
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 21, NO. 1, JANUARY 2003 1

Language-Based Information-Flow Security
Andrei Sabelfeld and Andrew C. Myers

Abstract— Current standard security practices do not pro-
vide substantial assurance that the end-to-end behavior of a
computing system satisfies important security policies such as
confidentiality. An end-to-end confidentiality policy might assert
that secret input data cannot be inferred by an attacker through
the attacker’s observations of system output; this policy regulates
information flow.

Conventional security mechanisms such as access control
and encryption do not directly address the enforcement of
information-flow policies. Recently, a promising new approach
has been developed: the use of programming-language tech-
niques for specifying and enforcing information-flow policies.
In this article we survey the past three decades of research on
information-flow security, particularly focusing on work that uses
static program analysis to enforce information-flow policies. We
give a structured view of recent work in the area and identify
some important open challenges.

Index Terms— Computer security, confidentiality, information
flow, noninterference, security-type systems, covert channels,
security policies, concurrency.

I. INTRODUCTION

PROTECTING the confidentiality of information manip-
ulated by computing systems is a long-standing yet in-

creasingly important problem. There is little assurance that
current computing systems protect data confidentiality and
integrity; existing theoretical frameworks for expressing these
security properties are inadequate, and practical techniques for
enforcing these properties are unsatisfactory. In this article
we discuss language-based techniques—in particular, program
semantics and analysis—for the specification and enforcement
of security policies for data confidentiality.

Language-based mechanisms are especially interesting be-
cause the standard security mechanisms are unsatisfactory
for protecting confidential information in the emerging, large
networked information systems. Military, medical, and finan-
cial information systems, as well as web-based services such
as mail, shopping, and business-to-business transactions are
applications that create serious privacy questions for which
there are no good answers at present.

Analyzing the confidentiality properties of a computing
system is difficult even when insecurity arises only from
unintentional errors in the design or implementation. Addi-
tionally, modern computing systems commonly incorporate

Manuscript received April 15, 2002; revised August 21, 2002. This work
was supported in part by ONR Grant N00014-01-1-0968, in part by NSF
CAREER Award 0133302, and in part by an Alfred P. Sloan Research Fel-
lowship. Any opinions, findings, conclusions, or recommendations contained
in this material are those of the authors and do not necessarily reflect the
views of the Department of the Navy, Office of Naval Research, the National
Science Foundation, or the Alfred P. Sloan Foundation.

A. Sabelfeld and A. C. Myers are with the Computer Science Depart-
ment, Upson Hall, Cornell University, Ithaca, NY 14853, USA (e-mail:
andr{ei, u}@cs.cornell.edu).

untrusted, possibly malicious hosts or code, making assurance
of confidentiality still more difficult.

The standard way to protect confidential data is (discre-
tionary) access control: some privilege is required in order to
access files or objects containing the confidential data. Access
control checks place restrictions on the release of information
but not its propagation. Once information is released from
its container, the accessing program may, through error or
malice, improperly transmit the information in some form. It is
unrealistic to assume that all the programs in a large computing
system are trustworthy; security mechanisms such as signature
verification and antivirus scanning do not provide assurance
that confidentiality is maintained by the checked program. To
ensure that information is used only in accordance with the
relevant confidentiality policies, it is necessary to analyze how
information flows within the using program; because of the
complexity of modern computing systems, a manual analysis
is infeasible.

Belief that a system is secure with respect to confidentiality
should arise from a rigorous analysis showing that the system
as a whole enforces the confidentiality policies of its users.
This analysis must show that information controlled by a con-
fidentiality policy cannot flow to a location where that policy
is violated. The confidentiality policies we wish to enforce
are, thus, information-flow policies and the mechanisms that
enforce them are information-flow controls. Information-flow
policies are a natural way to apply the well-known systems
principle of end-to-end design [1] to the specification of
computer security requirements; therefore, we also consider
them to be specifications of end-to-end security. In a truly
secure system, these confidentiality policies could be precisely
expressed and translated into mechanisms that enforce them.
However, practical methods for controlling information flow
have eluded researchers for some time.

Recently, a promising new approach has been developed by
the authors and others: the use of type systems for information
flow (e.g., [2]–[14]). In a security-typed language, the types
of program variables and expressions are augmented with
annotations that specify policies on the use of the typed data.
These security policies are then enforced by compile-time
type checking, and, thus, add little or no run-time overhead.
Like ordinary type checking, security-type checking is also
inherently compositional: secure subsystems combine to form
a larger secure system as long as the external type signatures
of the subsystems agree. The recent development of semantics-
based security models (i.e., models that formalize security in
terms of program behavior) has provided powerful reasoning
techniques (e.g., [3], [5], [6], [9]–[17]) about the properties
that security-type systems guarantee. These properties increase
security assurance because they are expressed in terms of
end-to-end program behavior and, thus, provide a suitable

2 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 21, NO. 1, JANUARY 2003

vocabulary for end-to-end policies of programs.
The rest of the article is organized as follows. Section II

gives some background on the problem of protecting con-
fidentiality, including why existing security techniques are
unsatisfactory. Section III illustrates the basics of information-
flow techniques by giving examples of a security condition and
a security-type system. Section IV gives a structured overview
of recent work in the field. Section V identifies important
challenges for future work. The article closes in Section VI.

II. BACKGROUND

Terminology for security properties relating to confidential-
ity is somewhat inconsistent. This article is about the language-
based specification and enforcement of strong confidentiality
policies based on information flow. In this framework, it is
assumed that computation using confidential information is
possible, and that it is important to prevent the results of
the computation from leaking even partial information about
confidential inputs. This kind of security was described in
Lampson’s seminal article [18] as information confinement,
and has also been known as secrecy. However, both “con-
finement” and “secrecy” have been used to describe related
but weaker security properties. In the context of capability
systems, “confinement” refers to the ability to prevent capabil-
ities (and hence authority) from being transmitted improperly.
Similarly, work on cryptographic protocols often builds on the
Dolev–Yao model [19], where secret information is assumed
to be indivisible and can be leaked only by insertion in its
entirety into a message. Finally, “privacy” is sometimes used
to refer to the protection of the confidentiality of a principal,
but is also sometimes used as a synonym for anonymity. For
clarity we use the term confidentiality. Unless otherwise stated,
the term security refers to confidentiality in this article.

A. Standard Security Mechanisms

Although the difficulty of strongly protecting confidential
information has been known for some time, the research
addressing this problem has had relatively little impact on the
design of commercially available computing systems. These
systems employ security mechanisms such as access control,
capabilities, firewalls, and antivirus software; it is useful to see
how the these standard security mechanisms fall short.

Access control, as embodied in access-control lists [20]
and capabilities [21], [22], is an important part of the current
security infrastructure. For example, a file may be assigned
access-control permissions that prevent users other than its
owner from reading the file; more precisely, these permissions
prevent processes not authorized by the file owner from
reading the file. However, access control does not control how
the data is used after it is read from the file. To soundly enforce
confidentiality using this access-control policy, it is necessary
to grant the file access privilege only to processes that will
not improperly transmit or leak the confidential data—but
these are precisely the processes that obey a much stronger
information-flow policy! Access-control mechanisms cannot
identify these processes; therefore, access control, while use-
ful, cannot substitute for information-flow control.

Other common security enforcement mechanisms such as
firewalls, encryption, and antivirus software are useful for pro-
tecting confidential information. However, these mechanisms
do not provide end-to-end security. For example, a firewall
protects confidential information by preventing communica-
tion with the outside. In practical systems, however, firewalls
permit some communication in both directions (e.g., [23]);
whether this communication violates confidentiality lies out-
side the scope of the firewall mechanism. Similarly, encryption
can be used to secure an information channel so that only
the communicating endpoints have access to the information.
However, this encryption provides no assurance that once the
data is decrypted, the computation at the receiver respects the
confidentiality of the transmitted data. Antivirus software is
based on detecting patterns of previously known malicious
behavior in code and, thus, offers limited protection against
new attacks.

B. Related Work on Language-Based Security

Language-based mechanisms have been used for security
goals other than protecting confidentiality. Perhaps the best-
known language-based security mechanism is the Java run-
time environment, which provides a well-known set of security
mechanisms for Java applets, including the bytecode veri-
fier [24], the sandbox model [25], and stack inspection [26].
All three of these mechanisms are language-based—that is,
enforced through the Java language—although only the byte-
code verifier uses static program analysis. None of these
mechanisms is intended to control information flow, and,
therefore, they are not effective at protecting confidential data.
The bytecode verifier ensures only that applications respect the
Java type system, so that object references cannot be forged
and private fields cannot be directly accessed. Protection of
private fields is important for confidentiality but because it is
static, it is less powerful than access-control mechanisms. The
sandbox model restricts what classes a Java applet can name,
but a malicious applet may violate confidentiality by commu-
nicating with the host from which it was downloaded. Stack
inspection is a dynamic access-control mechanism; although
it helps protect integrity, it does not address confidentiality.

Language-based techniques are also used in other ongoing
security research, where the goal is to use type safety to protect
the machine against subversion by mobile code (e.g., [24],
[27]–[29]), although some more general security policies can
be enforced [30]–[33]. However, none of this language-based
work addresses end-to-end security policies.

C. Covert Channels

Mechanisms for signaling information through a computing
system are known as channels. Channels that exploit a mech-
anism whose primary purpose is not information transfer are
called covert channels [18]; they pose the greatest challenge
in preventing improper information leaks. Covert channels fall
into several categories:

• Implicit flows signal information through the control
structure of a program.

SABELFELD AND MYERS: LANGUAGE-BASED INFORMATION-FLOW SECURITY 3

• Termination channels signal information through the ter-
mination or nontermination of a computation.

• Timing channels signal information through the time at
which an action occurs rather than through the data
associated with the action. The action may be program
termination; that is, sensitive information might be ob-
tained from the total execution time of a program.

• Probabilistic channels signal information by changing
the probability distribution of observable data. These
channels are dangerous when the attacker can repeatedly
run a computation and observe its stochastic properties.

• Resource exhaustion channels signal information by the
possible exhaustion of a finite, shared resource, such as
memory or disk space.

• Power channels embed information in the power con-
sumed by the computer, assuming that the attacker can
measure this consumption.

Which covert channels are a concern depends on what
attackers can observe of the computing system. For example,
power channels are important for smart cards, because they
must draw their power from the untrusted terminal into which
they are inserted. A program that is secure on an abstract
computer with no power requirements might be part of a
larger, insecure system when it is run on a real computer.
Thus, a computing system can be said to protect confidential
information only with respect to a model of what attackers
and users are able to observe of its execution.

D. Integrity

Biba [34] first observed that integrity can be treated as a
dual to confidentiality, and enforced by controlling information
flows. Confidentiality requires that information be prevented
from flowing to inappropriate destinations; dually, integrity
requires that information be prevented from flowing from
inappropriate sources. Integrity has an important difference
from confidentiality: a computing system can damage integrity
without any interaction with the external world, simply by
computing data incorrectly. Thus, strong enforcement of in-
tegrity requires proving program correctness, often a daunting
obstacle.

