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Abstract
We developed Chlorophyll, a synthesis-aided programming model
and compiler for the GreenArrays GA144, an extremely minimal-
ist low-power spatial architecture that requires partitioning the pro-
gram into fragments of no more than 256 instructions and 64 words
of data. This processor is 100-times more energy efficient than its
competitors, but currently can only be programmed using a low-
level stack-based language.

The Chlorophyll programming model allows programmers to
provide human insight by specifying partial partitioning of data
and computation. The Chlorophyll compiler relies on synthesis,
sidestepping the need to develop classical optimizations, which
may be challenging given the unusual architecture. To scale syn-
thesis to real problems, we decompose the compilation into smaller
synthesis subproblems—partitioning, layout, and code generation.
We show that the synthesized programs are no more than 65%
slower than highly optimized expert-written programs and are
faster than programs produced by a heuristic, non-synthesizing
version of our compiler.

Categories and Subject Descriptors E.2.1 [Software notations
and tools]: General programming languages—Language features,
Compilers; K.2.2 [Parallel computing methodologies]: Parallel
programming languages

Keywords Program Synthesis, Spatial Architectures

1. Introduction
Energy requirements have been dictating simpler processor imple-
mentations with more energy dedicated to computation and less to
processor control. Simplicity is already the norm in low-power sys-
tems, where 32-bit ARM dominates the phone computer class [40];
the 16-bit TI 430MSP is a typical example of a low-power embed-
ded controller; and the even simpler 8-bit Atmel AVR controller
powers Arduino [2].

The GreenArrays GA144 is a recent example of a low-power
spatial processor, composed of many small, simple, identical
cores [17]. Likely the most energy-efficient commercially available
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processor, it consumes 9 times less energy and runs 11 times faster
than the TI MSP430 low-power microcontroller on a finite impulse
response benchmark [3]. Naturally, energy efficiency comes at the
cost of computing capability—among the many challenges of pro-
gramming the GA144, programs must be meticulously partitioned
and laid out onto the physical cores.

A spatial architecture is an architecture for which the user or
the compiler must assign data, computations, and communication
primitives explicitly to its specific hardware resources such as com-
puting units, storage, and an interconnect network. Future low-
power processors will likely be spatial with simple interconnects
between resources or cores, and have radically different ISAs from
what we commonly use today. They will likely be minimalistic,
providing little programmability support and so placing a greater
burden on programmers and compilers.

In this paper, we introduce a new programming model and a
synthesis-based compiler for such spatial processors. Our primary
hardware target is the GA144 which takes these design features
to extremes, maximizing the demands on our programming tool
chain; if we can build a synthesizer for this processor, we expect
we will be able to do so for other low-power processors as well.

1.1 GreenArrays Low-Power Spatial Processor
The GA144 is a stack-based 18-bit processor consisting of 144
cores with no clock or shared memory [17, 18]. It consumes less
energy per instruction than any other commercially available archi-
tectures [28]. A small number of GA144 applications have been
developed directly in arrayForth, a low-level stack-based language,
but using this low-level language presents many difficulties.

Each core can communicate only with its neighbors, using
blocking reads and writes. There are no message buffers. To com-
municate with distant cores, the programmer must intersperse com-
munication code with the computation code of a core, carefully
avoiding deadlocks and race conditions.

Each core contains only a tiny amount of memory and 2 small
circular stacks (one for data and one for return addresses), which
together offer fewer than 100 18-bit words of storage per core. This
forces programs and data structures to be partitioned over multiple
cores. For instance, even a heavily optimized MD5 hash implemen-
tation has to be partitioned across 10 cores on the GA144 [19].

Since the GA144 is an 18-bit architecture, wider words must be
implemented in software. Additionally, the machine code is stack-
based, so it is relatively foreign to most programmers who have
only ever used register-based systems.

Our system tries to help the programmer overcome these dif-
ficulties, presenting a more familiar, higher-level abstraction and
automatically handling some of the challenges described above.



1.2 Challenges and Solutions
Our new programming model and compiler are an important step
towards overcoming the following implementation challenges.

First, classical compilers that transform code using heuristic-
guided tree rewrites may not be able to bridge the abstraction gap of
low-power programming. When optimizing the architecture for en-
ergy efficiency sacrifices programmability features in the hardware
(such as hardware-controlled caches) the abstraction gap grows
larger. This growing gap cannot be easily addressed by classical
compilation for two reasons: (i) it may take a decade to build a
mature compiler with optimizations for the target hardware[33];
and (ii) low-power architectures will be actively investigated for
a while, presenting a moving target and delaying compiler devel-
opment.

Our solution uses syntax-guided synthesis [1, 39]—we sketch
the desired program and let the synthesizer search for an imple-
mentation that meets the specification. Program synthesis is a form
of automatic programming using formal verification. Rather than
writing a program directly, the user provides a goal (the specifica-
tion) and the synthesizer automatically generates the program.

Second, programmers prefer to control hardware at a higher
level of abstraction. For example, to optimize their programs, pro-
grammers prefer to manually partition data structures and code but
not to deal with the low-level details of the resulting communica-
tion code. Our programming model allows programmers to selec-
tively partition key data structures and code, leaving the remaining
partitioning and communication code generation to the synthesizer.

Third, applying program synthesis to large problems may
not scale. Algorithms developed for program synthesis operate
on whole programs, but not on decompositions of larger pro-
grams [20, 35, 39]. In order to scale synthesis to large programs,
we decompose a large problem into smaller ones. Our approach has
three synthesis subproblems: program partitioning, layout and rout-
ing, and optimized program generation (as well as code separation,
a classical compilation problem). The resulting synthesis-aided
compiler uses a suitable solver for each subproblem.

In summary, we make the following contributions:

• We developed a programming model that allows the program-
mer to optionally partition data structures and code. Our model
facilitates fine-grained partitioning over the spatial architecture.

• We designed and evaluated a compiler that solves three consec-
utive synthesis subproblems. Our design shows how to decom-
pose synthesis to scale to large, practical problems.

• We introduced a low-effort approach to building compilers for
unusual architectures without sacrificing much performance.

• We wrote the first high-level compiler for the minimalistic
GA144 architecture. Its generated code performs within a factor
of 1.65 of hand-written code. The only alternative for running
high-level programs is an interpreter that runs orders of magni-
tudes slower, negating the architecture’s energy benefits.

2. Overview
Chlorophyll decomposes the problem of compiling a high-level
program to spatial machine code into four main subproblems: par-
titioning, layout and routing, code separation, and code generation.
These subproblems are difficult for traditional compilers. In this
paper, we show how these problems can be solved naturally using
synthesis techniques.

