
Points-to Analysis in Almost Linear Time

Bjarne Steensgaard

Microsoft Research

One Microsoft Way

Redmond, WA 98052, USA

rusardresearc h.microsoft. com

Abstract

We present m interprocedural flow-lnsensltlve points-to rmalysls

based on type]nference methods with an almost hneart ime cost
complexity To our knowled~e, this is the asymptotically fastest
non-trlwzd lnterprocedural points-to analysis algorlthm yet described
The al,gotnthm IS bmedona non-standard type system. The type
Inferred for any wmable l-epl-esents a set of locations and includes

a type which in turn represents a set ot’ locations possibly pointed
to by the variable. Thetype inferred for a function variable l-epre-

sents a set of functions It may point to and Includes a type signature
for these functions Theresults ztre equivalent tothoseof a flow-

insensitive alias analysis (and control flow analysls) that assumes
alias relations arereflexlve andtransltive.

This work makes three contributions The first isatype system

for describing a umversally valid storage shape graph for a program
in linear space. The second is a constraint system which often
leads to bettel- l-esults than the’’obvious” constraint system for the
gyven type system The third is an almost llneal- time algolnthm for

points-to analysls by solwng a constraint system

1 Introduction

Modern optimizing compilers and program understanding and brows-
ing tools for pointer languages such as C [KR88] are dependent

on semantic reformation obtained by either an alias analysis or a
po]nts-toanalysls. Ahasanalyses cornput epairso fexpressions(or
access paths) that may be abased (e.g., [LR92, LRZ93]). Points-

to analyses compute a store model using abstract locations (e.g,

[CWZ90, EGH94, WL95, Ruf95])
Most current compilel-s and programming tools use only in-

traprocedural analyses, asthepolynomlal tlmeand space complex-
Ity of the common data-flow based analyses pi-events the use of

interprocedural analyses for large programs. Intel-procedural analy -

slslsbecoming increasingly important, asitlsnecessary to support
whole-program optimization and various program understanding

tools. Previously published Interprocedural analysis algorithms
have not been reported to have been successfully applied to pro-
grams around 100,000 lines of C code (the published results are

practically all forless than 10,0001 inesof Ccode).

Permission to make digital/hard copies of all or part of this mriterial for
personal or claasroom use ia granted witbout fee provided that the copies
arenotmade or distributed forprofit orcommercial advrmtage, the copy-
right notice, the title of the publication and its date appear, and notice is
given that copyright is byperrnission of the ACM, Inc. Tocopy other-wise,
torepubtish, to post on servers orto redistribute to lists, requires specifrc
permission and/or fee.
POPL ’96, St. Petersburg FLA USA
@ 1996 ACM 0-89791-769-3/95/01. .$3.50

We present a flow-insensitive interprocedural points-to analysis
algol-ithm that has a desirable linear space and almost linear time
complexity and is also very fast in practice. The algorithm is easily

apphcable to programs with many hundreds of thousands of Ilnes of
code. The analysis results are often not as accurate as those obtained
by flow-sensitive analyses However, the results are roughly com-
parable to those of, e g , the cubic time complexity flow insensitive
analysls of [Wei80]

The algorithm, which is inspired by Henglein’s blndlng time

analysis by type infel-ence [Hen9 1]. uses anon-standard type system
to describe the store usage at runtime by using types to construct

a storage shape graph [CWZ90]. While we describe the principles

behind the algorithm in terms of types and typing rules, we also
provide a detailed description of the algorlthm which can be used

almost directly to implement the olgorithm in a compiler
In Section 2 we state the source language for which we describe

the algorithm The language captures the essential parts of a lan-
guage like C. In Section 3 we define the non-standard set of types

we use to model the storage use, and in Section 4 we state a set of
typing rules for programs The typing rules impose constraints on

the relationships of types of program variables. Finding a typing of

the program that obeys these constraints amounts to performing a

points-to analysis In Section 5 we show how to efficiently infer the

minimal typing that obeys the constraints In Section 6 we report

on practical experience with the algorithm in a C programming en-
vil-onment. In Section 7 we describe related work, and m SectIon 8

we present our conclusions and point out dmections for future wol-k

2 The source Iang,uage

We describe the points-to analysis for a small Imperative pointer
language which captures the impel-tant properties of languages like
C [KR88] The language Includes pointers to locations, pointers
to functions, dynamic allocahon, and computing addresses of vari-

ables Since the analysis is flow insensitive, the control struckues

of the language are irrelevant The abstract syntax of the relevant

statements of the language is shown in Figure 1.
The syntax for computing the addresses of variables and for

pointer indirection is borrowed from the C progl-amming language

[KR88]. All variables are assumed to have umque names. The
op() expression form IS used to describe prlmltlve computations
such as al-itbmetic operations and computing offsets into aggregate
objects The allocate(y) expression dynamically allocates a block
of memory of size y

Funchons are constant values described by thefun()+(),S”
expression form). The f, variables are formal parametel-s (some-

‘We have gemxal]zed fmctIoI) detimt]ons to allow tunctlons wltl] mult$ple ,etu,n

vldum, a teatal-e not found In C

32

s ,:= X=y
I x=&y
I x=*y

] X=op(y,... y,,)

I x = allocate(y)

I *x=y

\ x =fun(fl,. .f,,)+(r[r,n) $

I X,... x,n=p(yyl)yl)

Figul-e 1 Abstract syntax of the t-elevan[statements, S, of the source

Ianyt.lge X, y. f, r, and p range over the (unbounded) set of variable
names and constwrts, op ranges over the set of primitive operator

names S* denotes o sequence of statements. The control structures

of the language are irrelevant for the purposes of this paper.