E. Mandatory Access Control

Early work on the confidentiality problem, such as that of
Fenton [35], [36] and Bell and LaPadula [37], [38], devel-
oped mandatory access control. In this approach, each data
item is labeled with a corresponding security level that is a
simple confidentiality policy. Information flow is controlled
by augmenting the ordinary computation of data within a
running program with a simultaneous computation of the
corresponding label that controls its future dissemination.
This approach, prescribed by the U.S. Department of Defense
“orange book” [39] for secure systems, has proved to be too
restrictive for general use.

Apart from the obvious computational and storage overhead,
the weakness of purely run-time enforcement mechanisms
is in identifying implicit information flows [40]. Implicit
flows arise from the control structure of the program, as

h := h mod 2;
l := 0;
if h = 1 then l := 1

else skip

Fig. 1. An implicit flow.

opposed to explicit flows which are caused by directly passing
confidential data to a public variable. For simplicity, let us
suppose that there are two sensitivity levels, “high” and “low,”
corresponding to greater and lesser confidentiality respectively.
Consider the code of Figure 1, which contains a flow from the
high variable h to the low variable l. This code is insecure,
because it has exactly the same effect as the explicit flow in the
assignment l := h mod 2. Clearly, the insecurity in this code
arises from the assignment l := 1 in a control context that
is conditioned upon the confidential variable h. Mandatory
access control can catch this assignment by introducing a
process sensitivity label [39] that keeps track of the sensitivity
of the data used to control the process. The assignment to l
is then detected at run time because a high process updates
a low variable. However, consider the case where h �= 1: no
assignment to l (and hence, no run-time check) occurs, yet the
value of the high variable h can be learned by observing that
l = 0 holds. In fact, any variable or data structure must be
assumed to contain confidential information if it might have
been modified within the if statement—or inside any function
called from it. Determining which modifications are possible
requires evaluating all possible execution paths of the program,
which is not feasible at run time.

Confidentiality can be obtained in this example by ensuring
that the process sensitivity label remains high throughout the
rest of the program, effectively treating all values read from
variables as confidential after the if statement completes. In
this approach the process label must increase monotonically
in sensitivity throughout execution. Any reduction in the
sensitivity of the process label (for example, at the return from
a procedure [41]), creates a possible security violation through
an implicit flow like the one above.

This effect of monotonically increasing labels is known
as label creep, and is a problem for dynamic enforcement
mechanisms. When a variable or field in a data structure
is assigned a value of different sensitivity than the one it
currently contains, it is necessary to apply the maximum of
the two labels to the stored value. Thus, data labels tend to
creep upwards as well. Label creep makes dynamic labeling
systems too restrictive to be generally useful, because the
results of computation tend to be labeled too sensitively for
their intended use [41].

F. Static Information-Flow Control

Denning and Denning [40] first observed that static pro-
gram analysis can also be used to control information flow
with increased precision and low run-time overhead. Static
characterizations of information flow have been implemented
using theorem provers [42], [43]. Information-flow analyses
can also be performed by type checking, which is the focus of

4 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 21, NO. 1, JANUARY 2003

this article. The type-checking approach has been implemented
in the Jif compiler [7], [44].

In the type-checking approach, every program expression
has a security type with two parts: an ordinary type such as int,
and a label that describes how the value may be used. Unlike
the labels used by mandatory access-control mechanisms,
these labels are completely static: they are not computed at
run time. Because of the way that type checking is carried
out, a label defines an information-flow policy on the use of
the labeled data. Security is enforced by type checking; the
compiler reads a program containing labeled types and in type-
checking the program, ensures that the program cannot contain
improper information flows at run time. The type system
in such a language is a security-type system that enforces
information-flow policies.

The ability to track implicit flows accurately is one of the
major advantages of static enforcement of information-flow
control. To control implicit flows correctly, we introduce a
program-counter label (pc) that tracks the dependencies of
the program counter. Consider the example of Figure 1 again.
In the branches of the if statement, the static label pc is
high , capturing the dependency of the program counter on
h. An assignment is considered secure only if the label on the
assigned variable is at least as restrictive as pc. The second
assignment to l (whose label is low) occurs in a control context
where pc is high , which justifies the rejection of the program
as insecure.

The program-counter label corresponds to the dynamic
process sensitivity label used in mandatory access control, but
there is an important difference: the statement following the if
statement, if any, can be assigned the same static pc label as
the statement preceding it. This assignment is secure because
arriving at the following statement tells us nothing about h:
the statement is executed regardless of the value of h.

It may seem surprising that static checking can improve
accuracy. The reason is that dynamic enforcement only has
information about a single program execution, but compile-
time type-checking can prove that no possible execution paths
within the if statement contain insecure assignments. This is
a consequence of the general fact that confidentiality is not a
property of a single execution path, but rather a property of
the set of all executable paths [45], [46].

Notice that if a branch of the if statement of Figure 1 did
not terminate, an attacker might infer the value of h from
the termination or nontermination of the program. This is an
example of a termination covert channel. We discuss this and
other covert channels in Section IV-C.

G. Noninterference

If a user wishes to keep some data confidential, he or
she might state a policy stipulating that no data visible
to other users is affected by confidential data. This policy
allows programs to manipulate and modify private data, so
long as visible outputs of those programs do not improperly
reveal information about the data. A policy of this sort is a
noninterference policy [47], because it states that confidential
data may not interfere with (affect) public data.

C ::= skip | var := exp | C1; C2

| if exp then C1 else C2 | while exp do C

Fig. 2. Command syntax.

An attacker (or unauthorized user) is assumed to be allowed
to view information that is not confidential (that is public).
The usual method for showing that noninterference holds is
to demonstrate that the attacker cannot observe any difference
between two executions that differ only in their confidential
input [48]. Noninterference can be naturally expressed by
semantic models of program execution. This idea goes back
to Cohen’s early work on strong dependency [49], [50].
McLean [51] argues for noninterference for programs in the
context of trace semantics. However, neither work suggests an
automatic security enforcement mechanism.

III. BASICS OF LANGUAGE-BASED INFORMATION FLOW

Recently, techniques for proving that a security-type system
enforces noninterference have been developed for increasingly
complex programming languages. In this section, we introduce
this approach by exploring a simple security-type system that
enforces a noninterference security policy.

Consider the simple imperative language with the syntax
given in Figure 2. This language has skip, assignment, sequen-
tial composition, conditional, and while-loop constructs. As
before, we write h and l for typical variables of high and low
confidentiality, respectively. We assume that expressions exp
are formed by applying total arithmetic operations to constants
and variables.

A. Semantics-Based Security

Noninterference for programs essentially means that a vari-
ation of confidential (high) input does not cause a variation of
public (low) output. This intuition can be rigorously formalized
using the machinery of programming-language semantics. We
assume that computation starts in an input state s = (sh, sl), a
pair consisting of the initial values of h and l, respectively. The
program either terminates in an output state s ′ = (s′h, s′l) with
output values for the high and low variables, or diverges. Thus,
the semantics �C� of a program (command) C is a function
�C� : S → S⊥ (where S⊥ = S ∪ {⊥} and ⊥ /∈ S) that maps
an input state s ∈ S either to an output state �C�s ∈ S, or to
⊥ if the program fails to terminate. The variation of high input
can be described as an equivalence relation =L; two inputs are
equivalent whenever they agree on low values (i.e., s =L s′

iff sl = s′l). The observational power of an attacker can be
characterized by a relation ≈L on behaviors (as defined by the
semantics) such that two behaviors are related by ≈L iff they
are indistinguishable to the attacker. Relation ≈L is said to
reflect the low view of the system. It is often an equivalence
relation but is at least symmetric and reflexive. For a given
semantic model, noninterference is formalized as follows: C
is secure iff

∀s1, s2 ∈ S. s1 =L s2 =⇒ �C�s1 ≈L �C�s2 (∗)

SABELFELD AND MYERS: LANGUAGE-BASED INFORMATION-FLOW SECURITY 5

[E1–2]
 exp : high
h /∈ Vars(exp)

 exp : low

[C1–3] [pc]
 skip [pc]
h :=exp

exp : low

[low]
 l :=exp

[C4–5]
[pc]
 C1 [pc]
 C2

[pc]
 C1; C2

 exp : pc [pc]
 C

[pc]
 while exp do C

[C6–7]

 exp : pc [pc]
 C1 [pc]
 C2

[pc]
 if exp then C1 else C2

[high]
 C

[low]
 C

Fig. 3. Security-type system.

which reads “if two input states share the same low values,
then the behaviors of the program executed on these states are
indistinguishable by the attacker.” The particular model of the
observable behavior depends on the desired security property.
For example, in our language we may set s ≈L s′ iff s, s′ ∈
S implies s =L s′. Under this assumption, condition (∗)
corresponds to the absence of strong dependency [49], [50] of
the variable h on the variable l. According to such a condition,
the program h := l+4 is secure because the low output (which
is the same as low input) is unaffected by changes to the high
input. The program (if l = 5 then h := h + 1 else l := l + 1)
is also secure because the final values of l only depend
on the initial value of l. However, the programs l := h
and (if h = 3 then l := 5 else skip) are clearly insecure: for
example, taking 2 and 3 as initial high values gives different
final values for l. For the former program with 0 as the initial
value of l we have (2, 0) =L (3, 0), but �l := h�(2, 0) =
(2, 2) �≈L (3, 3) = �l := h�(3, 0).

B. A Security-Type System

A security-type system is a collection of typing rules that
describe what security type is assigned to a program (or ex-
pression), based on the types of subprograms (subexpressions).
We write
 exp : τ to mean that the expression exp has type
τ according to the typing rules. This assertion is known as
a typing judgment. Similarly, the judgment [pc]
 C means
that the program C is typable in the security context pc. For
our purposes, the security context is just the program counter
label pc (cf. Section II-F).

Figure 3 presents the typing rules for our simple language.
(This system is, in fact, equivalent to a type system by Volpano
et al. [3].) Expression types and security contexts can be either
high or low . According to the rules [E1–2], any expression
(including constants, the variable h, and even l) can have type
high ; however, an expression can have type low only if it has
no occurrences of h.

Consider the rules [C1–7]. The commands skip and h :=
exp are typable in any context. The command l := exp is
only typable if exp has type low . This prevents explicit flows.
Notice that l := exp is only typable in the low context which,
in combination with the rest of the (purely compositional)
rules, disallows implicit flows. Indeed, notice that [high]
 C
for some command C ensures that there are no assignments to
low variables in C. This justifies the requirement of the rules

[C5–6] that given an if (loop) with a high guard, the branches
(loop body) must be typable in a high context. Let us refer
to loops with a high guard as high loops, and to conditionals
with a high condition as high conditionals. The rule [C7] is
a subsumption rule. It guarantees that if a program is typable
in a high context then it is also typable in a low context. This
rule allows us to reset the program counter to low after a high
conditional or a loop, avoiding one source of label creep (cf.
Sections II-E and II-F).