Step 1 (partition) The input to this step is a source program
with partition annotations which specify the logical core (partition)
where code and data reside. The annotations allow the programmer
to provide insight about the partitioning or experiment with differ-

ent partitioning just by changing the annotations. An input program
does not have to be fully annotated. For example, in this program

int@0 mult(int x, int y) { return x * y; }

we specify that the result will be delivered at partition 0 but do not
specify the partitions of variable x, y, and operation +.

The compiler then infers (i.e. synthesizes) the rest of the par-
tition annotations such that each program fragment (per-core pro-
gram) fits into a core, minimizing a static over-approximation of
the amount of messages between partitions. Here is one possible
mapping (for a very tiny core):

int@0 mult(int@2 x, int@1 y) { return (x!1 *@1 y)!0; }

The inferred annotations indicate that when function mult is called,
x is passed as an argument at partition 2 and y is passed as another
argument at partition 1. ! is the send operation. The program body’s
annotations specify that the value of x at partition 2 is sent to
partition 1, and is multiplied with the value of y. Finally, the result
of the addition is sent to partition 0 as the function’s return value.

Step 2 (layout) The layout synthesizer maps program parti-
tions onto physical cores, minimizing a refined approximation
of communication costs. It also determines a communication
path (routing) between each pair of cores. We map this synthe-
sis problem to an instance of the well-known Quadratic Assign-
ment Problem (QAP) which can be solved exactly or approxi-
mately [11, 14, 25, 37]. We chose to use the Simulated Annealing
algorithm as it is one of the fastest techniques and produces a nearly
optimal solution [11]. Given the partitionedmult function from the
previous step, the figure below shows the result of this step.

x * y return 
(1,1) (1,2) (1,3) 

Step 3 (code separation) The separator splits the fully partitioned
program into per-core program fragments, inserting sends and re-
ceives for communication. This step uses a classical program trans-
formation. We guarantee that the resulting separated programs are
deadlock-free by disallowing instruction reordering within each
core. Our running example results in these program fragments:

// core(1,1) core ID is (x,y) position on the chip
void mult(int x) { send(EAST, x); }
// core(1,2)
void mult(int y) { send(EAST, read(WEST) * y); }
// core(1,3)
int mult() { return read(WEST); }

Step 4 (code generation) The code generator first naïvely com-
piles each program fragment into machine code. The code is then
optimized with a superoptimizing synthesizer, which searches the
space of possible instruction sequences to find ones that are correct
and fast or short [29]. Although the superoptimizer is allowed to
reorder evaluations, it preserves the order of sends and receives
which is sufficient to prevent deadlock. We apply a sliding win-
dow technique to the synthesizer to adaptively merge small code
sequences into bigger ones and input it back into the synthesizer.
The synthesizer persistently caches synthesized code to avoided
unnecessary recomputation.

The rest of the paper is organized as follows. Section 3 shows
how to obtain a partitioning synthesizer by implementing an in-
terpreter to calculate the number of communications and a parti-
tion space checker. Section 4 describes a layout synthesizer. Sec-
tion 5 describes the implementation of a simple program transfor-
mation for code separation. Section 6 shows how to obtain opti-
mized code without implementing the optimizations directly. Sec-



tion 7 discusses the interactions between the 4 steps. Finally, Sec-
tion 8 presents evaluation, Section 9 describes related work, and
Section 10 concludes.

3. Programming Model for Partitioning
The Chlorophyll language is designed to simplify reasoning about
partitioning and to obviate the need for explicit communication
code. We achieve these goals by extending a simple type system
with a partition type and optimally inferring unspecified partitions
with our partitioning synthesizer. In this section, we introduce the
Chlorophyll language, its type system, and the partitioning process.

3.1 Language Overview
Chlorophyll syntax is a subset of C with partition annotation spec-
ifying the partitions of data and operations. In order to make fine-
grained partitioning possible, we track the partition of every piece
of data and operation. Figure 1(a) shows the LeftRotate program
implemented in Chlorophyll. On line 18, we set the partition of
variable r to be 6 by annotating its declaration. On line 12, we as-
sign the partitions of distributed array x such that for 0 ≤ i < 32,
x[i] lives in partition 0, and the rest in partition 1. On line 21, op-
eration + is assigned to partition 6. On line 20, operation − is as-
signed to place(z[i]); when 0 ≤ i < 32, operation − at partition 4
is executed, and when 32 ≤ i < 64, operation − at partition 5 is
executed. Note that most of the data and operations in the program
are left unannotated—their partitions will be automatically inferred
by the partitioning synthesizer.

3.2 Programming Constructs and Space
Constants, variables, arrays, operators, and statements all take up
space in memory. Most programming constructs, such as a vari-
able declarations, variable access, variable assignment and binary
operations, take up a constant amount of memory, so we can esti-
mate the space occupied by the program with a simple lookup table.
However, we have to handle control flow constructs and arrays with
more care.

Control Flow Constructs (for, while, and if-else) When the body
of a control flow construct is spread across many partitions, called
body partitions, the actual control flow logic needs to be placed
in each of these partitions as well. For example, the result of the
condition expression x +@2 y, is at partition 2. This evaluated value
is sent to all the body partitions, each of which in turn uses the
received value as its condition.

Chlorophyll only supports for loops of the form for (i from e1
to e2) {...}, where e1 and e2 are constants. The iterator i starts
from e1 and is incremented by 1. The condition of the loop is
i < e2. These restrictions allow Chlorophyll to produce more
efficient code. Specifically, each of the body partitions uses its own
copy of i. This reduces the amount of communication between
partitions. Other sorts of iteration are supported by while loops
which have no restrictions on conditions.

Arrays There are two kinds of arrays in Chlorophyll :

• Non-distributed arrays only live in one partition. An index into
this type of array has to live at the same partition as the array
itself.

• Distributed arrays live in multiple partitions. Arrays x, y and
z from LeftRotate are examples. This type of array can only
be indexed by affine expressions of surrounding loop variables
and constants. Accessing this type of array requires no commu-
nication because the indexes are comprised of loop variables
which live in every body partition. Chlorophyll currently does
not support other kinds of indexing into distributed arrays.

Partition Annotations Programmers specify partitions of data
and operators using partition annotations. Partition annotations (A)
can be expressed as follows:
A := N | place(var) | place(array)

N := natural number var := variable array := array access

place(x) refers to the partition where variable x lives, and place(y[i])
refers to the partition where the ith entry of array y lives. place(y[i])
can only be used inside the body of a for loop with iterator i.

Limitation
Currently, Chlorophyll does not handle recursive calls, multidimen-
sional arrays, or array accesses with index expressions that use non-
loop variables. Unbounded loops can be implemented using while;
however, the for loop is currently restricted to the form described
earlier.

3.3 Partition Type and Typing Rules
Partition types can be specified by the programmer using partition
annotations or inferred by the partitioning synthesizer. We present
a simplified version of our complete type system to convey the core
idea. Types in Chlorophyll can be expressed as follows:
τ := τ@ρ τ := val | int | void
ρ := N | any | ρdist ρdist := {(N, )+}
N := natural number

Our types consist of data types τ and partition types ρ. For simplic-
ity, the data types only include int, val, and void. ρdist is a type
of distributed array.