fact = fun(x)-+(r)
if Iessthan(x 1) then

r=l

else
xminusone = subtract(x 1)

nextfac = fact(xminusone)
r = multiply(x nextfac)

fi

result = fact(l O)

Figure 2: A program In the source language that computes facto-

i-ial(l O),

tlrnes called in parameters). and the r, variables are return pa-

rameters (sometimes called ouf parurneters). Function calls have

call-by-value semantics [ASU86]. Both formal and return parame-

ter variables may appear in left-hand-side position in statements m

the function body. Formal and return parameter variables as well
as local valiables may not occur in the body of another function;

this is always true for C programs, which are not allowed to contain
nested function definitions

Figure 2 shows an implementation of the factorial function (and

a call of s,~me) in the abstract syntax of the source language.

We assume that programs areas well-behaved as (mostly) portable

C programs. The analysls tracks flow of pointer values, so the anal-

ysis algorithm may produce wrong results for programs that con-
struct pointers from scratch (e.g., by bitwlse duplication of pointers)

and for non-portable programs (e.g., programs that rely on how a

specific compiler allocates variables relative to each other). How-

ever, the analysis algorithm as presented below will deal with, e.g.,
excluslve-or operations on pointer values, where there is a real flow

of values

3 Types

For the purposes of performing the points-to analysis, we define
a non-standal-d set of types describing the store. The types have

nothing to do with the types normally used in typed imperative
languages (c~,g., integer, float, pointer, struct).

We use types to model how storage is used in a program at
runtime (a storage model), Locations of variables and locations

created bydynamic allocation arealldescribed by types. Each type
describes a set of locations as well as the possible runtime contents

of those locations.
A type cun be viewed m a node In a storage shape graph

[CWZ90]. Each node may have edges to other nodes, which is

modelled in the type system by letting types have type components.

The storage shape graph may be cyclic for some programs, so the

types may also be recursive.
The set of types inferred for the variables of a program represents

a storage shape graph which is valid at all program points. The

storage shape graph conservatively models all the points-to relations

that mayholdatruntlrne Alias relations canalso be extracted from

the storage shape graph [EGH94].
Our goal is a points-to analysis with an almost linear time cost

complexity. The size of the storage shape graph represented by
types must therefore be linear in the size of the input program

Consequently, the maximum number of graph nodes must be linear
in the size of the input program. Additionally, each graph node may
not have more than a fixed number of out-going edges, meaning that
each type may only have a fixed number of component types,

We describe the locations pointed to by a pointer variable by a

single type. For composite objects (such as s true t objects in C).
we also describe all the elements of the object by a single type.

Describing each element in a composite object by separate types
would, for most imperative languages, imply that the size of the

storage shape graph could potentially be exponential in the size of

the input program (e g , by extreme use of t ypedef ands true t in

C). Describing the elements of composite objects by separate types
may slill be desirable, as the sum of sizes of variables is unlikely to

be exponential in the size of the input program. Extending the type
system to do so is not addressed in the present paper,

The source language allows pointers to functions Function

pointer values are described by signature types describing the types
of the argument and result values.

Values may be (or include) pointers to locations and pointers to

functions. The type of a value must therefore accommodate both

types of pointers. In our type system, a value type is therefore a pair

including a location type and a function signature type.
The non-standard set of types used by our points-to analysis can

be described by the following productions:

o! ::= ‘rx A

r ::= L I ref(~)
A := 1 /lam(ctl . ..~n)(CE., +i . ..an+m)

The a types describe values, the T types describe locations (or

pointers to locations), and the.\ types describe functions (or pointers

to functions),
Types may be recursive, and it may therefore be impossible to

write out the types directly. The types can be written out by using

type variables. Two types are not equal unless they either both are
1 or are described by the same type variable. Note that this is

different from the usual structural equality criterion on types. We

could use the structural equality criterion if we added a tag to the -r
and A types

4 Typing rules

In this section we define a set of typing rules based on the set of
non-standard types defined in the previous section. The typing rules

specify when a program is well-typed. A weI1-t yped program is one
for which the static storage shape graph indicated by the types is
a safe (conservative) description of all possible dynamic (runtime)

storage configurations. Before stating the typing rules, we argue
for using inequalities rather than equalities in the typing rules and
argue for the way we have defined the typing rule for statements
with primitive operations.

Each location in the program IS descr]bed by a single type, A

pointer to a location is described by the type of the Iocatlon pointed
to. If several locations may contain a pointer to the same location,

33

then the types of these locations must all have the same location

type component. This requirement must be reflected in the typing

rules.