Examples of typed programs are [low]
 h := l+4; l := l−5
and [high]
 if h = 1 then h := h + 4 else skip. As expected,
the example programs with explicit and implicit insecure flows
l := h and if h = 1 then l := 1 else skip are not typable.

IV. TRENDS IN LANGUAGE-BASED INFORMATION FLOW

We have considered succinct examples of how to express a
noninterference-style security policy using low-view relations
and a static certification-style security analysis using a type
system. However, the true value of these two representa-
tions lies in their connection. Indeed, the ultimate goal for
formalizing confidentiality properties is to have tools that
are not only expressive but also ensure rigorous end-to-end
security policies. While work on information flow prior to the
mid-nineties typically handled either policies or analyses in
separation, Volpano et al. [3] were the first to establish an
explicit connection. They cast a Denning-style analysis as a
type system similar to Figure 3 and showed that if a program
is typable then it is secure according to condition (∗). This
result improves security assurance because it is based on an
extensional security definition. Such a definition is expressed
by the low view under a standard semantic model as opposed
to the ad-hoc security semantics (or no security semantics at
all) underlying previous approaches (e.g., [2], [52]–[61]).

We identify four directions of research in language-based
security that branch off from this meeting point of noninter-
ference and static certification: (i) enriching the expressiveness
of the underlying programming language, (ii) exploring the
impact of concurrency on security, (iii) analyzing covert
channels, and (iv) refining security policies. In the rest of
this section, we sketch recent work in these directions. The
diagram in Figure 4 illustrates the structure of current work
and is intended to serve as a road map for the interested reader
to follow the evolution described (recommended references are
provided in the diagram).

A. Language Expressiveness

A major line of research in information flow pursues the
goal of accommodating the increased expressiveness of mod-
ern programming languages. We concentrate on progress on
procedures, functions, exceptions, and objects.

Procedures: Volpano and Smith [63] give a type system
for a language with first-order procedures and prove that it
guarantees noninterference. The type system relies heavily on
polymorphism, a well-studied concept in type systems. Poly-
morphism means that the type of commands or expressions
may be generic, i.e., may depend on the context. For example,
procedures may have polymorphic security types so that their

6 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 21, NO. 1, JANUARY 2003

static
certification [40], [62]

noninterference
[47], [49], [50]

procedures [63] sound security analysis [3]
declassification

[2], [4], [64], [65]

functions [5]
nondeterminism

[17], [66]
termination

[67]
admissibility

[68], [69]

exceptions
[7], [14], [67] threads [6] timing [10]

relative
security [70]

objects [7], [13]
distribution
[71], [72]

probability
[9], [11]

quantitative
security

[73], [74]

expressiveness concurrency covert channels security policies

Fig. 4. Evolution of language-based information flow.

invocation can be adjusted to either low or high context.
(Recall that a high context corresponds to a high program
counter, i.e., a program point inside a high conditional or
loop.) Notice that our example type system in Figure 3 also
has simple polymorphic rules in pc, e.g., h := h + 3 can
either be typed by [high]
 h := h + 3 or [low]
 h := h + 3
depending on the context.

Functions: Heintze and Riecke [5] consider information
flow in the SLam calculus, a functional language, based on the
λ-calculus [75], that supports first-class functions (functions
usable as ordinary values). They propose a type system for
confidentiality and integrity in SLam and prove a noninterfer-
ence theorem using logical relations. They also extend SLam
and the type system with state and concurrency, but do not
prove noninterference.

Zdancewic and Myers [12], [76] define a secure calculus
that has first-class continuations, state, and references, and
prove that its type system enforces noninterference. Continu-
ations are a more expressive control construct than functions.
They also show that a fragment of SLam, augmented with state
and references, can be encoded in their continuation-passing
style calculus without any loss of precision.

Pottier and Conchon [16] show a systematic way to extend
conventional type systems with flow control in a functional
setting. This approach simplifies correctness proofs by al-
lowing them to be extracted from the correctness proofs
for the original type system. Pottier and Simonet [14], [77]
prove noninterference for an extension of the purely functional
part of SLam, extended with references, exceptions, and type
polymorphism.

Exceptions: Exceptions (such as in Java) can be raised by
the language in an event of a run-time error, such as division
by 0. They may also be used by the programmer to signal

exceptional conditions. Exceptions can be caught by a special
language construct, resulting in a nonlocal transfer of control
that can create implicit flows. If not caught, an exception
may also create an implicit flow of information. Volpano and
Smith [67] propose a simple but restrictive type system for
handling exceptions. Myers [7] argues that this may lead to
loss of precision in the analysis and introduces path labels
that allow finer-grained tracking of the implicit flows caused
by exceptions. Pottier and Simonet [14], [77], [78] suggest
a similarly fine-grained analysis of exceptions and also give
noninterference proofs for a functional setting.

Objects: Objects are another important language feature;
they subsume first-class functions because first-class functions
can be encoded as objects. The JFlow language [7] extends
Java with a type system for tracking information flow. This
language has also been implemented in the Jif compiler [44].
Barthe and Serpette [8] consider information flow in a simple
object-oriented language based on the Abadi–Cardelli func-
tional object calculi [79] and show that their type system en-
forces noninterference. Banerjee and Naumann [13] develop a
security-type system for a Java-like imperative object-oriented
language and show that it enforces noninterference.

B. Concurrency

In principle, concurrency could be considered one of the
language extensions in the previous section. However, the
nature of concurrent computation raises new concerns about
the low-view model, making concurrency a major topic of its
own.

Nondeterminism: A first step toward concurrency is
nondeterministic computation. Noninterference as originally
defined was a property of deterministic computations. A
straightforward way to generalize it to nondeterminism is to

SABELFELD AND MYERS: LANGUAGE-BASED INFORMATION-FLOW SECURITY 7

consider the observable behavior of a program to be the set
of its possible results. With this interpretation, the security
condition (∗) of Section III-A means that high inputs may
not affect the set of possible low outputs. This is known as a
possibilistic security condition [80]. There is a substantial body
of work on possibilistic generalizations of noninterference for
a nondeterministic setting (e.g., [80]–[83]).

In the context of programming languages, Banâtre, Bryce,
and Le Métayer [57] suggest an analysis that tracks dependen-
cies between variables for a language with a nondeterministic
choice operator.

Leino and Joshi [66], [84] define an elegant equational
security property for nondeterministic programs. Define a
program HH (“havoc on h”) to have the (informal) semantics
“set h to an arbitrary value”. Now, a program C is considered
secure iff

∀s ∈ S. �HH ; C;HH �s ≈ �C;HH �s

for an appropriate equivalence relation ≈ on sets of final
values. The occurrence of HH after C, in effect, equalizes
the set of possible final values of h. This equation has the
intuitive reading that scrambling the initial value of h does not
reflect on the set of final values of l; thus, it is a possibilistic
security condition. Among advantages of this approach is the
flexibility in the choice of ≈ and verification conditions [66],
[84] for proving equational security.

Sabelfeld and Sands [17], [85] formalize a number of
security specifications by partial equivalence relations (PERs)
of which the equational security condition above is an instance.
Abadi et al. [15] were the first to adapt PERs from program
analysis to reason about variations in the spirit of the low
view ≈L in the deterministic setting. The extension of PERs
to handle nondeterministic security [17], [85] develops a link
between low-view relations ≈L and equivalence relations ≈
for programs that exhibit nondeterminism.

Thread concurrency: Consider multithreaded programs
executed on a single processor. One complication with con-
current models is that the high part of program states has to
be protected at all times during computation. For example,
we might consider the program (thread) h := 0; l := h secure
because the initial secret value has been overridden by constant
0. However, security can be compromised in case another
(secure) program runs in parallel. This other program may
update the value of h with a secret (e.g., h := h ′ for some
high variable h′) immediately before l := h is executed by the
first thread.

Another issue is that the security of multithreaded computa-
tion is tightly connected with timing- and probability-sensitive
security. Indeed, assuming that the scheduler that determines
what thread is selected at the next step exhibits (potentially
probabilistic) behavior, this behavior is reflected on the choice
of what thread is executed. Thus, the execution order of low-
level computation may be affected. We will focus on timing-
and probability-sensitive security in Section IV-C.

In contrast to earlier work on security for concurrent pro-
grams [52], [53], [56], [58], Smith and Volpano [6] prove
noninterference for a multithreaded language. They show that
two requirements—imposed in addition to those enforced for

sequential languages—are sufficient for noninterference under
a purely nondeterministic scheduler: no while loop may have
a high guard, and no high conditional may contain a while
loop in its branch.

However, some programs that this analysis determines to
be secure—and that meet the possibilistic security condition—
may be insecure in practice. For example, the program

(if h = 1 then Clong else skip); l := 1 ‖ l := 0

(where ‖ denotes the parallel composition and C long is a time-
consuming series of skip commands) is considered secure.
However, under many schedulers (such as round-robin), if h
is 1 then the last subcommand to be executed is likely to
be l := 1. This is an encoding of a timing leak into a direct
leak (by assignments, sequential and parallel composition). Al-
though the set of possible results of the program is independent
of h assuming a nondeterministic scheduler, some refinements
of the program, in which possible outcomes are eliminated by
choosing a scheduler, are not secure. In a concurrent setting,
possibilistic security is often subject to such refinement attacks.

Later work by Volpano and Smith [9], [86] investigates
security in the presence of the uniform scheduler (such a
scheduler selects a thread from the pool of live threads with
the uniform probability distribution) and gives a probability-
sensitive security specification that rejects the program above
as insecure. Because scheduling policies may vary from imple-
mentation to implementation, Sabelfeld and Sands [11] argue
for scheduler-independent security (robust with respect to a
wide class of potentially probabilistic schedulers) and prove a
noninterference result for a security-type system.

Smith [87] and, independently, Boudol and Castellani [88],
[89] observe that a high while-loop can be considered secure
in a concurrent setting, provided that there are no low assign-
ments that follow the loop. This is enforced by respective type
systems. Smith’s type system guarantees probabilistic nonin-
terference. Boudol and Castellani’s typing rules are extended
to schedulers with the result that any typed system (consisting
of threads and a scheduler) must satisfy possibilistic noninter-
ference.

Sabelfeld [90] extends both the definition of noninterference
and a type system to handle thread synchronization. The effect
of synchronization is similar to that of loops: the type system
rules out synchronization that depends on high data in order
to ensure noninterference.

Honda et al. [91], [92] have taken another approach to
secure concurrent languages: security-type systems for the
asynchronous π-calculus, a general model of concurrent com-
putation in which threads are implicit. Channel types in these
languages may be annotated with a number of attributes that
describe possible communication patterns; notably, channel
types may be linear or affine, meaning that the channel may
be used for exactly one or at most one message, respectively.
These complex security-type systems are able to enforce
noninterference with about the same precision as the other
type systems for concurrent languages.