The typing rules shown in Figure 2 (omitting some trivial rules)
enforce that operands and operators are in the same partition. Con-
stants and loop variables have partition type ’any’ indicating that
they can be at any partition. The partition subtype rule allows an
expression with partition type ’any’ to be used everywhere. In the
access dist-array rule, the type checker needs to evaluate e at com-
pile time. This is possible because our type system ensures that the
index to a distributed array is only comprised of loop variables and
constants, and the language enforces finite loop bounds. Thus, the
compiler can break a loop that iterates over a distributed array into
multiple loops, each accessing a chunk of the array that lives on
some particular partition. For example, the loop in LeftRotate is
broken into two loops: one iterating from 0 to 32 and another from
32 to 64.

! is an operation for sending data from one partition to another.
It will be translated to both a write operation at the sending parti-
tion and a read operation at the receiving partition. It is the only
operation that accepts an operand whose partition type may not be
a subtype of the output’s partition type. The compiler automatically
generates this operator during type checking and inferring, so pro-
grammers are not required to insert any ! in the source code.

3.4 Partitioning Process
Partitioning a program can be thought of as a type inference on
the partition types. The partitioning synthesizer is constructed from
1) the communication interpreter, which models the number of
communications needed and 2) the partition space check, which
ensures code and data fit in the memory of the appropriate core.

3.4.1 Communications Interpreter
Let Comm(P, σ, x) be a function that counts the number of com-
munications in a given program P with complete annotated parti-
tions σ and a concrete input x. The communication count is cal-
culated with MaxComm(P, σ) = maxx∈Input Comm(P, σ, x),
where Input is a set of all valid inputs to the program, assuming
while loops are executed a certain number of times (currently 100).
MaxComm computes the maximum number of communications



1 int leftrotate(int x, int y, int r) {
2 if(r > 16) {
3 int swap = x;
4 x = y;
5 y = swap;
6 r = r - 16;
7 }
8 return ((y >> (16 - r)) | (x << r)) & 65535;
9 }

10
11 void main() {
12 int@{[0:32]=0,[32:64]=1} x[64];
13 int@{[0:32]=2,[32:64]=3} y[64];
14 int@{[0:32]=4,[32:64]=5} z[64];
15 // x[0] to x[31] live at partition 0,
16 // x[32] to x[63] live at partition 1, and so on.
17
18 int@6 r = 0;
19 for (i from 0 to 64) {
20 z[i] = leftrotate(x[i],y[i],r) -@place(z[i]) 1;
21 r = r +@6 1; // + happens at partition 6.
22 if (r > 32) r = 0;
23 }
24 }

int @7 leftrotate(int@8 x, int@8 y, int@9 r) {
if(r >@9 16) {
int@8 swap = x;
x = y;
y = swap;
r = r -@9 16;

}
return ((y!7 >>@7 (16 -@7 r!7)) |@7 (x!7 <<@7 r!7)) &@7 65535;

}

void main() {
int@{[0:32]=0,[32:64]=1} x[64];
int@{[0:32]=2,[32:64]=3} y[64];
int@{[0:32]=4,[32:64]=5} z[64];
int@6 r = 0;
for (i from 0 to 32) {
z[i] = leftrotate(x[i]!8,y[i]!8,r!9)!4 -@4 1; //!8 is send to partition 8
r = r +@6 1;
if (r >@6 32) r = 0;

}
for (i from 32 to 64) {
z[i] = leftrotate(x[i]!8,y[i]!8,r!9)!5 -@5 1;
r = r +@6 1;
if (r >@6 32) r = 0;

}
}

(a) Input source code written in Chlorophyll (b) Output from partitioner when memory is 64 words

x[0:16] z[0:16] r 

x[16:32] LeftRotate 
x, y, swap y[16:32] LeftRotate 

>>, <<, &, | 
LeftRotate 

r > 16, r - 16 

y[0:16] z[16:32] 

(2,5) 

(1,5) (1,6) (1,7) (1,8) (1,9) 

(2,6) (2,7) (2,8) (2,9) 

(3,5) (3,6) (3,7) (3,8) (3,9) 0 

1 

2 

3 

4 

5 

6 

7 8 9 

void leftrotate(int x,int y) {
if(read(E)) {
int swap = x;
x = y;
y = swap;

}
write(E,y);
write(E,x);

}

void main() {
for(i from 0 to 32) {
leftrotate(read(N), read(S));

}

for(i from 32 to 64) {
leftrotate(read(W), read(E));

}
}

(c) Output from layout synthesizer. The numbers at the top-left
corner of the boxes represent partition IDs corresponding to

the partition annotations in the source code.
(d) Program at core (2,6) after code separation

Figure 1. Example program written in Chlorophyll, and intermediate results from partitioning, layout, and code separation steps

by considering all possible program paths. For most constructs, the
communications count is equal to sum of its components’ counts.
! increments the communication count by 1. Loops multiply the
count. Conditional statments add the communication count by the
number of the body partitions (subtracted by 1 if one of the body
partitions is the same as the partition of the result of the condition
expression).

3.4.2 Partition Space Check
Operations, statements, and communication operations (i.e. read
and write) take up memory in the partitions they belong to. Con-
stants take up memory in the partitions they are inferred to be in
(usually the partitions of their operands or the left-hand-side vari-
ables they assign to). If-elses, loops, and loop variables take up
memory in all of their body partitions. Given a program with com-
plete partition annotations, the partition space checker computes
how much space is used in each partition. The compiler only ac-
cepts the program if the occupied space in every partition is not
more than the amount of memory available in a core.

3.4.3 Partitioning Synthesizer
We implemented the communication count interpreter and the par-
tition space checker using Rosette, a language for building light-
weight synthesizers [41]. We represent a specified partition anno-
tation as a concrete value and an unspecified partition annotation
as a symbolic variable. Given a fully annotated program (one with
all concrete partitions), the result from the interpretation is a con-
crete value, and the partition space checker simply verifies that the
memory constraint holds. Given a partially annotated or unanno-
tated program (a program with some or all symbolic partitions), the
result from the communication count interpretation is a formula in
terms of the symbolic variables, and the partition space check be-
comes a constraint on the symbolic variables.

Once we obtain a formula from the communication count and
the partition space constraint, we query Rosette’s back-end solver
to find an assignment to the symbolic partitions such that the space
constraint holds. If the solver returns a solution, we reduce the
communication count by giving the solver the same problem with
an additional constraint setting an upper bound on the count. We
keep lowering the upper bound until no solution can be found.