Consider a simple assignment statement, x = y Assume that x
has type i-z (meaning that the location allocated to hold the value
of x has type ~z) and that y has type ~Y If a locatlon pointer
value may be assigned to x when executing the statement, then the
locatlon component of both -rX and Tv must be TP, where TP is the
type describing the pointer value being assigned to x If a function

pointer value may be assigned, then T. and TV must have the same
t’unction s]gnature component,

The “obvious” typing rule for simple assignment statements
would be

A Ex ref(a)

A ky : ref(a)

A bvelltypeci(x = y)

This rule states that this part of the program is well-typed under type
enwronment .4 if the contents of variables x and y are described by
the same type(s), Previous work has used this typing rule for simple
assignment [Ste95a],

The above typing rule is, however, too strict This IS illustrated

by the following sequence of stsrtements

a=d

X=a

y=a

Using the above rule, the content components of the types for a,
X, and y must all be the same. That is not strictly necessary, as
no pointer value is ever assigned. If x and y are used in other
parts of the program to hold pointers to disjoint locations, the above

statements would unnecessarily force all the pointed-to locations to
be described by the same type. Furthermore, if x is used in another
part of the program to hold a pointer value, the analysis results will
Indicate that both y and a may hold the same pointer value, even if

they are only assigned Integer values In the program

Given an assignment statement x = y, the content component
types for x and y need only be the same if y may contain a pointer
In order to state this requwement in a typing rule, we Introduce a

partial order on types defined as follows

t]gt2.a (t, =l)v(t, =t2)

(t, x tz)g (t, x t,) @ (t, g t,)A (t, g t,)

Given that non-pointers are represented by type J_, the requirement
can now by expressed by the following typing rule:

A kwell~ped(x = y)

The rule states that each component type of CMmust be either 1 or
equal to the corresponding component type of al,

In statements of the form x = Op(yl yn), the Op operation
may be a comparison, a bit-wise operation, an addition, etc. Con-
sider a subtraction of two pointer values. The result is not a pointer
value, but either of the two operand pointer values can be recon-
stituted from the result (given the other pointer value). The result
must therefore be described by the same type as the two input pointer
values

TheI-e are operations from which argument pointer values cannot
be reconstituted t“rom the result (e g , comparisons: <, #, etc), For
such operations, the result is not required to be described by the

same type as any input pointer values For the purposes of this

paper, we wdl treat all prlmitlve operations identically,

In Figure 3 we state the typing rules for the relevant parts of the
source language. A program is well-typed under typing environ-
ment A if all the statements of the program are well-typed under A

The typing environment A associates all variables with a type,

The typing rule for dynamic allocation Implies that a location
type is required to describe the value stored in the variable assigned

to. The type used to describe the allocated location need not be

the type of any variable m the program. The type of the allocated
location is then only Indirectly available through the type of the vari-
able assigned to, All locations allocated in the same statement will

have the same type, but locations allocated by different allocation

statements may have different types.

Figure 4 contains an example program and a typing of all the
variables occurring in the program that obeys the typing rules of Fig-

ure 3 Variables x and z must be described by the same type variable,
as a single type variable must represent the locations pointed to by
all the pointers possible stored in the locatlon for variable y,

5 Efficient type inference

The task of performing a points-to analysis has now been reduced to
the task of inferring a typing enwronment under which a program is

well-typed, More precisely, the typing environment we seek is the

minimal solution to the well-typedness problem, ~,e,, each location

type variable in the typing environment describes as few locations

as possible, In this section we state how to compute such a minimal

solution with an almost linear time complexity

The basic principle of the algorithm is that we start with the
assumption that all variables are described by different types (type
variables) and then proceed to merge types as necessary to ensure
well-typedness of different parts of the pl-ogram. Merging two types

means replacing the two type variables with a single type variable

throughout the typing environment. Joining is made fast by using
fast unionlfind data structures. We first describe the initialization
and our assumptions about how the program M represented. Then

we describe how to deal with equalities and inequalities in the

typing rules in a manner ensuring that we only have to process

each statement m the program exactly once, Finally we argue that
the algorithm has hnear space complexity and almost linear time

complexity.

5.1 Algorithm stages

In the first stage of the algorithm, we provide a typing environment
where all variables are described by different type variables A type
variable consists of a fast union/find structure (an equivalence class

representative (ECR)) with associated type information, The type

of each of the type variables in the typing environment is initially
ref(l x 1), We assume that the program is represented in some

program representation where name resolution has occurred, so we
can encode the typing environment in the program representation

and get constant time access to the type variable associated with a
variable name

In the next stage of the algorlthm, we process each statement

exactly once Type variables arejolned as necessary to ensure well-

typedness of each statement (as described below). When joining

two type variables, the associated type information is unified by
computmg the least upper bound of the two types, joining compo-
nent type variables as necessary. Joimng two types will never make
a statement that was well-typed no longer be well-typed When
all program statements are well-typed, the program 1s well-typed.

34

.4 kx ref(al) A t-x: ref(ref(_) x _)

A }y : ref(a2) A t-welltyped(x = allocate(y))
a2 a al

.4 kwellt);ed(x = y) A +x : ref(ref(a,) x _)

A Ey : ref(az)

A +x : ref(7 x _) Cq g C/]

.4ky:T A FwelltyI~ecl(*x = y]

A kwelllyped(X = &y)

A bx : ref(_ x Iam(al G)(CG,+I CUt+,n))

A }x ref(a,) A l-f, : ref(a,)

A Ry ref(ref(crz) x _) A t-r, ref(an+,)

o!~ g al V’s 6 S“ : A t-welhyped(s)

.4 Fwel[typed(X = *y) A +welltyped(X = fun(fl . . . fn)+(ri. . r,n) $)

A +x : ref(a) A t-x7 ref(a~+j)

A Ky, : ref(a,) A t-p ref(_ x Iam(al CI~)(CV~+I a,t+,~))

v,e[l rd~ts~ A t-y, : ref(ao

.4 }we[ltyped(x = Op(yI Y,t)) vLe[l. ../z]:cY:gaL

Vj G [1 .m] : %+3 g a’:+,

A l-welltyped(Xl. X~ = P(Y1. y,,))

Figul-e 3. Type rules for the relevant statement types of the source language. All variables are assumed to have been associated with a type
In ~he type ~~vlronment .4, (Distinct variables a~e assumed to have di~tin~t names, so the type environment can describe all variables in all

scopes ~~multaneously.) “_” is a wild-card value in the rules. imposing no restrictions on th~ ~ype component it rePresents

a=&x

b=&y
if p then

y = &z;

else

y=&x

fi

c=&y

a: -r] = ref(~~ x l-)

b: T2 = ref(~5 x -1)

c: 73 = ref(~j x 1)

x: TJ = ref(l x 1)

y: 75 = ref(7-~ x J-)

Figure 4 Example program, a typing of same that obeys the typing rules, and graphical representation of the corresponding storage shape
graph Note that variables x and z are described by the same type Even though types -i-l and -T-Sare structurally equivalent (as are -JZand -rs,

and r~ and ~fi), they are not considered the same types.