Pottier [93] presents a syntactic technique that extends the
π-calculus to a calculus of pairs of processes. Noninterference
is reduced to a safety property for such a calculus, and

8 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 21, NO. 1, JANUARY 2003

this property is established by subject reduction, which is a
standard technique for showing the soundness of type systems.
This technique is also used in noninterference results for
functional languages [14], [77], [78], [93].

Zdancewic [94] develops an alternate approach to checking
security for concurrent systems based on the idea of low-
view determinism developed by Roscoe [95] in the context of
CSP. A program is considered to be secure only if its results,
viewed through the low-view relation ≈L, are deterministic
despite considering high inputs as chosen nondeterministically.
This security condition generalizes noninterference, but is not
possibilistic and is not subject to refinement attacks. However,
it may rule out useful nondeterminism. Zdancewic gives a
security-type system for a concurrent language that supports
an arbitrary number of processes and message-passing com-
munication (including first-class channels); he shows that this
type system, when combined with a suitable alias analysis,
enforces the security condition.

Distribution: Understanding security in the distributed
setting is one of the most pressing needs. Distributed systems
are naturally concurrent, but three new issues are raised in
this setting: first, distributed programs must have the ability
to exchange messages, and these communications may be ob-
served to some extent by attackers. Second, systems are often
distributed precisely because they serve the needs of multiple
principals who do not fully trust each other. A way is needed to
provide security despite this mutual distrust. Third, distributed
systems have components (such as host machines) that can
fail; these failures may include the complete subversion of
these components by malicious attackers. A subverted host
may continue to simulate proper functioning, but improperly
release data it receives; it may also attempt to compromise the
behavior of other components of the system to cause them to
violate confidentiality.

Early confidentiality definitions for language-based dis-
tributed systems were phrased in terms of a security logic
(which, however, lacked a rigorous relation to program seman-
tics). Reitman’s logic [96] addresses the security of message-
passing primitives commonly used in distributed programs.
Banâtre and Bryce’s logic [56], [58] formalizes security prop-
erties for a language with synchronous message passing.

Sabelfeld and Mantel [72] investigate the security impli-
cations of various communication primitives. They consider
blocking vs. nonblocking and synchronous vs. asynchronous
primitives for message passing and propose a type system that
enforces timing-sensitive noninterference for a language that
features both multithreading and message passing.

Relatively little work has addressed the problem of infor-
mation flow in a distributed system that incorporates mutual
distrust and arbitrary component failure. Zdancewic et al. [71]
propose and implement an architecture called secure program
partitioning to address these issues. The goal of this archi-
tecture is to protect the confidentiality of multiple principals
who do not trust the other principals and have only partial (and
differing) trust in the host machines available for computation.
In this setting, the informal security condition is that the
security of a principal is not threatened unless there is a
failure of a host that the principal trusts. A sequential, security-

typed program is automatically partitioned in a fine-grained
manner into communicating subprograms that run securely on
the available hosts and carry out the original computation. The
security types in the language can specify both confidentiality
and integrity policies; the latter are used to prevent untrusted
hosts from subverting security-critical decisions. The system is
intended to allow enforcement of end-to-end security policies
that go beyond noninterference, but there is no proof that the
system enforces a noninterference-like property. A theorem
about the integrity of control flow in the partitioned program
is proved, however.

Language-based techniques are useful in modeling and
analyzing information flow in security protocols. Abadi [64],
[97] shows how confidentiality can be achieved by typing
in distributed security protocols in the presence of shared-
key encryption. A recent work by Abadi and Blanchet [98]
deals with types for protocols involving public-key encryption.
Sumii and Pierce’s work on protocols [99] employs logical
relations for reasoning about the low view of systems in the
presence of encryption.

C. Covert Channels

Recall from Section II-C that covert channels are ways
to transfer information within a computing system using
mechanisms not intended to function as information channels.
For example, many implicit flows are examples of covert
storage channels. There are several kinds of covert channels
that are more difficult to identify: for example, information
flows resulting from dependencies between sensitive data and
observable behavior of the system such as timing or the
system’s stochastic behavior. Thus, the assumption that the
attacker is capable of such observations must be reflected in
the low view of the system.

Termination channels: Assuming that an attacker can
observe program termination (or nontermination), program
while h = 1 do skip is no longer secure. Volpano and
Smith [67] argue for termination-sensitive noninterference.
Such noninterference can be expressed as condition (∗) with
the low-view relation ≈L that relates two behaviors iff both
diverge or both terminate in low-equal final states (s ≈L s′

iff either s, s′ ∈ S and s =L s′ or s = s′ = ⊥). In order to
prevent termination attacks, the type system of [67] disallows
high loops and requires high conditionals have no loops in the
branches.

Abadi et al. [15] establish a connection between security
analysis and three types of program analyses: binding-time
analysis, call tracking, and program slicing. These analyses
are related because the properties they identify are all depen-
dency properties. Abadi et al. express this dependency in terms
of PERs for a calculus based on a variation of the λ-calculus.
They show that PERs capture termination-sensitive security.

Binding-time analysis is particularly close to security anal-
ysis. In the field of partial evaluation, binding-time analysis
divides program terms into static (known at partial-evaluation
time) and dynamic (to be supplied later). The correctness
condition for binding-time analysis states that no static term
depends on a dynamic variable. Viewing dynamic as high and

SABELFELD AND MYERS: LANGUAGE-BASED INFORMATION-FLOW SECURITY 9

static as low we obtain the connection to security. The connec-
tion with partial evaluation has been explored by Sabelfeld and
Sands [17], [85], Barthe and Serpette [8], and Thiemann [100].

Timing channels: In practice, nontermination cannot be
distinguished from a very time-consuming computation. Thus,
the termination channel can be viewed as an instance of the
timing channel. Timing channels can present a serious threat
(see [101] for a timing attack on RSA encryption). As we
have seen in Section IV-B, timing channels are particularly
dangerous in the presence of concurrent threads, as they may
result in information leaks. Timing-sensitive noninterference
is formalized by condition (∗) with the low-view relation ≈L

that relates two behaviors iff both diverge or both terminate
in the same number of execution steps in low-equal final
states. A high conditional may generate a timing leak, e.g.,
if h = 1 then Clong else skip (cf. Section IV-B). Volpano
and Smith [9] suggest restricting high conditionals to have no
loops in the branches and wrapping each high conditional in
a protect statement whose execution is atomic. This discipline
is enforced by an accompanying type system.

Agat’s approach [10] to closing timing leaks is based on
another example of a well-studied technique in programming
languages, program transformation. The transformation can
be represented as a type system with type assignments of the
following form: C ↪→ C ′ : Sl where C is the original program,
C′ is the result of the transformation, and Sl is the low slice of
C′. The low slice Sl is different from C ′ in that subcommands
of C ′ that involve high data are replaced by dummy commands
with no effect on high variables. This ensures Sl ≈L C′.
Either the original program C is rejected (in case of a potential
explicit or implicit insecure information flow) or accepted and
transformed into program C ′ free of timing leaks. The core
rule of the type-and-transformation system is:

C1 ↪→ C′
1 : Sl1 C2 ↪→ C′

2 : Sl2
exp : high al(Sl1) = al(Sl2) = false

if exp then C1 else C2 ↪→
if exp then C ′

1; Sl2 else Sl1; C′
2 : if-skip(Sl1; Sl2)

where the predicate al (C) is true iff there is an assignment to
a low variable in a command C; and if-skip(C) is a command
that acts as an if timing-wise except that there is only one
possible branch C. This rule performs cross-copying of the
slices of the branches of a high if to equalize the execution
time of the branches. This approach has been adapted for
transforming out timing leaks in languages with concurrency
by Sabelfeld and Sands [11], [90] and distribution by Sabelfeld
and Mantel [72].

Probabilistic channels: The low view ≈L can be en-
hanced with the probabilistic property that two behaviors are
indistinguishable by the attacker iff the distribution of low
output is the same. This formalization captures probabilistic
leaks. Let us illustrate a probabilistic leak by an adaptation
of an example from [102]. Assuming a high variable PIN
stores a four-digit number, consider the following (intuitively
insecure) program:

l := PIN � 9
10

l := rand(9999)

where �p is a probabilistic choice operator that selects the left-
hand side command with the probability p and the right-hand
side with the probability 1 − p; and rand(n) is a function
returning a random value from the range 0 . . . n according
to the uniform distribution. According to purely possibilistic
conditions (e.g., [6], [66]) the program above is secure. Indeed,
varying PIN does not change the set of possible outcomes
for l. However, it does change the probability of outcomes for
l, which is reflected by probability-sensitive definitions. Such
definitions in non-language-specific settings include McLean’s
flow model [102] and probabilistic noninterference [103],
[104].

Sabelfeld and Sands [17], [85] lift the PER model to
probabilistic powerdomains to characterize probabilistic non-
interference. An important contribution of this work is the
compositionality result that guarantees that if secure programs
are plugged into an appropriate context the resulting program
is secure. Due to this property the correctness proofs for
security-type systems (which are also compositional) become
straightforward, which is exemplified in [17].

As we observed in Section IV-B, a scheduler in a concur-
rent setting may be probabilistic. Volpano and Smith’s type
system [9], [86] captures probabilistic flows resulting from
the uniform scheduler in a multithreaded language.

Sabelfeld and Sands [11] connect probabilistic security with
probabilistic bisimulation [105] which is a standard semantic
model for probabilistic computation. As a benefit of this
connection, their security condition improves the precision
of previous probability-sensitive definitions (e.g., [9]). They
extend the language with dynamic thread creation and prove
scheduler-independent timing-sensitive noninterference for a
security analysis. Correctness proofs are accommodated by a
compositional security definition that implies noninterference.

D. Security Policies

While a useful extensional property, noninterference im-
poses restrictions that are not always possible to meet in
practice. In particular, noninterference rejects downgrading of
the security level of information from high to low. However,
such a declassification is necessary in order to allow a secret
value that has been encrypted to be passed over a publicly
observable medium. Another example is a password-checking
program. Clearly, the result of this program depends on
whether the secret password matches the publicly supplied
data. Attempts to accommodate downgrading in end-to-end
policies have been an active area of research.

Myers and Liskov [4], [106] introduce a decentralized
model of security labels in which selective declassification [16]
is permitted on the basis of a static analysis of process
authority and relationships between principals. Security labels
have additional structure that describes the entities capable of
performing declassification. This model supports the labeling
of computations performed on behalf of mutually distrusting
principals.

Cryptographic protocols depend on encryption, and, thus,
downgrading of information security levels is a necessity.
Abadi [64], [97] devises type systems that guarantee confi-
dentiality for a calculus of cryptographic protocols, the spi

10 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 21, NO. 1, JANUARY 2003

calculus [107]. Secret keys and their usage are hidden by
the low view in an extensional security condition. Abadi and
Blanchet’s type system [98] analyzes Dolev–Yao secrecy for
the spi calculus.