[basic subtype]
val< int

[partition subtype]
any< N

τ1 < τ2 ρ1 < ρ2 [subtype]
τ1@ρ1 < τ2@ρ2

[const]
Γ ` n : val@any

x : τ@ρ ∈ Γ
[variable]

Γ ` x : τ@ρ

i : val@any ∈ Γ
[iterator]

Γ ` i : val@any

Γx : τ@{ρ} ∈ Γ
[array]

Γ ` x : τ@{ρ}
Γx : τ@{ρ1, ρ2, ..., ρn} ∈ Γ

[dist array]
Γ ` x : τ@{ρ1, ρ2, ..., ρn}

Γ ` e1 : τ1@ρ1 Γ ` e2 : τ2@ρ2 τ1@ρ1 < τ@ρ τ2@ρ2 < τ@ρ
[op]

Γ ` e1 op@ρ e2 : τ@ρ

Γ ` f : τ1@ρ1 → τ2@ρ2 Γ ` e : τ3@ρ3 τ3@ρ3 < τ1@ρ1
[function call]

Γ ` f e : τ2@ρ2

Γ ` x : τ@{ρ} Γ ` e : τe@ρe τe@ρe < int@ρ
[access array]

Γ ` x[e] : τ@ρ

Γ ` x : τ@{ρ1, ..., ρn} Γ ` e : val@any e ↓ v
[access dist-array]

Γ ` x[e] : τ@ρv

Γ ` e : τ@ρ1
[send]

Γ ` e!ρ2 : τ@ρ2

Figure 2. Typing rules

3.5 Pre-Partitioning Process
Before the partition process takes place, loop splitting is performed.
Since the traditional approach to loop splitting is difficult to imple-
ment, we used Rosette to implement a loop splitting synthesizer
similar to the way we implemented the partitioning synthesizer.
Consider this prefixsum program:

int@{[0:5]=0,[5:10]=1} x[10];
for (i from 1 to 10) x[i] = x[i] + x[i-1];

We first duplicate the loop into k loops and replace the loop bounds
with symbolic values. Let k be 3 in this particular example. The first
loop iterates over i from a0 to b0, the second loop from a1 to b1,
and so on. We need to check that a0 = 1, b2 = 10, ai+1 = bi,
and every x[i] under the loop bounds belongs to one partition as
well as x[i − 1]. We implemented the checker as if the bounds are
concrete. When the bounds are unknown, they become symbolic
values and the checking conditions are used as constraints. Finally,
the solver outputs one feasible solution for loop bounds. In this
particular example, the output is

for (i from 1 to 5)
x[i] = x[i] + x[i-1]; // x[i] at 0, x[i-1] at 0

for (i from 5 to 6)
x[i] = x[i] + x[i-1]; // x[i] at 0, x[i-1] at 1

for (i from 6 to 10)
x[i] = x[i] + x[i-1]; // x[i] at 1, x[i-1] at 1

The final output is the solution with the smallest possible k.

3.6 Example and Rationale
Figure 1(b) shows the result after partitioning the program in Figure
1(a) with 64 words of memory per core. Notice that ! operations
are automatically inserted into the program. If the programmer
writes partition annotations such that it is impossible to partition
the program into program fragments that fit on cores, this will result
in a compile-time error.

We support manual annotations based on the philosophy that the
programmer and compiler generally have different strengths and
that we should let the programmer provide high-level insights to
help the compiler. This makes our synthesizer more scalable.

4. Layout
In this step, we assign program fragments to physical cores by
solving an instance of QAP, stated as follows:

Given a set F of facilities, a set L of locations, a flow function
t : F × F → R, and a distance function d : L× L → R, find the
assignment a : F → L that minimizes the following cost function:∑

f1∈F,f2∈F

t(f1, f2) · d(a(f1), a(f2))

The facilities represent code partitions, the flow is the number of
messages between any two partitions, and the distance matrix stores
the Manhattan distances between each pair. The solution is a layout
that minimizes communication.

This QAP instance can be solved with techniques ranging from
Branch and Bound search with pruning [25], to Simulated Anneal-
ing (SA) [11], to Ant System [14], to Tabu Search [37]. According
to our preliminary experiments, SA takes the least amount of time
and generates the best (often optimal) solutions. 1

We used an existing SA implementation for the layout synthe-
sizer in our compiler. The compiler generates a flow graph f by
adding flow units for every ! operator and conditional statement,
and runs SA over the graph. The result is then used for generating a
routing table from the shortest paths between cores. The layout and
routing of the program in Figure 1(b) is shown in Figure 1(c).

5. Code Separation
The program is separated into multiple program fragments commu-
nicating with read and write operations. We chose this particular
scheme because GA does not support shared memory—cores can
only communicate with neighbors using synchronous channels. We
preserve the order of operations within each program fragment with
respect to the original program to prevent deadlock. The rest of this
section describes this process for each language construct.

Basic Statements A program without control flow, functions, or
arrays is simple to separate. We traverse the program AST in post-
order, placing sub-expressions according to their partition types,
and add communication code preserving the original order. For
example, consider

int@3 x = (1 +@2 2)!3 *@3 (3 +@1 4)!3;

Partitions 1, 2, and 3 map to cores (0,1), (0,2), and (0,3) arranged
from west to east. The result after separation is

partition 1: write(E, 3 + 4);
partition 2: write(E, 1 + 2); write(E, read(W));
partition 3: int x = read(W) * read(W);

E and W are the east and west ports. Note the implicit parallelism in
this program; 1 + 2 and 3 + 4 are executed in parallel.

Functions A function call in the original program corresponds to
a function call at each of the cores on which the function resides.
For instance, in this program

int@3 f(int@1 x, int@2 y) { return (x!2 +@2 y)!3; }
int@3 x = f(1,2);

1 On 8×18 grid locations and a random flow graph of 144 facilities, SA took
52 seconds, Ant took 157 seconds, Tabu took 1163 seconds, and Branch and
Bound timeout. SA returned the best solution compared to Ant and Tabu.



f is split across partitions 1, 2, and 3 with the same layout as
the previous example. Calling f corresponds to calling it at all 3
partitions:

partition 1: void f(int x) { send(E, x); }
f(1);

partition 2: void f(int y) { send(E, read(W) + y); }
f(2);

partition 3: int f() { return read(W); }
int x = f();

Arrays Distributed arrays are stored in multiple cores and are
the main sources of parallelism in our programming model. For
example,

int @{[0:16]=0, [16:32]=1} x[32];
for (i from 0 to 32) x[i] = x[i] +@place(x[i]) 1;

is separated to

partition 0:
int x[16];
for (i from 0 to 16) x[i] = x[i] + 1;

partition 1:
int x[16];
for (i from 16 to 32) x[i-16] = x[i-16] + 1;

Consequently, the program runs on the distinct parts of the array in
parallel.

Figure 1(d) shows the LeftRotate program at core (2,6) given
the layout and routing shown in Figure 1(c).

