integer, for which the

maximum possible value is 2
31

 − 1 (2,147,483,647) seconds.
[18]

An error in the payment terminal code for Bank of Queensland rendered many devices inoperable for

up to a week. The problem was determined to be an incorrect hexadecimal number conversion routine.

When the device was to tick over to 2010, it skipped six years to 2016, causing terminals to decline

customers' cards as expired.
[19]

February 2007, a group of six F-22 Raptors flying from Hickam AFB, Hawaii, experienced multiple
computer crashes coincident with their crossing of the 180th meridian of longitude (the International
Date Line). The computer failures included at least navigation (completely lost) and communication.
The fighters were able to return to Hawaii by following their tankers, something that might have been
problematic had the weather not been good. The error was fixed within 48 hours, allowing a delayed

deployment.[29]

Media

In the Sony BMG CD copy prevention scandal (October 2005), Sony BMG produced a Van Zant
music CD that employed a copy protection scheme that covertly installed a rootkit on any Windows PC
that was used to play it. Their intent was to hide the copy protection mechanism to make it harder to
circumvent. Unfortunately, the rootkit inadvertently opened a security hole resulting in a wave of

successful trojan horse attacks on the computers of those who had innocently played the CD.[30] Sony's

subsequent efforts to provide a utility to fix the problem actually exacerbated it.[31]

Video gaming

Eve Online's deployment of the Trinity patch, which erased the boot.ini file from several thousand users'
computers, rendering them unable to boot. This was due to the usage of a legacy system within the
game that was also named boot.ini. As such, the deletion had targeted the wrong directory instead of the

/eve directory.[32]

The Corrupted Blood incident was a software bug in World of Warcraft that caused a status ailment,
that was supposed to be locally restricted to a certain level of the game, to be set free, affecting all
players everywhere in the virtual game world. This caused players to avoid crowded places in-game,
just like in a "real world" epidemic, and the bug became the centre of some academic research on the

spread of infectious diseases.[33]

In the 256th level of Pac-Man, a bug results in a kill screen. The maximum number of fruit available is
seven and when that number rolls over, it causes the entire right side of the screen to become a jumbled

mess of symbols while the left side remains normal.[34]

Valve's Steam client for Linux could accidentally delete all the user's files in every directory on the

computer. This happened to users that had moved Steam's installation directory.[35] The bug is the result
of unsafe shellscript programming:

STEAMROOT="$(cd "${0%/*}" && echo $PWD)"

February 2007, a group of six F-22 Raptors flying from Hickam AFB, Hawaii, experienced multiple
computer crashes coincident with their crossing of the 180th meridian of longitude (the International
Date Line). The computer failures included at least navigation (completely lost) and communication.
The fighters were able to return to Hawaii by following their tankers, something that might have been
problematic had the weather not been good. The error was fixed within 48 hours, allowing a delayed

deployment.[29]

Media

In the Sony BMG CD copy prevention scandal (October 2005), Sony BMG produced a Van Zant
music CD that employed a copy protection scheme that covertly installed a rootkit on any Windows PC
that was used to play it. Their intent was to hide the copy protection mechanism to make it harder to
circumvent. Unfortunately, the rootkit inadvertently opened a security hole resulting in a wave of

successful trojan horse attacks on the computers of those who had innocently played the CD.[30] Sony's

subsequent efforts to provide a utility to fix the problem actually exacerbated it.[31]

Video gaming

Eve Online's deployment of the Trinity patch, which erased the boot.ini file from several thousand users'
computers, rendering them unable to boot. This was due to the usage of a legacy system within the
game that was also named boot.ini. As such, the deletion had targeted the wrong directory instead of the

/eve directory.[32]

The Corrupted Blood incident was a software bug in World of Warcraft that caused a status ailment,
that was supposed to be locally restricted to a certain level of the game, to be set free, affecting all
players everywhere in the virtual game world. This caused players to avoid crowded places in-game,
just like in a "real world" epidemic, and the bug became the centre of some academic research on the

spread of infectious diseases.[33]

In the 256th level of Pac-Man, a bug results in a kill screen. The maximum number of fruit available is
seven and when that number rolls over, it causes the entire right side of the screen to become a jumbled

mess of symbols while the left side remains normal.[34]

Valve's Steam client for Linux could accidentally delete all the user's files in every directory on the

computer. This happened to users that had moved Steam's installation directory.[35] The bug is the result
of unsafe shellscript programming:

STEAMROOT="$(cd "${0%/*}" && echo $PWD)"

A Classical Example: Compilers"
A 50,000 ft view:"

Compiler"Source"
Language"

Target"
Language"

A Classical Example: Compilers"
A 10,000 ft view:"

Lexer"

Java" JVM !
bytecode"

Parser"

Intermediate!
Representation "

Optimizer"

Bytecode !
Selector"

[See CSE 401 for details]"

Runtime
system"

JIT
compiler"

Optimizations"
•  Dead code elimination"
•  Partial redundancy elimination"
•  Function inlining"
•  Strength reduction"
•  Loop transformations"
– Hoisting"
– Unrolling"
– Vectorizing"

•  Constant propagation"

Intermediate!
Representation "

Optimizer"

Dataflow!
Analysis!!"

Beyond compilers"
•  Program correctness"

•  Security breaches"

•  Have programs write themselves"

Program representation"
int pow (int a, int n) {

 int p = 1;
 for (int i = 0; i < n; ++i)

 p *= a;

 return p;
}

Program representation"
int pow (int a, int n) {

 int p = 1;
 for (int i = 0; i < n;

 ++i)

 p *= a;

 return p;
}

p = 1

i = 0

i < n

i = i + 1

p = p * a

return p

Data-flow graph"

int pow (int a, int n) {

 int p = 1;
 for (int i = 0; i < n; ++i)

 p *= a;

 return p;
}

p = 1 i = 0

i < n

i = i + 1

p = p * a return p

a n

Control-flow graph"

int pow (int a, int n) {

 int p = 1;
 for (int i = 0; i < n; ++i)

 p *= a;

 return p;
}

p = 1

i = 0

i < n

i = i + 1

p = p * a return p

Enter"

Control-flow graph"

p = 1

i = 0

i < n

i = i + 1

p = p * a return p

Enter"

•  Directed graph"
– Each node is a statement"
– Edges represents possible !

flow of control"

•  Statements"
– Assignments"
– Branches"
– Enter / return"
– Declarations usually omitted "

Basic blocks"

p = 1

i = 0

i < n

i = i + 1

p = p * a return p

Enter"

•  Sequence of statements !
with only one entry !
and exit point"

•  Condensed representation!
of statements"

"

Program point"

p = 1
i = 0

i < n

p = p * a
i = i + 1

return p

•  Every statement entry
and exit"

•  Program behavior at !
each program point"

"

Enter"

Special edges"

p = 1
i = 0

i < n

p = p * a
i = i + 1

return p

•  Back edge"
–  Points to a block that has !

been traversed"
"

"

Enter"

•  Critical edge"
–  Edge that is neither the !

only edge leaving source!
nor entering target"

"

"
i < n

i = i + 1 i = 5

x < n

Summary"
•  We will study techniques to understand

code"
•  Not (just) a compiler class!"
•  Many connections to programming

languages, systems, security, architecture
etc"

•  [Programming systems quals for grad students]"

•  Next time: dataflow!"