Dam and Giambiagi’s admissibility [68] for JVM applets
is a weakening of noninterference. They analyze an online
payment protocol which involves encryption of secrets, and
show that it has the desired admissibility property. Admissi-
bility corresponds to the security policy that explicitly states
what dependencies between data are allowed in a program
(including those caused by downgrading). Giambiagi’s subse-
quent work [69], [108] separates protocol specification from its
implementation. The proposed security condition guarantees
that an admissible program has no other information flows than
those intended by the protocol specification (and explicitly
recorded in a confidentiality policy). The security condition
is termination and timing sensitive (agreeing with noninter-
ference modulo flows allowed by the protocol specification).
This approach is realized for a guarded-command implemen-
tation language that includes encryption, decryption, iteration,
message-passing and exception constructs [69].

Systems containing intentional downgrading channels intro-
duce the possibility that these channels will be exploited to
downgrade more information than was intended by the pro-
grammer. Zdancewic and Myers [65] propose robust declas-
sification, a security property that prevents exploitation of the
channels. Robust declassification says that an active attacker
(who can affect system behavior) cannot learn anything more
than a passive attacker (who may only observe the system’s
behavior). The presumption is that information flows visible
to the passive attacker are intended to be present.

Volpano and Smith [70] concentrate on the scenario of a
password-checking program. They provide a type system that
allows for operations similar to password queries and give
a security assurance based on probabilistic complexity: first,
no well-typed program can leak secrets in polynomial (in the
length of the secret) time; and, second, secret leaks are only
possible with a negligible probability. Continuing this line of
work, Volpano [109] proves that leaking passwords in a system
where passwords are stored as images of a one-way function
is not easier than breaking the one-way function.

Laud’s complexity-theoretic security specification [110] re-
lies on computational indistinguishability by a polynomial-
time (again in the length of the secret) adversary in an
imperative language. The specification is accompanied by a
sound analysis that, e.g., accepts the program l := enck (h),
i.e., encryption of h with a key k.

It is often useful to allow for a limited bandwidth of
information leaks. For example, one may consider the program
that queries a four-digit number and matches it to a secret PIN
to be secure if the probability of leakage (1

10000 in this case)
is less than a threshold value ε. Early ideas of quantitative
security (as opposed to qualitative) go back to Denning’s
work [41] which, however, does not provide automated tools
for estimating the bandwidth. Clark et al. [73] propose syntax-
directed inference rules that aid in computing estimates on
information flow resulted from if statements in an imperative
language.

Di Pierro et al. [74] suggest approximate noninterference,
which can be thought of as noninterference “up to ε.” They
also provide a probability-sensitive program analyses that
ensures precise [111] and approximate [74] noninterference for
a probabilistic constraint-programming calculus. An extension
of this work [112] is concerned with a sound analysis geared
toward the attacker that is able to make external observations
about the system, such as the average state over a limited
number of steps.

Lowe’s quantitative definition of information flow [113]
is intended to measure the capacity of covert channels in a
process-algebra setting. Like other quantitative definitions, this
definition is based on Shannon’s information theory [114].
However, unlike other models, Lowe’s definition is sensitive to
nondeterminism. The amount of leaked information is based
on the number of different behaviors of a high-level user that
can be distinguished by a low-level user.

V. OPEN CHALLENGES

This section discusses some challenges for language-based
security researchers. Some challenges are natural goals emerg-
ing from the existing directions described in Section IV; others
have been investigated less but are nonetheless crucial for
practical enforcement of end-to-end security policies.

A. System-Wide Security

Computer systems are only as secure as their weakest point,
so a system-wide security model is essential to guarantee
that not only the system components are secure but also
their combination. A challenging direction here is the inte-
gration of language-based information flow and system-wide
information-flow control. The secure program partitioning
approach of Zdancewic et al. [71] directly addresses this notion
of end-to-end, system-wide security. It prevents attacks on
a distributed system considered as a whole, and explicitly
models distrust between principals and hosts. Mantel and
Sabelfeld [115], [116] also make a step in this direction,
proposing a way to integrate language-based confidentiality
properties of local computation into an abstract framework of
global properties. This link at the end-to-end level facilitates
a modular end-to-end system design. Rigorous connections to
areas such as security protocols and trust management are most
desirable.

B. Certifying Compilation

One potential weakness of using a compiler to validate
information flows is that it places both the type checker and the
code generator of the compiler in the trusted computed base
(TCB) [117]. It is clearly desirable to perform information-
flow analysis on code that is as close to the executed code
as possible, avoiding these trust dependencies. This is also
important because much malicious code is distributed in the
form of programs in a low-level machine language (not to be
confused with the low level of confidentiality for data) such
as Java applets or ActiveX components. Certifying compila-
tion [118] is an attractive way to generate machine code that

SABELFELD AND MYERS: LANGUAGE-BASED INFORMATION-FLOW SECURITY 11

is annotated with the necessary information to perform static
validation. Java bytecode verification [24] and typed assembly
language [28] (primarily used to guarantee memory safety) are
examples of this approach.

Low-level languages have not received much attention in
studies of secure information flow. One difficulty with check-
ing information flow in low-level languages is that useful
information about program structure is lost during compi-
lation. Consequently, typical source-language techniques do
not generalize straightforwardly [12], [76], [119]. Zdancewic
and Myers [12], [76] present a type system that ensures
noninterference in low-level programs in which the only con-
trol construct is continuations (which correspond to indirect
branches at the machine-code level [120].) Ordered linear
continuation types enforce a stack discipline that permits a
high-precision analysis.

Another worthwhile direction for future work is adapting
techniques for the security of machine code to information
flow: for example, typed assembly languages [28] that guar-
antee machine code does not violate type safety, and proof-
carrying code [30], [121], where a proof that the program
satisfies a security policy is distributed with the code and is
checked before execution.

C. Abstraction-Violating Attacks

It is inevitable that the model of the attacker is an abstraction
that removes possibly important details about the real attacker.
This abstraction enables the real attacker to circumvent the
security mechanisms by mounting an attack that lies outside
the abstract model. One example of such an attack on timing-
sensitive security is a cache attack [119]. Consider the follow-
ing example:

(if h = 1 then h′ := h1 else h′ := h2); h′ := h1

where all variables are high. Independently of sensitive data,
the program executes the same number of instructions. How-
ever, in the presence of a cache, execution time is likely to
be shorter when the initial value of h is 1: by the time the
last assignment is executed, the value of h1 will already be
present in the cache.

While this attack can be prevented by a cross-copying
transformation that ensures that the same memory cells are ref-
erenced in both branches of the if, possible attacks remain that
are based on instruction cache, virtual memory and platform-
dependent behavior [119]. As this example demonstrates, it
is vital that the abstractions made in the attacker model are
adequate with respect to potential attacks.

D. Dynamic Policies

It is a common assumption in language-based work on
information flow that information-flow policies are known
statically, at compile time. This is not a realistic assumption
for a large computing system. For example, the files in a
file system have attached security policies (permissions) that
can be changed dynamically. If these permissions are to
be enforced as end-to-end policies, programs accessing file

system must be able to enforce dynamically changing security
policies.

Dynamic security policies have been proposed in a lan-
guage-based setting [4] and implemented in the Jif com-
piler [7], [44]. In the Jif security-type system, types may be
annotated with confidentiality labels that refer to variables of
the type label. Thus, labels may be used both as first-class
values and as labels for other values. Types that depend on
values computed at run time are dependent types, a topic
long of interest in the programming-languages community
(e.g., [122], [123]).

Dynamic security policies are an important area for future
work; although dynamic labels are not known to introduce
unsoundness into the Jif type system, currently there are no
noninterference results for any fragment that supports them.
The difficulty in adding dynamic labels is that because they
are computed at run time, they create an additional information
channel that must be controlled through the type system [7]. A
type system that provably controls this information channel—
without being unnecessarily restrictive—would be a welcome
result.

E. Practical Issues

Efforts spent on accommodating richer languages and mod-
eling elaborate attacks should be supported by the investigation
of the impact on the restrictiveness for a programmer. The
question is whether it is, in the first place, possible to write
efficient secure programs that do not violate security require-
ments. For a timing-sensitive setting, a step has been made
by Agat and Sands [124] who show that basic algorithmic
building blocks (such as sorting and searching) that manipulate
secret data can be securely implemented without a substantial
loss of efficiency: for n objects, the asymptotic complexities
of sorting and searching are O(n log n) and O(log n), respec-
tively.

Only a few implementations exist that support security-
type inference [44], [71], [119]. More experience is needed
for deeper understanding on practical implications of secure
information flow.

The general problem of confidentiality for programs is
undecidable. For example, consider a program C that uses only
low variables. Clearly, we can reduce the (undecidable) prob-
lem whether C always diverges to the problem whether the
program if h = 1 then (C; l := 7) else skip is secure. (While
this example is specific to termination-insensitive security, the
program if h = 1 then (C; l := 7) else (while true do skip) can
be used in the reduction under termination-sensitive security.)
It is important that security static analyses do not reject
too many secure programs, even though they are necessarily
conservative. Research aimed at improving the precision of
type systems deserves further attention (e.g., [10], [11], [76],
[78], [87]–[89], [94]). Moreover, approaches other than type
systems offer valuable alternatives for accurate and flexible
security analyses. This is the focus of the following section.

F. Variations of Static Analysis for Security

Control- and data-flow analyses [125] are established areas
of program analysis concerned with dependencies due to

12 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 21, NO. 1, JANUARY 2003

control and data flow; they are a natural match for tracking
security dependencies in programs. While type systems are,
in general, intuitive and well understood, one reason for using
control- and data-flow analyses is that type systems sometimes
lack the principal type (the most general type that can be given
to a command or expression), which may result in the loss of
precision [126].

Bodei et al. [127], [128] demonstrate the use of a control-
flow analysis to establish Bell–LaPadula security properties
for the π-calculus. In the context of firewalls, formalized by
ambients [129], Nielson et al. [130] show how to statically
reject firewalls that may accept the attacker that fails to provide
the required password. Bodei et al. [131] devise a control-
flow analysis that guarantees Dolev–Yao secrecy for the spi
calculus. They suggest a conservative extension of the analysis
that also enforces noninterference-based confidentiality.

Clark et al. [132] propose a high-precision control-flow-
sensitive security analysis for a higher-order imperative lan-
guage. In particular, the analysis traces global flows more
accurately than many type systems. For example, it accepts
as secure the program

(if h = 1 then l := 1 else l := 0); l := 0

which is also secure by both termination-sensitive and ter-
mination-insensitive interpretations of condition (∗). Yet a
typical security-type system (e.g., [3]) rejects the program.

The framework of abstract interpretation [133] is a power-
ful methodology for designing static analyses that are sound
by construction. Malacaria and Hankin [134] develop an
information-flow analysis by abstract interpretation in the
setting of game semantics [135]. Zanotti [136] proposes an
abstract-interpretation-based security analysis that generalizes
the security-type system by Volpano et al. [3].