6. Code Generation Using Modular
Superoptimization

This section explains our machine code generation process given
single-core programs as inputs as well as optimization with a mod-
ular superoptimization algorithm.

Typically, generation of optimized machine code is carried out
using a bottom-up algorithm that optimally selects instruction se-
quences, performing local optimization along the way [15]. A
bottom-up algorithm is well-suited for applications in which the
optimizations are known and tend to be local, and where we can
determine all of the valid ways to generate code. This rewrite-based
approach is not easily adapted to our target machine—it is unclear
how to design rules sufficient to take advantage of common non-
local optimizations taking advantage of hardware features like the
bounded, circular stacks.

We sidestep the problem of rule creation by searching for an op-
timized program in the space of candidate programs. One such ap-
proach is called superoptimization [20, 23, 29, 35]. It searches the
space of all instruction sequences and verifies these candidate pro-
grams behaviorally against a reference implementation, e.g. naïvely
generated code. If a suitably optimized program exists in the can-
didate space, this approach will find it.

Superoptimization leads to an attractive procedure for generat-
ing optimal code for unusual hardware: (1) generate naïve code
to use as a specification and then (2) synthesize optimal code that
matches the specification. Unfortunately, superoptimizers scale to
sequences of only about 25 instructions [20, 23, 35], which is less
than the size of basic blocks in programs which range from 1 to 100
instructions.

We found that it is non-trivial to apply superoptimization in our
problem domain for two reasons:

• An obvious way to scale superoptimization is to break down
large code sequences (specifications) into smaller ones, super-
optimizing the small segments, and then composing the opti-
mal segments. However, choosing segment boundaries arbitrar-
ily can cause this approach to miss possible optimizations.
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Figure 3. Overview of the modular superoptimizer

• A straightforward method for specifying the input-output be-
havior of the program segments prevents some hardware-
specific optimizations. For example, it may reject a segment
that leaves garbage values on the stack even when it is accept-
able to do so.

Figure 3 displays the overview of our modular superoptimiza-
tion strategy. In section 6.1, we explain the naïve code generator
and terminology. We present solutions to these two problems in the
following two subsections. Finally, in Section 6.4, we describe our
superoptimizer for program segments and our approach to encod-
ing the space of candidates as a set of constraints.

6.1 Naïve Code Generation and Terminology
The naïve code generator translates each per-core high level pro-
gram into machine code that preserves the program’s control flow.
The straight-line portions of machine code are stored in many small
units called superoptimizable units. A superoptimizable unit corre-
sponds to one operation in the high-level program and thus con-
tains a few instructions. Contiguous superoptimizable units can be
merged into a longer sequence called a superoptimizable segment.

We define a state of the machine as a collection of data stack,
return stack, memory, and special registers. Each superoptimizable
unit contains not only a sequence of instructions but also a live
region that indicates which parts of the machine’s state store live
variables at the end of executing the sequence of instructions. The
live region of a superoptimizable segment is the live region of the
last superoptimizable unit. Currently, a live region always contains
the entire memory and usually contains some parts of the return
stack and data stack, and some of the registers.

Sequences of instructions P and P ′ change the state of the
machine from S to T and T ′ respectively. Given a live region L,

we define P
L≡ P ′ if Extract(T,L) ≡ Extract(T ′, L), where

Extract extracts values that reside in the given live region. Since
we do not support recursion, it is possible to statically determine the
depth of the stack at any point of the program. Since the physical
stacks are bounded, our compiler rejects programs that overflow the
data or return stacks at any point.

6.2 Specifications for Modular Superoptimization
We specify the behavior of a segment using a sequence of instruc-
tions P and its live region L. In this section, we will focus on the
constraints on the data stack since it is used for performing every
kind of computation and may be used for storing data.

Assume an instruction sequence P changes the data stack from
α|β to α|γ as shown in Figure 4(a), and α|γ is in the live region. α
is a part of the stack that contains intermediate values that will be
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Figure 5. Basic specification rejects an instruction sequence that
leaves a at the bottom of the stack.

used later. β is the part of the stack that needs to be removed, and
γ is a part of the stack that needs to be added. P ′ is equivalent to
P if P ′ produces α|γ, and the stack pointers after executing P and
P ′ are pointing to the same location.

However, this specification is too strict, preventing some opti-
mizations. For instance, consider the example in Figure 5 when α is
empty, and we want b−a on top of the stack. The shortest sequence
of instruction that has this behavior is 8 instructions long, with the 3
final instructions dedicated to removing a remaining garbage value
(a in this case) from the stack. It is, in fact, legal to leave a at
the bottom of the stack, saving space by eliminating the 3 removal
instructions. However, this basic specification rejects the shorter
sequence because its output data stack is a|α|b− a, not α|b− a.

We modify the specification, as shown in Figure 4(b), such that
P ′ is equivalent to P if it produces δ|α|γ without any constraint
on the stack pointer, where δ can be empty. Since GA stacks
are circular, leaving garbage items at the bottom of the stack is
essentially shifting the logical stack upward. This specification
allows both upward and downward logical stack shifts.

6.3 Sliding Windows
The sliding windows technique adaptively merges superoptimiz-
able units into a superoptimizable segment. These longer segments
reveal additional optimization opportunities. Given a sequence of
superoptimizable units, the sliding window technique proceeds as
follows.

1. Start with an empty superoptimizable segment.

2. Append the superoptimizable unit at the head of the unit se-
quence to the superoptimizable segment, until the number of
instructions is greater than the upper bound.

3. Superoptimize the segment.

4. If a valid superoptimized segment is found, append the seg-
ment to the global output, remove the merged superoptimizable
units from the sequence, and repeat from 1. If no valid super-
optimized segment is found, append only the first unit to the
global output, remove the first unit from the superoptimizable
segment, and repeat from 2. If superoptimization times out, re-
turn the last unit from the segment to the head of the sequence,
and repeat from 3.

5. The process is done when the unit sequence is empty.

Alternatively, dynamic programming, as used in peephole su-
peroptimization [5], can be applied to produce an even better result,
but it requires much more time than does the sliding windows tech-
nique. Dynamic programming is appropriate for peephole super-
optimization because the window size is only up to 3 instructions,
while our window size is up to 16 instructions.

6.4 Superoptimization and Program Encoding
Given a program segment and its specification as described in the
previous section, our superoptimizer uses counterexample-guided
inductive synthesis (CEGIS) to search for an equivalent program
segment [39]. Within the CEGIS loop, we use the Z3 [12] SMT
solver to perform the search.

We model the program segment’s approximate execution time
based on the cost of each instruction as provided by GreenArrays.
We use this cost model to perform a binary search over generated
programs looking for optimal performance. Each step involves
looking for a program that finishes under a certain time limit by
adding that time as a constraint to our formula and synthesizing
a program that meets both our performance and our correctness
criteria. We can similarly optimize for the length of the program
segment instead of its execution time.