It’ type variables are only joined when necessary to ensure well-

typedness, the final solution will be the minimal solution we are

seeking.

5.2 Processing constraints

If lhe typing rules for a statement impose the constraint that two
types are identical, then the corresponding type variables must be

joined to obey the constraint.
An inequality constraint(Q) between two types is slightly more

difficult as it may not always be possible to determine, at the time of

processing a statement, whether the two types should be joined. If
the left hand side type variable is associated with a type other than
1, then the two type variables must be joined to meet the constraint.
Assume that the left hand side type variable is associated with the
type _L at the time a statement is processed. At this point, there is
no need 10Join the two type variables, The typing rule for another

statement may subsequently force a change of the type associated
with the type variable implying that the type variable should be
joined with the type variable on the right hand side of the current
constraint.

To deal with this, we associate each type variable with type 1

with a set of other type variables to join with, should the type ever

become anything other than 1. If an inequality relahon must hold

between two type variables, then we perform a conditional join of
the two. If the left hand side type variable has type 1, then we add

the right hand side type variable to the set associated with the left
hand side type variable. If the left hand side type variable has a type

other than 1, then a real join of the two type variables is performed
Whenever the type associated with a type variable changes from 1,
either because of a typing rule or because of unification, the type
variable must be joined with the type variables in the associated set.

The precise rules for processing each statement of the program

are given in Figure 5. The details of the join and unification opera-

tions are given in Figure 6.

5.3 Complexity

We argue that the algorithm has a linear space and almost linear

time complexity in the size of the input program,
The space cost of the algorithm is determined by the total number

of ECRS created and the number of join operations performed. The
initial number of ECRS is proportional to the number of variables
in the program. The number of ECRS created during the processing
of a single statement is either bounded by a small constant or, m
the case of a procedure call, at worst proportional to the number

35

X=y x= fun(fl fn)+(r, r,n) S“

let ref(-r] x ,\ I) = type(ecr(x)) let ref(_ x A) = type(ecr[x))

ref(~j x Jz) = type(ecr[y)) in If type(~) = 1 then

if TI # r? then CjOin(~l, TZ) settype(~, lam(al an)(G+I ctn+,m))

if}] # AZ then cjoin(~l, Az) where

x=&y
ref(a,) = type(ecr(ft)), for i S ~

let ref(Tl x _) = type(ecr(x))
ref(a,) = type(ecr(r, –n)), for z > n

-r! = ecr(y) in
else

If ‘n # TS then join(~(, T?)
let Iam(al an)(CEn+I an+~) = type(~) in

fori 6 [1 n] do
x = *y let~l x Al =a,

let ref(71 x AI) = type(ecr(x)) ref(~z x Az) = type(ecr(f,)) in
ref(~z x _) = type(ecr(y)) in if TI # T2 then join(m, TI)

if type(~z) = L then if Al # .\z then join(~z, AI)
settype(rj, ref(~l x AI)) forz~[l. ..m]do

else let -rI x AI = an+,
let ref(~s x J3) = type(~z) in ref(Tz x Az) = type(ecr(rz)) in

if 71 # T3 then cjoin(~l, T3) if ~1 # T2 then join(~l, T2)
If ,\j # .\a then cjoin(~l, ,]3) if AI # A2 then join(~l, AZ)

x = Op(yl yn). xl .X,n = p(yl. y,.):
fori~[l. ..n]do let ref(_ x A) = type(ecr(p)) In

let ref(-r x AI) = type(ecr(x)) if type(J) = 1 then
ref(T~ x Az) = type(ecr(y,)) in settype(A, lam(al %)(G+l ~n+n))

if ‘rI # r? then CjOin(~l, ~?) w hel-e
if J! # AZ then cjoin(Al, J?) CL!L= TLX~L

x = allocate(y) [T,) \,] = MakeECR(2)

let ref(T x _) = type(ecr(x)) In let lam(al CVn)(CVn+I an+,n) = type(~) in

if @pe(T) = ~ then forz~[l. ..n]do

let [cl, ez] = MakeECR(2) In let TI x AI = a,

settype(~, ref(el x ej)) ref(~z x &) = type(ecr(y,)) m

*x=y
if TI # T2 then cjoin(Tl, Tl)

let ref(T, x _) = type(ecr(x))
if .\ I # AZ then cjoin(~l, h)

fori C [1 m] do
ref(~z x Az) = type(ecr(y)) let TI x A] = an+,

lf type(~l) = 1 then ref(Tz x Az) = type(ecr(x,)) in
settype(r[, ref(Tz x h)) if TI # T2 then cjoin(~z, TI)

else

let ref(-r~ x A3) = type(~l) in
If AI # ,X2then cjoin(~j, JI)