VI. CONCLUSION

We have argued that standard security practices are not
capable of enforcing end-to-end confidentiality policies; mech-
anisms such as access control, encryption, firewalls, digital
signatures, and antivirus scanning do not address the funda-
mental problem: tracking the flow of information in computing
systems. Run-time monitoring of operating-systems calls is
similarly of limited use because information-flow policies are
not properties of a single execution; in general, they require
monitoring all possible execution paths. On the other hand,
there is clear evidence of benefits provided by language-based
security mechanisms that build on technology for static analy-
sis and language semantics. In this section, we summarize the
benefits of security-type systems and semantic-based security
models, and emphasize the compositional nature of both. We
conclude by discussing related and future work.

Security-type systems: Type systems are attractive for
implementing static security analyses. It is natural to augment
type annotations with security labels. Type systems allow for
compositional reasoning, which is a necessity for scalability
when applied to larger programs. Many well developed fea-
tures of type systems have been usefully applied to security
analysis. Examples include subtyping (e.g., [3]), polymorphism

(e.g., [7], [63]), dependent types (e.g., [7]), linear types
(e.g., [12], [76]), and type-directed translation (e.g., [10],
[71]).

Semantics-based security models: Semantics-based mod-
els are suitable for describing end-to-end policies such as
noninterference and its extensions. These models allow for a
precise formulation of the attacker’s view of the system. This
view is described as a relation on program behaviors where
two behaviors are related if they are not distinguishable by
the attacker. Attackers of varying capabilities can be modeled
straightforwardly as different attacker views, and correspond
to different security properties. In particular, it has been shown
how to represent the timing (e.g., [10]) and probabilistic
(e.g., [9], [11]) behavior of programs if the attacker is capable
of making timing- and probability-sensitive distinctions.

Compositionality: A number of further advantages are
associated with both security-type systems and semantics-
based security. Compositionality is especially valuable in the
context of security properties. While it is folklore in the
security community that security properties do not compose
(cf. [82], [137]), compositionality is fundamental in program-
ming languages. Most type systems and many security con-
ditions (e.g., [11], [17], [72], [90], [138]) are compositional,
which ensures that plugging secure programs into a security-
preserving context gives a secure program. Compositionality
greatly facilitates correctness proofs for program analyses.

Related use of language-based techniques: There is a
large body of work on noninterference in the setting of
process algebras such as CCS (e.g., [139]), CSP (see [140]
for an overview), π-calculus, the spi calculus, and other event-
based systems (e.g., [83]). Notably, the idea of representing
attackers as view relations is also common in studies of
noninterference for process algebra [141]. Compositionality
reasoning (e.g., [139], [142]) is an essential part of security
investigations of event-based systems. Type systems are widely
used for ensuring confidentiality properties, in the spi calculus
(e.g., [97], [98]), and (variations of) π-calculus (e.g., [91], [92],
[143]–[145]). Timing- and probability-sensitive confidentiality
has been explored by, e.g., Focardi et al. [146] and, e.g.,
Aldini [147], respectively, for variations of CCS. Lowe [113]
has explored quantitative information flow for CSP (cf. Sec-
tion IV).

Toward a practical security mechanism: If the recent
progress in language-based techniques for soundly enforcing
end-to-end confidentiality policies continues, the approach
may soon become an important part of standard security
practice. However, there are three areas where further work
is needed:

• Semantics of information flow are needed for concurrent
and distributed systems so that useful end-to-end security
guarantees are provided without ruling out useful, secure
programs.

• New type systems or other static analyses are needed,
for which the notion of a well-formed (typable) program
closely approximates the semantic notion of security.

• Certifying compilers are needed for security-typed lan-
guages, because compilers for source languages (such as
Jif) are too complex to be part of the trusted computing

SABELFELD AND MYERS: LANGUAGE-BASED INFORMATION-FLOW SECURITY 13

base. However, current security-type systems are not
expressive enough to support a security-typed low-level
target language.

The inability to express or enforce end-to-end security
policies is a serious problem with our current computing
infrastructure, and language-based techniques appear to be
essential to any solution to this problem.

ACKNOWLEDGMENT

The authors would like to thank M. Hicks for helpful
comments and the anonymous reviewers for useful feedback.

REFERENCES

[1] J. H. Saltzer, D. P. Reed, and D. D. Clark, “End-to-end arguments in
system design,” ACM Transactions on Computer Systems, vol. 2, no.
4, pp. 277–288, Nov. 1984.

[2] J. Palsberg and P. Ørbæk, “Trust in the λ-calculus,” in Proc. Symposium
on Static Analysis. Sept. 1995, number 983 in LNCS, pp. 314–329,
Springer-Verlag.

[3] D. Volpano, G. Smith, and C. Irvine, “A sound type system for secure
flow analysis,” J. Computer Security, vol. 4, no. 3, pp. 167–187, 1996.

[4] A. C. Myers and B. Liskov, “A decentralized model for information
flow control,” in Proc. ACM Symp. on Operating System Principles,
Oct. 1997, pp. 129–142.

[5] N. Heintze and J. G. Riecke, “The SLam calculus: programming
with secrecy and integrity,” in Proc. ACM Symp. on Principles of
Programming Languages, Jan. 1998, pp. 365–377.

[6] G. Smith and D. Volpano, “Secure information flow in a multi-
threaded imperative language,” in Proc. ACM Symp. on Principles
of Programming Languages, Jan. 1998, pp. 355–364.

[7] A. C. Myers, “JFlow: Practical mostly-static information flow control,”
in Proc. ACM Symp. on Principles of Programming Languages, Jan.
1999, pp. 228–241.

[8] G. Barthe and B. Serpette, “Partial evaluation and non-interference for
object calculi,” in Proc. FLOPS. Nov. 1999, vol. 1722 of LNCS, pp.
53–67, Springer-Verlag.

[9] D. Volpano and G. Smith, “Probabilistic noninterference in a concur-
rent language,” J. Computer Security, vol. 7, no. 2–3, pp. 231–253,
Nov. 1999.

[10] J. Agat, “Transforming out timing leaks,” in Proc. ACM Symp. on
Principles of Programming Languages, Jan. 2000, pp. 40–53.

[11] A. Sabelfeld and D. Sands, “Probabilistic noninterference for multi-
threaded programs,” in Proc. IEEE Computer Security Foundations
Workshop, July 2000, pp. 200–214.

[12] S. Zdancewic and A. C. Myers, “Secure information flow and CPS,”
in Proc. European Symposium on Programming. Apr. 2001, vol. 2028
of LNCS, pp. 46–61, Springer-Verlag.

[13] A. Banerjee and D. A. Naumann, “Secure information flow and pointer
confinement in a Java-like language,” in Proc. IEEE Computer Security
Foundations Workshop, June 2002, pp. 253–267.

[14] F. Pottier and V. Simonet, “Information flow inference for ML,” in
Proc. ACM Symp. on Principles of Programming Languages, Jan. 2002,
pp. 319–330.

[15] M. Abadi, A. Banerjee, N. Heintze, and J. Riecke, “A core calculus
of dependency,” in Proc. ACM Symp. on Principles of Programming
Languages, Jan. 1999, pp. 147–160.

[16] F. Pottier and S. Conchon, “Information flow inference for free,”
in Proc. ACM International Conference on Functional Programming,
Sept. 2000, pp. 46–57.

[17] A. Sabelfeld and D. Sands, “A per model of secure information flow in
sequential programs,” Higher Order and Symbolic Computation, vol.
14, no. 1, pp. 59–91, Mar. 2001.

[18] B. W. Lampson, “A note on the confinement problem,” Comm. of the
ACM, vol. 16, no. 10, pp. 613–615, Oct. 1973.

[19] D. Dolev and A. Yao, “On the security of public-key protocols,” IEEE
Transactions on Information Theory, vol. 2, no. 29, pp. 198–208, Aug.
1983.

[20] B. W. Lampson, “Protection,” in Proc. Princeton Symposium on
Information Sciences and Systems, Princeton University, Mar. 1971,
pp. 437–443, Reprinted in Operating Systems Review, vol. 8, no. 1,
pp. 18–24, Jan. 1974.

[21] J. B. Dennis and E. C. VanHorn, “Programming semantics for
multiprogrammed computations,” Comm. of the ACM, vol. 9, no. 3,
pp. 143–155, Mar. 1966.

[22] W. A. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson, and
F. Pollack, “HYDRA: The kernel of a multiprocessor system,” Comm.
of the ACM, vol. 17, no. 6, pp. 337–345, June 1974.

[23] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn,
H. F. Nielsen, S. Thatte, and D. Winer, “Simple object access protocol
(SOAP) 1.1,” http://www.w3.org/TR/SOAP/, May 2000.

[24] T. Lindholm and F. Yellin, The Java Virtual Machine, Addison-Wesley,
Reading, MA, May 1996.

[25] J. S. Fritzinger and M. Mueller, “Java security,” Tech. Rep., Sun
Microsystems, Inc., Palo Alto, CA, 1996.

[26] D. S. Wallach, A. W. Appel, and E. W. Felten, “The security archi-
tecture formerly known as stack inspection: A security mechanism for
language-based systems,” ACM Transactions on Software Engineering
and Methodology, vol. 9, no. 4, pp. 341–378, Oct. 2000.

[27] R. Wahbe, S. Lucco, T. Anderson, and S. Graham, “Efficient software-
based fault isolation,” in Proc. ACM Symp. on Operating System
Principles, Dec. 1993, pp. 203–216.

[28] G. Morrisett, D. Walker, K. Crary, and N. Glew, “From System F to
typed assembly language,” ACM TOPLAS, vol. 21, no. 3, pp. 528–569,
May 1999.

[29] D. Wagner, Static analysis and computer security: New techniques for
software assurance, Ph.D. thesis, University of California at Berkeley,
2000.

[30] G. C. Necula, “Proof-carrying code,” in Proc. ACM Symp. on
Principles of Programming Languages, Jan. 1997, pp. 106–119.

[31] U. Erlingsson and F. B. Schneider, “SASI enforcement of security
policies: A retrospective,” in Proc. of the New Security Paradigm
Workshop, Sept. 1999, pp. 87–95.

[32] D. Evans and A. Twyman, “Flexible policy-directed code safety,” in
Proc. IEEE Symp. on Security and Privacy, May 1999, pp. 32–45.

[33] F. B. Schneider, G. Morrisett, and R. Harper, “A language-based
approach to security,” in Informatics—10 Years Back, 10 Years Ahead,
vol. 2000 of LNCS, pp. 86–101. Springer-Verlag, 2000.

[34] K. J. Biba, “Integrity considerations for secure computer systems,”
Tech. Rep. ESD-TR-76-372, USAF Electronic Systems Division, Bed-
ford, MA, Apr. 1977, (Also available through National Technical
Information Service, Springfield Va., NTIS AD-A039324.).

[35] J. S. Fenton, Information Protection Systems, Ph.D. thesis, University
of Cambridge, Cambridge, England, 1973.

[36] J. S. Fenton, “Memoryless subsystems,” Computing J., vol. 17, no. 2,
pp. 143–147, May 1974.