Encoding to SMT Formulas
The state of a program at each step consists of two registers, the
data stack, the return stack, memory, and stack pointers. Since
each core can communicate with its four neighbors, we represent
the data that the core receives and sends using a communication
channel, which is an ordered list of (data, neighbor port, read/write)
tuples. Hence, the program state also includes a communication
channel representing the data the core expects to receive or send,
and the relevant ports. We use this communication channel to
preserve the order of sends and receives to prevent deadlock.

Each stack, the memory, and the communication channel is rep-
resented by a large bitvector because Z3 can handle large bitvectors
much faster than arrays of integers or arrays of bitvectors. Each in-
struction in a program converts an old state into a new state. We rep-
resent these conversions using static single assignment (SSA) for
the SMT variables. We encode each instruction in our formula as
a switch statement that alters the program state according to which
instruction value is chosen.

Address Space Compression
Address space compression is necessary to make superoptimiza-
tion scale. Each core in GA144 can store up to 64 18-bit words
of data and instructions in memory. The generated code assigns
each variable a unique location in memory. An array with 32 en-
tries occupies 32 words of memory. When the formula generator
translates programs to formulas, it discards the free memory space
and represents just enough of the memory to contain all variables
and arrays—the smaller the memory, the smaller the search space.

Arrays occupy substantial memory space but are usually ac-
cessed with a symbolic index during superoptimization. The index
is symbolic if it is an expression of one or more variables as it de-
pends on the values of those variables. In light of this observation,
we compress the memory of the input program by truncating each
array to contains only 2 entries and modifying the variable and ar-
ray addresses throughout the program accordingly. After we get a
valid optimal output program, we decompress the output program,
and ask the verifier if the decompressed output program is indeed
the same as the original input program. Verification is much faster
than synthesis, so we can verify programs with a full address space
in a reasonable amount of time.



7. Interactions Between Steps
Since our compilation problem is decomposed into 4 subprob-
lems, we lose some optimization opportunities, and in some cir-
cumstances the compiler produces program partitions that do not
fit on cores. We will discuss these issues in this section.

7.1 Program Size and Iterative Refinement Method
One goal of our compiler is to partition a high-level program into
partitions such that each partition can fit in a core. Although the
partitioning synthesizer overapproximates the size of each parti-
tion, it still does not consider all communication code. For exam-
ple, assume that partition A sends some data to partition B. The
partitioner increases the sizes of both partitions A and B to reflect
the effects of the necessary communication code. However, after
the layout step, it is possible that partition A and B are not next to
each other. In this case, partition A communicates to partition B via
one or more intermediate partitions. Since the partitioner does not
have any knowledge about the intermediate nodes, it does not take
into account the space occupied by the communication code asso-
ciated with the intermediate nodes. As a result, it is possible that
the generated program partitions will be too large.

For most programs, our compiler generates final programs that
fit in cores. Occasionally, the estimate fails, and an iterative refine-
ment reruns the compilation with larger estimates for the too-large
partitions, until all final partitions fit in cores.

7.2 Optimization Opportunity Loss
There are some lost optimization opportunities that result from
decomposing the problem into smaller subproblems. We discuss
a few examples of optimization losses in this section.

First, partitioning before optimizing may lead to missed oppor-
tunities. For example, let A, B, and C be program fragments that do
not fit in one core. Assume the partitioner groups A and B together
because that yields the lowest communication count. However, if
B and C are grouped together, the superoptimizer may find a very
large execute time reduction such that grouping B and C together
yields faster code than grouping A and B does.

Second, our schedule-oblivious routing strategy introduces an-
other potential loss. Assume core A can communicate with core B
via either core X or Y, and X is very busy before A sends data to B,
while Y is not. The current routing strategy will route data from A
to B via either X or Y arbitrarily. However, in this particular case,
we should route through Y so that B will receive the data from A
more quickly, without having to wait for X to finish its work.

Finally, the scope of superoptimization may prevent some opti-
mizations. We do not optimize across superoptimizable segments,
because we want the compiler to run in a reasonable amount of
time. However, knowing the semantics of the segments that come
before the current segment could definitely allow the superopti-
mizer to discover additional optimizations. Increasing the scope to
include loops and branches will help even more.

8. Evaluation
In this section, we present the results of running programs on the
GA144 chip to test our hypothesis that using synthesis provides
advantages over traditional compilation.

Hypothesis 1 The partitioning synthesizer, layout synthesizer, su-
peroptimizer, and sliding windows technique help generate faster
programs than alternative techniques.

We conduct experiments to measure the effectiveness of each
component. First, to assess the performance of the partitioning syn-
thesizer, we implement a heuristic partitioner that greedily merges
an unknown partition into another known or unknown partition of
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Figure 6. Execution time of multicore benchmarks normalized to
program generated by the complete synthesizing compiler

a sufficiently small size when there is communication between the
two. This heuristic partitioning strategy is similar to the merging al-
gorithm used in the instruction partitioner in the space-time sched-
uler for Raw [26]. Second, to assess the performance of the layout
synthesizer, we compare the default layout synthesizer that takes
communication counts between partitions into account with the
modified version that assumes the communication count of every
communicating pair is equal to 1. Third, we compare the perfor-
mance of programs generated with and without superoptimization.
Last, we compare sliding windows against fixed windows, in which
the superoptimization windows are fixed.

For each benchmark, 5 different versions of the program are
generated: (a) with sliding-windows superoptimization, partition-
ing synthesizer, and layout synthesizer (sliding s+p+l), (b) with
fixed-windows superoptimization, partitioning synthesizer, and
layout synthesizer (fixed s+p+l), (c) with no superoptimization,
partitioning synthesizer, and layout synthesizer (ns+p+l), (d) with
no superoptimization, heuristic partitioner, and layout synthesizer
(ns+hp+l), and (e) with no superoptimization, heuristic partitioner,
and imprecise layout synthesizer (ns+hp+il).

We run 5 benchmarks in this experiment. Prefixsum sequentially
computes the prefixsum of a distributed array that spans 10 cores.
SSD computes the 36-bit sum of squared distance between two dis-
tributed 18-bit arrays of size 160, each of which spans 4 cores.
SSDs of different chunks of an array can be computed in parallel
since there is no dependency between them. Convolution performs
1D convolution on a 4-cores distributed array with kernel’s width
equal to 5 in parallel. The program first fills in the ghost regions to
eliminate loop dependency before the main convolution computa-
tion starts. Sqrt computes the 16-bit square roots of 32-bit inputs.
Sin-Cos computes cos(x) and sin(x).