If r? # ~3 then cjoin(Ts, ~z)
If ~2 #)3 then cjoin(~~i Jz)

Figure 5. Inference rules corresponding to the typing rules given in Figure 3 ecr(x) is the ECR representing the type of variable X, and
type(E) 1s the type associated with the ECR E cjoin(z, y) performs the conditional join of ECRS x and y, and settype(E, X) associates
ECR E with type .Y and forces the conditional joins with E. MakeECR(a) constructs a list of z new ECRS, each associated with the bottom
type, 1

36

settype(e, t): join(el, ez):

type(e) +- t let tl= type(el)

for z G pending(e) do join(e, z) tz= type(ez)

e = ecr-union(ej, e!) In

c,join(el, e~). iftl = lthen

if type(ez) = _L then type(e) +- tz

pending + {e! } U penrling(e~) iftz = 1 then

else pending(e) +-pending(el) U

,join(eljel) pending

else

unify (ref(~l x AI), r-ef(7z x h)):
for z c pending(el) do join(e, z)

if’Tl # T? then join(r[, T2)
else

if ,\l # ~! then join(.\l, .12)
type(e) +- tl
it’ t2= 1 then

)unify (lam(al G,,)(c4, +I CY,L+7n, for r c pending do join(e, z)

Iam(a{ a~,)(a{,+) a~z+,,z)) else

fori E/1. ..(n+n)]do unify(tl, t?)

let~l x Al =Qt

I-: x A? = a; In
if’ 71 # 72 then .jOin(7i, ‘r~)

It’,\l # ,\: then join(~i, ,\?)

Figure 6 Rules for unification ot’ two types represented by ECRS, We assume that ecr-union performs a [fast unionhnd) join operation on
its ECR wgurnents and returns the value of a subsequent find operation on one of them

of variables occurlng in the statement. The number of ECRS is

consequently proportlorml to the size of the input program. The
number ofjoln operations is bounded by the total number of ECRS.

The spoce cost of a Join operation amounts to the (constant) cost
of the ecr-union operation. The cost of unifying/joining component
type ECRS can be attributed to those joins, The cost of performing
a condltionzd join or a join of two type variables with type L is

constant if we use a binary tree structure to represent the “pending”

sets
The time cost of the algorithm is determined by the cost of

traversing the statements of the program, the cost of creating ECRS

and types, the cost of performing join operations, and the cost of
(fast union/find) “find” operations on ECRS, The cost of traversal

and creation of ECRS and types is clearly proportional to the size

of the input program, The cost of performing join operations IS a
constant plus the cost of ECR “find” operations. The average cost

of ,V ECR “find” operations are O(NCY(N, N)), where a is a (very

slowly Increasing) reverse Ackermann’s function [Tar83], The time

cost complexity of the algorithm is consequently O(NQ(N, N)),
where N is the size of the Input program (almost linear in the size

of the input program)

6 Experience

We have implemented a slightly improved version of the above al-

gorithm in our prototype programming system based on the Value
Dependence Graph [WCES94] and implemented in the program-

ming language Scheme [CR9 1]. Tbe implementation uses a weaker
typing rule than presented above for primitive operations return-
ing boolem values and uses predetermined transfer functions for

dil-ect calls of librsrry functions (the algorithm is thus context-

sensltlve/polymorhpic for calls to library functions) The analysis
algorithm is routinely applied to the C programs processed by the

system,
Two implementations of an earlier type inference based points-

10 armlysis algorithm [Ste95a] have been performed at University
of Callforma, San Diego: one in C [Mor95] and one in Scheme
[Gri95]. Both implementations have been augmented to model

slots of structured objects independently Our earlier algorithm was
based on the same non-standard type system as used in the present

algorithm but used stricter typing rules, implying that the results are
more conservative than they need be.

Our implementation demonstrates that running time of the al-
gol-ithm is roughly linear in the size of the input program on our
test-suite of around 50 programs. Using our own implementation,
we have performed points-to analysis of programs up to 75,000

lines of codes (an internal Microsoft tool). The running time for the
algorithm on the 75,000 line C program is approximately 27 sec-

onds (15 seconds process time) on an SGI Indigo2 workstation, or
roughly 4 times the cost of traversing all nodes in the program rep-

resentation. For a 25,000 line C program (LambdaMOO available

from Xerox PARC) the running time is approximately 8 seconds

(5.5 seconds process time). The analysis is performed as a separate
stage after the program representation has been built.

Morgenthaler’s implementation of our previous algorithm per-

forms the processing of statements during parsing of the program,

He found the parse time to increase by approximately 50% by adding

points-to analysis to the parser. Counting only the extra time for

performing the analysis, emacs (127,000 non-empty lines of code)
could be analyzed in approximately 50 seconds, and FE1t (273,000
non-empty lines of code) could be analyzed m approximately 82 sec-
onds on a SparcStation 10 [Mor95]. The present algorithm can also

easily be implemented to process the statements during parsing. The
running times of the previous and the present algorithm are roughly

the same (only minor fluctuations).
Table 1, Table 2, and Table 3 illustrate the distribution of pro-

gram variables per type variable for a number of benchmark pro-
grams. The programs are from BI1l Landi’s and Todd Austin’s
benchmark suites for their analyses [LRZ93, ABS94] as well as

the SPEC’92 benchmark suite. LambdaMOO is a large C program
available from Xerox PARC (we used version 1.7. 1).