[37] D. E. Bell and L. J. LaPadula, “Secure computer systems: Mathematical
foundations,” Tech. Rep. MTR-2547, Vol. 1, MITRE Corp., Bedford,
MA, 1973.

[38] L. J. LaPadula and D. E. Bell, “Secure computer systems: A
mathematical model,” Tech. Rep. MTR-2547, Vol. 2, MITRE Corp.,
Bedford, MA, 1973, Reprinted in J. of Computer Security, vol. 4, no.
2–3, pp. 239–263, 1996.

[39] Department of Defense, Department of Defense Trusted Computer
System Evaluation Criteria, DOD 5200.28-STD (The Orange Book)
edition, Dec. 1985.

[40] D. E. Denning and P. J. Denning, “Certification of programs for secure
information flow,” Comm. of the ACM, vol. 20, no. 7, pp. 504–513,
July 1977.

[41] D. E. Denning, Cryptography and Data Security, Addison-Wesley,
Reading, MA, 1982.

[42] R. J. Feiertag, “A technique for proving specifications are multilevel
secure,” Tech. Rep. CSL-109, SRI International Computer Science Lab,
Menlo Park, California, Jan. 1980.

[43] J. McHugh and D. I. Good, “An information flow tool for Gypsy,” in
Proc. IEEE Symp. on Security and Privacy, Apr. 1985, pp. 46–48.

[44] A. C. Myers, N. Nystrom, L. Zheng, and S. Zdancewic, “Jif: Java
information flow,” Software release. http://www.cs.cornell.edu/jif, July
2001.

[45] J. McLean, “A general theory of composition for trace sets closed under
selective interleaving functions,” in Proc. IEEE Symp. on Security and
Privacy, May 1994, pp. 79–93.

[46] D. Volpano, “Safety versus secrecy,” in Proc. Symposium on Static
Analysis. Sept. 1999, vol. 1694 of LNCS, pp. 303–311, Springer-Verlag.

[47] J. A. Goguen and J. Meseguer, “Security policies and security models,”
in Proc. IEEE Symp. on Security and Privacy, Apr. 1982, pp. 11–20.

[48] J. A. Goguen and J. Meseguer, “Unwinding and inference control,” in
Proc. IEEE Symp. on Security and Privacy, Apr. 1984, pp. 75–86.

14 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 21, NO. 1, JANUARY 2003

[49] E. S. Cohen, “Information transmission in computational systems,”
ACM SIGOPS Operating Systems Review, vol. 11, no. 5, pp. 133–139,
1977.

[50] E. S. Cohen, “Information transmission in sequential programs,” in
Foundations of Secure Computation, R. A. DeMillo, D. P. Dobkin,
A. K. Jones, and R. J. Lipton, Eds., pp. 297–335. Academic Press,
1978.

[51] J. McLean, “Proving noninterference and functional correctness using
traces,” J. Computer Security, vol. 1, no. 1, pp. 37–58, 1992.

[52] G. R. Andrews and R. P. Reitman, “An axiomatic approach to
information flow in programs,” ACM TOPLAS, vol. 2, no. 1, pp. 56–75,
Jan. 1980.

[53] M. Mizuno and A. Oldehoeft, “Information flow control in a distributed
object-oriented system with statically-bound object variables,” in Proc.
National Computer Security Conference, 1987, pp. 56–67.

[54] M. Mizuno, “A least fixed point approach to inter-procedural informa-
tion flow control,” in Proc. National Computer Security Conference,
1989, pp. 558–570.

[55] M. Mizuno and D. Schmidt, “A security flow control algorithm
and its denotational semantics correctness proof,” Formal Aspects of
Computing, vol. 4, no. 6A, pp. 727–754, 1992.

[56] J.-P. Banâtre and C. Bryce, “Information flow control in a parallel
language framework,” in Proc. IEEE Computer Security Foundations
Workshop, June 1993, pp. 39–52.

[57] J.-P. Banâtre, C. Bryce, and D. Le Métayer, “Compile-time detection
of information flow in sequential programs,” in Proc. European Symp.
on Research in Computer Security. 1994, vol. 875 of LNCS, pp. 55–73,
Springer-Verlag.

[58] J.-P. Banâtre, C. Bryce, and D. Le Métayer, “An approach to infor-
mation security in distributed systems,” in Proc. IEEE International
Workshop on Future Trends in Distributed Computing Systems, 1995,
pp. 384–394.

[59] P. Ørbæk, “Can you trust your data?,” in Proc. TAPSOFT/FASE’95.
May 1995, vol. 915 of LNCS, pp. 575–590, Springer-Verlag.

[60] P. Ørbæk and J. Palsberg, “Trust in the λ-calculus,” J. Functional
Programming, vol. 7, no. 6, pp. 557–591, 1997.

[61] P. Ørbæk, Trust and Dependence Analysis, Ph.D. thesis, BRICS,
University of Aarhus, Aarhus, Denmark, 1997.

[62] D. E. Denning, “A lattice model of secure information flow,” Comm.
of the ACM, vol. 19, no. 5, pp. 236–243, May 1976.

[63] D. Volpano and G. Smith, “A type-based approach to program security,”
in Proc. TAPSOFT’97. Apr. 1997, vol. 1214 of LNCS, pp. 607–621,
Springer-Verlag.

[64] M. Abadi, “Secrecy by typing in security protocols,” in Proc.
Theoretical Aspects of Computer Software, Sept. 1997, pp. 611–638.

[65] S. Zdancewic and A. C. Myers, “Robust declassification,” in Proc.
IEEE Computer Security Foundations Workshop, June 2001, pp. 15–
23.

[66] R. Joshi and K. R. M. Leino, “A semantic approach to secure
information flow,” Science of Computer Programming, vol. 37, no.
1–3, pp. 113–138, 2000.

[67] D. Volpano and G. Smith, “Eliminating covert flows with minimum
typings,” Proc. IEEE Computer Security Foundations Workshop, pp.
156–168, June 1997.

[68] M. Dam and P. Giambiagi, “Confidentiality for mobile code: The
case of a simple payment protocol,” in Proc. IEEE Computer Security
Foundations Workshop, July 2000, pp. 233–244.

[69] P. Giambiagi, “Confidentiality for implementations of security proto-
cols,” Unpublished manuscript, Feb. 2002.

[70] D. Volpano and G. Smith, “Verifying secrets and relative secrecy,”
in Proc. ACM Symp. on Principles of Programming Languages, Jan.
2000, pp. 268–276.

[71] S. Zdancewic, L. Zheng, N. Nystrom, and A. C. Myers, “Untrusted
hosts and confidentiality: Secure program partitioning,” in Proc. ACM
Symp. on Operating System Principles, Oct. 2001, pp. 1–14.

[72] A. Sabelfeld and H. Mantel, “Static confidentiality enforcement for
distributed programs,” in Proc. Symposium on Static Analysis. Sept.
2002, vol. 2477 of LNCS, pp. 376–394, Springer-Verlag.

[73] D. Clark, S. Hunt, and P. Malacaria, “Quantitative analysis of the
leakage of confidential data,” in Quantitative Aspects of Programming
Languages—Selected papers from QAPL 2001. 2002, vol. 59 of Elec-
tronic Notes in Theoretical Computer Science, Elsevier.

[74] A. Di Pierro, C. Hankin, and H. Wiklicky, “Approximate non-
interference,” in Proc. IEEE Computer Security Foundations Workshop,
June 2002, pp. 1–17.

[75] H. Barendregt, The Lambda Calculus, Its Syntax and Semantics, North-
Holland, 1984.

[76] S. Zdancewic and A. C. Myers, “Secure information flow via linear
continuations,” Higher Order and Symbolic Computation, vol. 15, no.
2–3, pp. 209–234, Sept. 2002.

[77] F. Pottier and V. Simonet, “Information flow inference for ML,” ACM
TOPLAS, 2002, To appear.

[78] V. Simonet, “Fine-grained information flow analysis for a λ-calculus
with sum types,” in Proc. IEEE Computer Security Foundations
Workshop, June 2002, pp. 223–237.

[79] M. Abadi and L. Cardelli, A Theory of Objects, Monographs in
Computer Science. Springer-Verlag, New York, 1996.

[80] J. McLean, “A general theory of composition for a class of “possibilis-
tic” security properties,” IEEE Transactions on Software Engineering,
vol. 22, no. 1, pp. 53–67, Jan. 1996.

[81] D. Sutherland, “A model of information,” in Proc. National Computer
Security Conference, Sept. 1986, pp. 175–183.

[82] D. McCullough, “Specifications for multi-level security and hook-up
property,” in Proc. IEEE Symp. on Security and Privacy, Apr. 1987,
pp. 161–166.

[83] H. Mantel, “Possibilistic definitions of security – An assembly kit –,”
in Proc. IEEE Computer Security Foundations Workshop, July 2000,
pp. 185–199.

[84] K. R. M. Leino and R. Joshi, “A semantic approach to secure
information flow,” in Proc. Mathematics of Program Construction,
June 1998, vol. 1422 of LNCS, pp. 254–271.

[85] A. Sabelfeld and D. Sands, “A per model of secure information flow in
sequential programs,” in Proc. European Symposium on Programming.
Mar. 1999, vol. 1576 of LNCS, pp. 40–58, Springer-Verlag.

[86] D. Volpano and G. Smith, “Probabilistic noninterference in a con-
current language,” in Proc. IEEE Computer Security Foundations
Workshop, June 1998, pp. 34–43.

[87] G. Smith, “A new type system for secure information flow,” in Proc.
IEEE Computer Security Foundations Workshop, June 2001, pp. 115–
125.

[88] G. Boudol and I. Castellani, “Noninterference for concurrent pro-
grams,” in Proc. ICALP, July 2001, vol. 2076 of LNCS, pp. 382–395.

[89] G. Boudol and I. Castellani, “Non-interference for concurrent programs
and thread systems,” Theoretical Computer Science, vol. 281, no. 1,
pp. 109–130, June 2002.

[90] A. Sabelfeld, “The impact of synchronisation on secure information
flow in concurrent programs,” in Proc. Andrei Ershov International
Conference on Perspectives of System Informatics. July 2001, vol. 2244
of LNCS, pp. 227–241, Springer-Verlag.

[91] K. Honda, V. Vasconcelos, and N. Yoshida, “Secure information
flow as typed process behaviour,” in Proc. European Symposium on
Programming. 2000, vol. 1782 of LNCS, pp. 180–199, Springer-Verlag.

[92] K. Honda and N. Yoshida, “A uniform type structure for secure
information flow,” in Proc. ACM Symp. on Principles of Programming
Languages, Jan. 2002, pp. 81–92.

[93] F. Pottier, “A simple view of type-secure information flow in the pi-
calculus,” in Proc. IEEE Computer Security Foundations Workshop,
June 2002, pp. 320–330.

[94] S. Zdancewic, Programming Languages for Information Security,
Ph.D. thesis, Cornell University, July 2002.