The execution time result shown in Figure 6 confirms our hy-
pothesis. First, comparing ns+p+l (third bars) vs. ns+hp+l (fourth
bars) shows that the partitioning synthesizer offers 5% on average
and up to 11% speedup over the heuristic partitioner. Second, com-
paring ns+hp+l (fourth bar) vs. ns+hp+il (fifth bar) shows that
more precise layout is crucial, providing 1.8x speed up on Con-
volution. When the layout synthesizer does not take communica-
tion count into account, it fails to group the heavily communicat-
ing cores next to each other; as a result, the communication paths
of different parallel groups share some common cores, preventing
those groups from running in parallel. In Prefixsum, the imprecise
layout generates program fragments that are too large. Third, com-
paring sliding s+p+l (first bar) vs. ns+p+l (third bar) shows that
superoptimization gives 15% on average and up to 30% speedup
over programs generated without superoptimization. Finally, com-
paring sliding s+p+l (first bar) vs. fixed s+p+l (second bar) shows
that programs generated with sliding windows superoptimization
are 4% on average and up to 11% faster than programs generated
with fixed windows.



Hypothesis 2 The partitioning synthesizer produces smaller pro-
grams and is more robust than the heuristic one.

The previous experiment shows that the partitioning synthesizer
does not generate a slower program for any of the 5 benchmarks.
In this experiment, we look at the number of cores the programs
occupy, on the same set of benchmarks. In 3 out of 5 benchmarks,
the synthesizer generates programs that require significantly fewer
cores (using 50-72% of the number of cores used by the heuristic).

Another experiment also shows that the heuristic algorithm re-
quires parameter tuning specific to each program, while synthe-
sis does not. The heuristic partitioner does not account for the
space occupied by communication code, because calculating the
size of communication code precisely is complicated in the heuris-
tic. Therefore, we set the space limit per core by scaling the avail-
able space by a factor k in the heuristic partitioner. The higher the
scaling factor, the smaller the number of cores it uses. However,
the maximum feasible k— while generating code that still fits in
cores— for different programs varies (k = 0.8 on SSD and k = 0.4
on Sqrt). Hence, the synthesizer is more robust than the heuristic.

Hypothesis 3 Programs generated with synthesis are comparable
to highly-optimized expert-written programs.

We compare the execution time and program size of highly-
optimized programs written by GA144 developers, programs gen-
erated with superoptimization, and programs generated without
superoptimization. We have access to the following single-core
expert-written programs: FIR, applying 16th-order discrete-time fi-
nite impulse response filter on a sequence of samples, Cos, com-
puting cosine, Polynomial, evaluating a polynomial using Horner’s
method given the coefficients and an input, and Interp, perform-
ing linear interpolation on input data given a sequence of reference
points.

Figure 7 shows that our generated programs are 46% slower,
44% less energy-efficient, and 47% longer than the experts’ on
average, and the superoptimizer improves the running time by 7%,
reduces the energy used by 8%, and shortens the program length by
14% compared to no superoptimization on average.

The only multicore application written by experts against which
we can compare is the MD5 hash. The other applications published
on the GreenArrays website, including SRAM control cluster, pro-
grammable DMA channel, and dynamic message routing, require
interaction with a GA virtual machine and specific I/O instructions
for accessing external memory that Chlorophyll does not support.
The MD5 benchmark computes the hash value of a random mes-
sage with one million characters. The sequence of characters is
streamed into the computing cores while the hash value is being
computed.

Given partition annotations for all arrays and variables, the par-
titioning synthesizer times out, while the heuristic partitioner fails
to produce a program that fits in memory. We manually obtain parti-
tion annotations with the assistance of the partitioning synthesizer.
We first ignore all functions except main. After we solve main,
we reintroduce other functions one by one. Finally, we refine the
partitioning by examining the machine code and further breaking
or combining partitions just by changing the partition annotations.
Thus, we can generate code for different partitioning (without su-
peroptimization) in a very short amount of time.

We generate two versions of MD5. First, we partition the pro-
gram such that the generated non-superoptimized code is slightly
bigger than memory, but the excess is small enough that the final
superoptimized code still fits. We also generate a second version
that fits on cores without superoptimization. The generated pro-
gram with superoptimization is 7% faster and 19% more energy-
efficient than the one without superoptimization, and uses 10 fewer
cores. Compared to the experts’ implementation, it is only 65%
slower, 70% less energy-efficient and uses 2.2x more cores. This
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Figure 7. Single-core benchmarks

result confirms that our generated programs are comparable with
experts’ not only on small programs but also on a real application.

Hypothesis 4 The superoptimizer can discover optimizations that
traditional compilers may not.

We implement a few small programs taken from the book
Hacker’s Delight: Bithack 1, x − (x&y), Bithack 2, ∼ (x − y),
and Bithack 3, (x ⊕ y) ⊕ (x&y). Figure 8 shows that superop-
timization provides 1.8x speedup and 2.6x code length reduction
on average. The superoptimizer successfully discovers bit tricks:
x& ∼ y,∼ x+y, and (x& ∼ y)+y as the faster implementations
for the three benchmarks respectively. Investigating generated pro-
grams in many benchmarks, we find that the superoptimizer can
discover various strength reductions and clever ways to manipulate
data and return stacks. It also automatically performs CSE within
program segments, and exploits special instructions that do not ex-
ist in common ISAs. Hence, the superoptimizer can discover an
unlimited number of optimizations specific to the machine, while
the optimizing compiler can only perform a limited number of op-
timizations implemented by the compiler developers.
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Figure 9. FIR benchmark

Hypothesis 5 Chlorophyll increases programmers’ productivity
and offers the ability to explore different implementations quickly
to obtain one with satisfying performance.

A graduate student spent one summer testing the performance
of the GA144 and TI MSP430 micro-controller. He managed to
learn arrayForth to program the GA144. However, he was able to
implement only 2 benchmarks: FIR and a simple pedometer ap-
plication [3]. In contrast, with our compiler, we can implement 5
different FIR implementations within an afternoon. Figure 9 shows
the running time of 3 different implementations of FIR: sequential
FIR-1, parallel FIR-2 on 2 cores, and parallel FIR-4 on 4 cores, as
well as the experts’ implementation. Parallel FIR-4 is 1.8x faster
than the experts’, with the cost of more cores. Hence, programmers
can use our tool to productively test different implementations and
to exploit parallelism to get the fastest implementation. Although
superoptimization makes compilation slower, we can still test im-
plementations quickly by running the non-superoptimized program
for a rough estimate of the performance.

Hypothesis 6 The compiler can be improved by providing more
human insights to the synthesizers.

The GA instruction set does not include division, but expert-
written integer division code is provided in ROM, so program-
mers can conveniently call that function. A faster division can be
implemented when a divisor is known. More specifically, x/k =
(k1 ∗ x) >> k2 where k1 and k2 are magic numbers depending
on k. We modify the superoptimizer so that it understands division
and accepts the division instruction in an input spec. Then, we pro-
vide this template to the superoptimizer to fill in the numbers for a
specific divisor, an interaction similar to Sketch [39] interactions.
Given the template, the compiler can produce a program that is 6x
faster and 3x shorter than the experts’ general integer division pro-
gram within 3 seconds. In theory, the superoptimizer can discover
the entire program without the sketch, but it could take much longer
since this program is 33 instructions long.