Table 1 gives the raw distribution for the total analysis solution
when performed on an (almost) unoptimized version of the program

representation. Most of the type variables describe the locatlon

‘At the ttnw of wnong, this is the kugest pqyam Ieplesented USIII: the VDG
profy om Ieplesentzttion

37

of variables whose addresses are never taken. The type variables
descnb]ng zero program variables represent non-l types describing

user functions and locations allocated by the runtlme system (e.g .
the Iocatlons for the argv and argc arguments to main).

Table 2 gives the dlstrlbutlon for those type variables that occur
as location components of other types In the solutlon of the analysls

performed on an (almost) unoptimized version of the progyam rep-
I-esentatlon These type variables represent program variables that
are pointed to by other variables They do not necessai-lly repre-

sent ill the program varmbles that are pointed to in the program,
as minor optimization are performed on the VDG program repre-

sentation as It is being built; some of these optimization elimlnate
storing values in variables if this is trivial to avoid, as described

in [WCES94] The number of type variables describing more than

one program location is reduced relative to Table 1 The reduction
is mostly c~used by eliminating type variables for values passed to

functions but never pointed to by a pointer. The values would not
have been grouped In the first place, if a polymorphic analysis had

been used.
Table 3 gives the distribution for the locatlon component type

variables in the solution of the analysis performed on an optimized

version of the program repl-esentatlon The ophmizations performed

on the program representation include a local transformation elimi-
nating all local variables whose address is never taken These type
variables describe the program variables that are the hardest to get
good analysis results for. The program variables are all pointed
to by other program variables which cannot be eliminated by local
transl’ormatlons. Many of the program variables described by a type
variable representing no other program variables are candidates for

global optimization such as being represented by a register rather
than a memory location

The distributions shown in the tables demonstrate that there are
a considerable number of type variables describing only a single

program variable, even for those type variables describing pointed
to program variables. Most other type variables describe a small
number of program variables, There are a couple of major excep-

tions: type variables describing sevel-al hundred program locations

However, for most of the programs, the locations described by

these exceptional type variables are all global constant strings For

example, for the LambdaMOO program, the program locations de-
scribed by the “largest” single type variable are all strings passed

as argument to user defined logging and tracing procedures. Any
context-insensitive analysis is bound to show a similar number of
possible pointer values for the formal parameters of these logging

and tracing procedures.

Our subjective evaluation of the quality of the analysis results
is that they are pretty good, given that the contents of all the slots of
structured variables are represented by a single value type How-
ever, many programs use data structures such as trees and lists as
central data structures. For these programs the inabillty to distin-
guish between structure elements is a serious loss.

7 Related work

Hengleln used type inference to perform a binding time analysis
In almost hnear time [Hen91], His types represent binding time
values He presents a set of typing rules, extract constraints from

the typing rules, and finally solve the constraints by using fast

umon/find data structures Our points-to analysis algorithm was
inspired by Henglein’s type inference algorithm.

The points-to analysls that closest resembles our analysls is
Welhl’s [Wei80], His analysis is also flow-insensitive, interpro-
cedural, and deals with pointers to functions, His algorithm does
not assume that ahas relations are reflexlve and transitive, and WIII

Table 1, Number of type variables describing a given number of
program variables for ~he unoptlmized program re~resentation For
example, for Iandi. allroots, there are 67 type variables each describ-
ing the location of a single program variable.

38

——

—

—

—
.
.

;
-,
—

3
k

~

;
3
5
—

Table 2 Number of type variables describing a given number of

pointed to program variables for the unoptim-ized program repre-
sentation

Table 3: Number of type variables describing a given number of

pointed to program variables for the optimized program representa-
tion.

therefore in some cases produce better results than our algorithm.

On the other hand, his algorithm does not distinguish between one
or several levels of pointer Indirection Additionally, his algorithm
works best lf a call graph]s avmlable. and it does not deal elegantly
with recursive functions His rdgorithm has a time cost complexity
that is cubic in the size of the input program whereas our algorlthm

has an almost linear time cost complexity
More precise polrrts-to analysis exist, e.g., [CWZ90, EGH94,

WL95, Ruf95] These analyses we all flow-sens]tlve]nterprocedu-
ral dara flow analyses Both Chase’s algorithm [CWZ90] and Ruf’s
algol-ithm [Rul’95] are context-insensitive and have polynomial time

complexity. The two other algorithms are context-sensltlve, mean-

ing that the algorithm distinguishes between effects of different

calls of the same funchon instead of computing just one effect that

is valid for all calls of the functionq. The algorithm by Emaml, et.

al., [EGH94] has a exponential time complexity, as it performs a vlr-
tuai unfolding of all non-recursive calls. The algorithm by Wilson
and Lam [WL95] also has exponential time complexity but IS likely
to exhibit polynomial time complexity in practice as it uses partial
transfer functions to summarize the behavior of already armlyzed

functions and procedures,
Whereas a points-to analysis builds and maintains a model of

the store during analysis, an alias analysis builds and maintains a list

of access path expressions that may evaluate to the some Iocatlon
(in other words: they are aliased). The most relevant alias analysis
algorithms are [LR92, LRZ93] The length of access-paths are k-

Ilmited, using a relahvely simple truncation mechanism to eliminate
extra path elements.