[95] A. W. Roscoe, “CSP and determinism in security modeling,” in Proc.
IEEE Symp. on Security and Privacy, May 1995, pp. 114–127.

[96] R. P. Reitman, Information flow in parallel programs: An axiomatic
approach, Ph.D. thesis, Cornell University, 1978.

[97] M. Abadi, “Secrecy by typing in security protocols,” J. ACM, vol. 46,
no. 5, pp. 749–786, Sept. 1999.

[98] M. Abadi and B. Blanchet, “Secrecy types for asymmetric commu-
nication,” in Proc. Foundations of Software Science and Computation
Structure. Apr. 2001, vol. 2030 of LNCS, pp. 25–41, Springer-Verlag.

[99] E. Sumii and B. Pierce, “Logical relations for encryption,” in Proc.
IEEE Computer Security Foundations Workshop, June 2001, pp. 256–
269.

[100] P. Thiemann, “Enforcing security properties by type specialization,” in
Proc. European Symposium on Programming. Apr. 2001, vol. 2028 of
LNCS, Springer-Verlag.

[101] P. C. Kocher, “Timing attacks on implementations of Diffie-Hellman,
RSA, DSS, and other systems,” in Proc. CRYPTO’96. 1996, vol. 1109
of LNCS, pp. 104–113, Springer-Verlag.

[102] J. McLean, “Security models and information flow,” in Proc. IEEE
Symp. on Security and Privacy, May 1990, pp. 180–187.

[103] J.W. Gray III, “Probabilistic interference,” in Proc. IEEE Symp. on
Security and Privacy, May 1990, pp. 170–179.

SABELFELD AND MYERS: LANGUAGE-BASED INFORMATION-FLOW SECURITY 15

[104] P. Syverson and J. W. Gray III, “The epistemic representation of
information flow security in probabilistic systems,” in Proc. IEEE
Computer Security Foundations Workshop, June 1995, pp. 152–166.

[105] K. G. Larsen and A. Skou, “Bisimulation through probabilistic testing,”
Information and Computation, vol. 94, no. 1, pp. 1–28, Sept. 1991.

[106] A. C. Myers and B. Liskov, “Complete, safe information flow with
decentralized labels,” in Proc. IEEE Symp. on Security and Privacy,
May 1998, pp. 186–197.

[107] M. Abadi and A. D. Gordon, “A calculus for cryptographic protocols:
The Spi calculus,” Information and Computation, vol. 148, no. 1, pp.
1–70, Jan. 1999.

[108] P. Giambiagi, “Secrecy for mobile implementations of security pro-
tocols,” Licentiate Thesis, Royal Institute of Technology, Stockholm,
Oct. 2001.

[109] D. Volpano, “Secure introduction of one-way functions,” in Proc. IEEE
Computer Security Foundations Workshop, July 2000, pp. 246–254.

[110] P. Laud, “Semantics and program analysis of computationally secure
information flow,” in Proc. European Symposium on Programming.
Apr. 2001, vol. 2028 of LNCS, pp. 77–91, Springer-Verlag.

[111] A. Di Pierro, C. Hankin, and H. Wiklicky, “Probabilistic confinement
in a declarative framework,” in Declarative Programming—Selected
papers from AGP 2000. 2001, vol. 48 of Electronic Notes in Theoretical
Computer Science, Elsevier.

[112] A. Di Pierro, C. Hankin, and H. Wiklicky, “Analysing approximate
confinement under uniform attacks,” in Proc. Symposium on Static
Analysis. Sept. 2002, vol. 2477 of LNCS, pp. 310–325, Springer-Verlag.

[113] G. Lowe, “Quantifying information flow,” in Proc. IEEE Computer
Security Foundations Workshop, June 2002, pp. 18–31.

[114] C. E. Shannon and W. Weaver, The Mathematical Theory of Commu-
nication, University of Illinois Press, 1963.

[115] H. Mantel and A. Sabelfeld, “A generic approach to the security
of multi-threaded programs,” in Proc. IEEE Computer Security
Foundations Workshop, June 2001, pp. 126–142.

[116] H. Mantel and A. Sabelfeld, “A unifying approach to the security of
distributed and multi-threaded programs,” J. Computer Security, 2002,
To appear.

[117] J. H. Saltzer and M. D. Schroeder, “The protection of information in
computer systems,” Proc. of the IEEE, vol. 63, no. 9, pp. 1278–1308,
Sept. 1975.

[118] G. Morrisett, Compiling with Types, Ph.D. thesis, Carnegie Mellon
University, Dec. 1995, Published as CMU Tech Report CMU-CS-95-
226.

[119] J. Agat, Type Based Techniques for Covert Channel Elimination and
Register Allocation, Ph.D. thesis, Chalmers University of Technology
and Gothenburg University, Gothenburg, Sweden, Dec. 2000.

[120] A. Appel, Compiling with Continuations, Cambridge University Press,
1992.

[121] D. Kozen, “Language-based security,” in Proc. Mathematical Founda-
tions of Computer Science. Sept. 1999, vol. 1672 of LNCS, pp. 284–
298, Springer-Verlag.

[122] M. A. Sheldon and D. K. Gifford, “Static dependent types for first class
modules,” in Proc. Lisp and Functional Programming, June 1990, pp.
20–29.

[123] H. Xi and F. Pfenning, “Dependent types in practical programming,”
in Proc. ACM Symp. on Principles of Programming Languages, Jan.
1999, pp. 214–227.

[124] J. Agat and D. Sands, “On confidentiality and algorithms,” in Proc.
IEEE Symp. on Security and Privacy, May 2001, pp. 64–77.

[125] F. Nielson, H. Riis Nielson, and C. Hankin, Principles of Program
Analysis, Springer-Verlag, 1999.

[126] C. Bodei, P. Degano, H. Riis Nielson, and F. Nielson, “Security analysis
using flow logics,” in Current Trends in Theoretical Computer Science,
G. Paun, G. Rozenberg, and A. Salomaa, Eds., pp. 525–542. World
Scientific, 2000.

[127] C. Bodei, P. Degano, F. Nielson, and H. Riis Nielson, “Static analysis
of processes for no read-up and no write-down,” in Proc. Foundations
of Software Science and Computation Structure. Apr. 1999, number
1578 in LNCS, pp. 120–134, Springer-Verlag.

[128] C. Bodei, P. Degano, F. Nielson, and H. Riis Nielson, “Static analysis
for the π-calculus with applications to security,” Information and
Computation, vol. 168, pp. 68–92, 2001.

[129] L. Cardelli and A. D. Gordon, “Mobile ambients,” in Proc. Foundations
of Software Science and Computation Structure. Apr. 1998, vol. 1378
of LNCS, pp. 140–155, Springer-Verlag.

[130] F. Nielson, H. Riis Nielson, R. R. Hansen, and J. G. Jensen, “Validating
firewalls in mobile ambients,” in Proc. CONCUR’99. 1999, number
1664 in LNCS, pp. 463–477, Springer-Verlag.

[131] C. Bodei, P. Degano, H. Riis Nielson, and F. Nielson, “Static analysis
for secrecy and non-interference in networks of processes,” in Proc.
PACT’01. Sept. 2001, vol. 2127 of LNCS, pp. 27–41, Springer-Verlag.

[132] D. Clark, C. Hankin, and S. Hunt, “Information flow for Algol-like
languages,” Journal of Computer Languages, 2002, To appear.

[133] P. Cousot and R. Cousot, “Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation
of fixpoints,” in Proc. ACM Symp. on Principles of Programming
Languages, Jan. 1977, pp. 238–252.

[134] P. Malacaria and C. Hankin, “Non-deterministic games and program
analysis: An application to security,” in Proc. IEEE Symp. on Logic in
Computer Science, 1999, pp. 443–452.

[135] S. Abramksy and G. McCusker, “Game semantics,” in Logic and
Computation: Proc. 1997 Marktoberdorf Summer School, U. Berger
and H. Schwichtenberg, Eds., NATO Science Series. Springer-Verlag,
1998.

[136] M. Zanotti, “Security typings by abstract interpretation,” in Proc.
Symposium on Static Analysis. Sept. 2002, vol. 2477 of LNCS, pp.
360–375, Springer-Verlag.

[137] D. McCullough, “Noninterference and the composability of security
properties,” in Proc. IEEE Symp. on Security and Privacy, May 1988,
pp. 177–186.

[138] A. Sabelfeld, Semantic Models for the Security of Sequential and Con-
current Programs, Ph.D. thesis, Chalmers University of Technology
and Gothenburg University, Gothenburg, Sweden, May 2001.

[139] R. Focardi and R. Gorrieri, “A classification of security properties for
process algebras,” J. Computer Security, vol. 3, no. 1, pp. 5–33, 1995.

[140] P. Ryan, “Mathematical models of computer security—tutorial lec-
tures,” in Foundations of Security Analysis and Design, R. Focardi and
R. Gorrieri, Eds., vol. 2171 of LNCS, pp. 1–62. Springer-Verlag, 2001.

[141] P. Ryan and S. Schneider, “Process algebra and non-interference,” in
Proc. IEEE Computer Security Foundations Workshop, June 1999, pp.
214–227.

[142] H. Mantel, “On the composition of secure systems,” in Proc. IEEE
Symp. on Security and Privacy, May 2002, pp. 81–94.

[143] P. Sewell and J. Vitek, “Secure composition of untrusted code:
Wrappers and causality types,” in Proc. IEEE Computer Security
Foundations Workshop, July 2000, pp. 269–284.

[144] M. Hennessy and J. Riely, “Information flow vs resource access in
the asynchronous pi-calculus (extended abstract),” in Proc. ICALP’00.
July 2000, vol. 1853 of LNCS, pp. 415–427, Springer-Verlag.

[145] D. Duggan, “Cryptographic types,” in Proc. IEEE Computer Security
Foundations Workshop, June 2002, pp. 238–252.

[146] R. Focardi, R. Gorrieri, and F. Martinelli, “Information flow analysis
in a discrete-time process algebra,” in Proc. IEEE Computer Security
Foundations Workshop, July 2000, pp. 170–184.

[147] A. Aldini, “Probabilistic information flow in a process algebra,” in
Proc. CONCUR’01. Aug. 2001, vol. 2154 of LNCS, pp. 152–168,
Springer-Verlag.

Andrei Sabelfeld received the Ph.D. degree in com-
puter science from Chalmers University of Technol-
ogy and Gothenburg University, Gothenburg, Swe-
den, in 2001.

He is a Research Associate in the Computer Sci-
ence Department, Cornell University, Ithaca, NY. His
research has developed the link between two areas
of computer science: programming languages and
computer security. He has pursued the certification
of confidentiality according to established principles
of programming languages.

Andrew C. Myers received the Ph.D. degree in
computer science from the Massachusetts Institute
of Technology, Cambridge, in 1999.

He is an Assistant Professor in the Computer
Science Department, Cornell University, Ithaca, NY.
His research interests include computer security, pro-
gramming languages, and distributed object systems.
His work on language-based information flow has
focused on systems and languages that are expres-
sive and practical.