Deutsch presents an alias analysls for an imperative subset of’
ML [Deu92] Access paths are defined in terms of monomial rela-
tions (a kind of multi-variable polynomial expl-ession with structure
accessol-s as the variables) The analysls M thel-efore only relevant

for strongly typed languages such as ML and stl-ongly typable pro-

grams written in weakly typed languages such as C (as shown in
[Deu94]). Access paths are combined by unification

A higher order (context-sensitive) points-to analysis by type
inference has been developed by Tofte and Talpin for the purposes

of creating an ML interpreter without a garbage collector [TT94]
The analysis is based on polymorphic type inference over a non-

standard set of types They assume a runtime model that makes

allocation regions explicit, where allocation regions resemble the

storage shape graph nodes of our algorithm. Their algorithm does
not deal with objects that may be updated after being assigned an

initial value (as IS normal for imperative programs), Whether their
work can be generalized to work for general imperative programs

is an open question.
Andersen defines context-sensitive and context-msensltlve anal-

yses that are flow-insensitivel points-to analysis in terms of con-
straints and constraint solving [And94]. The context-sensitive al-

gorithm distinguishes between immediate calling contexts in a 1-
limited version of the static program call graph, effectively taking
two layers of context into consideration, The values being con-

strained are sets of abstract locations. Andersen’s algorithm allows
an abstract locatlon to be a member of non-identical sets. Our algo-
rithm only allows an abstract location to be described by one type
representing a set of abstract locations. The size of the solution
of hls context-insensitive algorithm is 0(A2), and the size of the

solution of his context-sensitive algorithm is 0(.4i), where A is the
number of abstract locations, which in turn IS O(exp N), where N

30UI ,IIMIYSIS IS context-] menwt!ve became [he type sy$tem IS monomol-phic If
we hxl wwci LIpolymcmph]c type system WK1polymorpluc type In felence, the dgonthm

would Ih:lve t3een context-sems]uve

4Anderstm uses the telm “]t]tl-,[.p[oced~l[,ll” to Incdn cot)text-][]hti>hltlve” md tbe

ten>> “i!]tel- ploccdural” to !IMU1“context-sen sltlve”

M the size of the programs In contrast, the size of the solution of

our algorithm IS O(N).

Chol et al present both flow-sensltlve and flow-rnsensitive anal-
yses [CBC93] The flow-lnsensltlve analysis algorithm IS described
in more detail in [BCCH95] Their algorithm computes alias infor-

mation rather than points-to information but uses a representation
that shares many properties with the storage shape graph The rep-

resentation allows abstract locations to be members of non-identical

sets Their algorithm is based on Iterated processing of the program

statements and lt thus IIkely to be slower than a similar constraint

based algorithm (such as Andersen’s context-sensltlve algorithm

but only considering one level of calling context).

The algorlthm presented in this paper is an extension of another
almost linear points-to analysis algorithm [Ste95a]. Bill Landi has

independently arrived at the same earlier algorithm [Lan95]. Bar-

bara Ryder and Sean Zhang are also working on a version of the
earlier algorithm with the extension that elements of composite ob-

Jects are represented by separate type components [Zha95].

8 Conclusion and Future Work

We have presented a flow-insensitive, interprocedural, context-
insensitlve points-to analysls based on type reference methods with
an almost linear time complexity. The algorithm has been imple-

mented and shown to be very efficient in practice, and we have

found the results to be much better than the results of intraprocedu-

ml analyses

A problem with the analysis as presented is that It does not
disambiguate information for different elements of structured ob-
jects The type system can be extended to do so, but the resulting
analysis algorithm will not have an almost linear time complexity.

The algorithm will still be asymptotically faster than other exist-
ing algorithms that does distinguish between different elements of

structured objects
Our main interest has been developing efficient interprocedural

points-to analysis algorithms for large programs. We would like
to develop efficient algorithms yielding greater precision than the
algorithm presented in this paper, Given the algorithm presented in

this paper, there are two possible directions to investigate.

One way to obtain improved results is to develop an efficient

flow-sensitive algorithm, The results from the algorithm presented
in the present paper can be used to prime a data flow analysis

algorithm or otherwise reduce the amount of work to be done by the

algorithm. One possible method is splitting of functional stores as

suggested in [Ste95b].
Another way to obtain Improved results is to develop an efficient

flow-insensitive, context-sensitive algorithm. This can be done
using types to represent sets of locations, as in the almost linear
time algorithm, but using polymorphic instead of monomorphic
type inference methods.

We are currently pursuing both directions of research.

Acknowledgements

Roger Crew, Michael Ernst, Erlk Ruf, Ellen Spertus, and Damel
Weise of the Analysts group at Microsoft Research co-developed
the VDG-based programming environment without which this work
wou~d not have come into existence, Members of the Analysts group
also commented on and proofread versions of this paper, The au-

thor also enjoyed interesting discussions with David Morgenthaler,
William Griswold, Barbara Ryder, Sean Zhang, and Bill Landi on

‘To be ta{r, A IS probably propoltlonJ to IV In prfict]ce

40

various points-to analysis algorithms with almost linear time com-

plexity, We would IIke to thank Bill Landl and Todd Austin for

sharing their benchmark suites with us.

References

[ABS94]

[And94]

[ASU86]

[BCCH95]

[CBC93]

[CR91]

[CWZ90]

[Deu92]

[Deu94]

[EGH94]

[Gri95]

Todd M Austin, Scott E Breach, and Gurindw S Sohi.

Efficient detechon of all pointer and array access er-
rors In SIGPLAN ’94: Conferelwc cm Programming

Lcmgl{age Design cmd lilzlj[ej]leiztatlolz, pages 290-301,
June 1994,

Lars Ole Andersen. Program Analysis cmd Special-
i:atiolz for the C Progra}n]}iing Language. PhD the-

sis, Department of Computer Science, University of

Copenhagen, May 1994.

Alfred V. Aho, Ravi Sethi, and Jeffrey D. UII-

man. Compi[ers-Principles, Techniques, and Tools.

Addison-Wesley, 1986

Michael Burke, Paul Carini, Jong-Deok Choi, and
Michael Hind Flow-insensitive interprocedural alias
malysls in the presence of pointers In Proccedmgs

from the 7th International Workshop on Languages

znd Compilers for Parallel Computing, volume 892 of

Lecture Notes in Compater Science, pages 234-250.
Springer-Verlag, 1995. Extended version published as
Research Report RC 19546, IBM T.J. Watson Research

Center, September 1994.

Jong-Deok Choi, Michael Burke, and Paul Carini. Ef-

ficient flow-sensitive interprocedural computation of
pointer-induced aliases and side effects. In Proceed-

ings of the Twentieth Annaal A CM SIGPLAN-SIGA CT

Symposium o1? Principles of Programmin,g Languages,

pages 232-245, Charleston, South Carolina, January
1993,

William Clinger and Jonathan Rees (editors), RevisedJ

report on the algorithmic language Scheme, November

1991.

David R. Chase, Mark Wegman, and F. Kenneth

Zadeck Analysis of pointers and structures. In Pro-

ceedings of the SIGPLAN ’90 Conference on Program-

ming Language Design and Implementation, pages

296–3 10, June 1990.

Alain Deutsch A storeless model of aliasing and its
abstractions using firrite representations of right-regular
equiwdence relations. In Internat~ona/ Conference on

Cowpater Languages, pages 2–13 IEEE. April 1992.

Alain Deutsch. Interprocedural may-alias analysis for
pointers Beyond k-limiting. In SIGPLAN’94: Con-

ference on Programming Language Design and [ntp!e-

mentation, pages 23G241, June 20-241994.

Maryam Emami, Rakesh Ghiya, and Laurie J. Hendren.
Context-sensitive interprocedural points-to analysis in
the presence of function pointers, In SIGPLAN’94:
Conference on Programming Language Design and Im -

/,/eme/ttation, pages 242–256, June 20-241994.

William G Griswold Useofalgorithmfrom [Ste95a] in
a program restructuring tool. Personal communication
at pLD1’95. June 1995.

[Hen91]

[KR88]

[Lan95]

[LR92]

[LRZ93]

[Mor95]

[Ruf95]

[Ste95a]

[Ste95b]

[Tar83]

[TT94]

Fritz Henglein. Efficient type inference for higher-order

binding-time analysis. In Functional Programming and

Computer Architecture, pages 448-472, 1991.

Brian W. Kernighan and Dennis M, Ritchie. The C

Programming Language, Second edition. Prentice Hall,

1988,

William Landi. Almost linear time points-to analyses.
Personal commumcatlon at POPL’95, January 1995

William Landi and Barbara G. Ryder. A safe approx-

imate algorithm for interprocedural pointer aliasing.
In Proceedings of the SIGPLAN ’92 Conference on

Programtning Language Design and I]tl]?lejlzetztcltiotz,

pages 235–248, June 1992.

William A. Landi, Barbara G. Ryder, and Sean Zhang.

Interprocedural modification side effect analysis with

pointer aliasing. In Proceedings of the SIGPLAN ’93

Corzfet’ence on Programmmg Language Design and [m-

plementat~on, pages 56–67. June 1993.

David Morgenthaler. Poster presentation at PLDI’95,
June 1995.

Erik Ruf. Context-insensitive alias analysis reconsid-
ered In SIGPLAN ’95 Conference on Programming

Langaage Design and [wrplementation, pages 13–22,

June 1995.

Bjarne Steensgaard. Points-to analysls in almost lin-

ear time. Technical Report MSR-TR-95-08, Microsoft

Research, March 1995.

Bjarne Steensgaard. Sparse functional stores for im-

perative programs. In A CM SIGPLAN Workshop on In-

termediate Representations (IR ‘95), pages 62–70, San
Francisco, CA, January 22 1995. Proceedings appear

as March 1995 issue of SIGPLAN Notices.

Robert E. Tarjan. Data structures and network flow

algorithms. In Regional Conference Series in Applied

Mathematics, volume CMBS 44 of Regional Confer-

ence Series in Applied Mathematics. SIAM, 1983.

Mads Tofte and Jean-Pierre Talpin. Implementation of

the typed call-by-value A-calculus using a stack of re-

gions. In Proceedings 21st SIGPLAN-SIGACT Sympo-

sium on Principles of Programming Languages. pages
188–201, January 1994.

[WCES94] Daniel Weise, Roger F, Crew, Michael Ernst, and

Wei80]

WL95]

[Zha95]

Bjarne Steensgaard. Value dependence graphs: Rep-
resentation without taxation. In Proceedings 21st

SIGPLAN-SIGA CT $wtposiutn on Principles of Pr-o-

gramming Languages, pages 297–3 10, January 1994.

William E. Weihl. Interprocedural data flow analysis in

the presence of pointers, procedure variables, and label
variables. In Conference Record of the Seventh An-

nual ACM Symposium on Principles of Programming

Languages, pages 83-94, January 1980.

Robert P. Wilson and Monica S. Lam. Efficient context-
sensitive pointer analysis for C programs. In SIG-
PLAN’95 Conference on Programtning Latlguage De-

sign and /l?t/~letnelztatiorz, pages 1-12, June 1995.

Sean Zhang. Poster presentation at PLDI’95, June
1995.

41