Benchmarks Program Length Superopt Time (hr)
FIR 90 3.23
Cos 59 2.35

Polynomial 29 1.42
Interp 48 10.01

Bithack 1 13 0.37
Bithack 2 9 4.92
Bithack 3 16 25.08*

Figure 10. Superoptimization time (in hours) and program length
(in words) for single-core benchmarks. A word in program
sequences contains either 4 instructions or a constant literal.
*Bithack-3 takes 25.08 hours when the program segment length is
capped at 30 instructions. With the default length (16 instructions),
it takes 2.5 hours.

Benchmarks # of Loop Split Part Layout Superopt
Given Cores (s) (s) (s) (hr)

Prefixsum 64 3 36 24 10.78
SSD 64 12 225 24 4.46

Convolution 64 23 122 24 8.39
Sqrt 16 0 566 7 3.60

Sin-Cos 16 2 527 7 6.31
MD5 64 7 N/A 24 16.07

Figure 11. Compile time of multicore benchmarks. Time is in
seconds except for superoptimization time, which is in hours. The
compiler runs on an 8 core machine, so it superoptimizes up to 8
independent instances in parallel. Layout time only depends on the
number of available cores. Heuristic partitioning takes less than one
second to generate a solution.

Thus, adding more templates improves performance of gener-
ated programs and scalability of the synthesizers. This is similar
to implementing optimizations for traditional compilers. However,
synthesis is in general more powerful because it does not rely on a
lookup table and simply discovers faster code by searching.

Figure 10 and 11 show the compile times for the single-core bench-
marks and multicore benchmarks used in our experiments respec-
tively. Note that our superoptimizer is slower than stochastic su-
peroptimization [35], since the stochastic one runs on a cluster of
machines, while ours runs on a single machine. Partitioning is also
slow, but such algorithms are generally slow; consider, for exam-
ple, partitioning for FPGA [42]. We address the issue by allowing
programmers to accelerate the partitioning process by pinning data
or code to cores when they have relevant insights.

9. Related Work
9.1 Programming Models
A number of programming models have been developed for spa-
tial architectures for different application domains. StreamIt, a pro-
gramming model for streaming applications, decomposes the com-
pilation problem much as we do [16]. Partitions are defined by pro-
grammers using filters, and they can be merged by the compiler.
GA144 also shares many characteristics with systolic arrays. Sys-
tolic arrays are designed for massively parallel applications such
as applications with rhythmic communications [22]. Thus, the pro-
gramming model for systolic arrays is domain-specific, tailored to
such applications [21, 24]. Unlike StreamIt or Systolic, Chlorophyll
targets more general-purpose programming.

The high performance computing (HPC) community has devel-
oped programming models to support programming on distributed
memory. Our code separation technique is similar to compiling
High Performance Fortran (HPF) for distributed memory comput-
ers. HPF generates a guard for every array access, checking if a
processor owns that entry of the array with some optimizations.
We generate code without these guards by splitting loops and stati-



cally determining the partitions for every variable and operation at
compile time. The partitioning problem also appears in the HPC do-
main. Many Distributed Fortran compilers simply apply an “owner
computes” rule, distributing data and computation to align with the
output data’s positions [7, 30]. This partitioning technique does not
suit our case since the fixed placement of operations according to
the data distribution might result in partitions that are too large.

Our memory model is PGAS, an approach taken by many lan-
guages [9, 31, 34, 43]. Although these languages offer program-
mers control over mapping operators to computing resources, ex-
ploring different mappings is still difficult in these languages.

9.2 Type Systems
Many distributed programming languages have exploited type sys-
tems to ensure properties of interest. Delaval et al present a type
system for the automatic distribution of high-order synchronous
dataflow programs, allowing programmers to localize some expres-
sions onto processors [13]. The type system can infer the local-
ization of non-annotated values to ensure the consistency of the
distribution. Like our compiler, the framework generates local pro-
grams to be executed by each computing resource from a central-
ized typed program. X10 introduces place type and exploits type
inference to eliminate dynamic references of global pointers [10].
Titanium, similarly, uses type inference to minimize the number of
global pointers in the program [27].

9.3 Heuristic-based Compilers
There is substantial work on heuristic-based compilers for spatial
architectures. The partitioning and placement algorithms used in
TRIPS compiler, Raw space-time scheduler, and Occam to trans-
puter system, may be applied with some modifications to our prob-
lem. However, these architectures are substantially different from
GA144.

TRIPS compiler distributes a computation DAG of up to 128
instructions in each hyperblock onto 16 cores [8, 38]. Chlorophyll
partitions much larger programs—MD5 for example has 4,600
instructions in MD5—with loops and branches onto 144 cores.
TRIPS also has hardware-supported routing, while GA144 does
not. In Raw compiler, the space-time scheduler decomposes the
partitioning problem into 3 subproblems: clustering, merging, and
global data partitioning [26], while Chlorophyll solves the parti-
tioning problem as one problem. The merging algorithm is es-
sentially the same as the heuristic partitioner to which we com-
pare Chlorophyll in our evaluation. The transputer compiler and
StreamIt’s Raw compiler also use SA for solving the layout prob-
lem [16, 36].

9.4 Constraint-based Compilers
Although not as common as heuristic-based compilers, constraint-
based compilers have been studied and used in practice.

The Vivado Design Suite performs High-Level Synthesis that
transforms a C, C++ or SystemC design specification into a RTL
implementation that in turn can be synthesized onto a FPGA [42].
The programmer can specify additional constraints using direc-
tives, such as controlling the binding process of operations to cores,
albeit in ways that are much more limited than our programming
model facilitates. For example, multiplication is implemented by
a specific hardware multiplier in the RTL design using a specific
core.

Yuan et al solve hardware/software partitioning and pipelined
scheduling on runtime reconfigurable FPGAs using an SMT solver [44].
Although the problem domains of our compiler and Yuan’s parti-
tioner and scheduler are different, Yuan also shows that solutions
obtained from the SMT solver are superior to the solutions obtained

from a heuristic algorithm, but that constraint solving techniques
face scalability challenges.

Another constraint-based approach to solve the placement and
routing problems uses ILP to map the computation DAG to the
graph representing the hardware’s structure [32]. The constraints
represent placement of computation, data routing, managing event
timing and resource utilization, and optimization for the hardware-
specific objective function. However, we cannot apply this tech-
nique directly to our partition and layout problems because our
computation graphs contain cycles, and the case-study architec-
tures in the ILP scheduling paper include hardware support for data
routing, while GA144 does not.

9.5 Superoptimization
The original superoptimizer by Massalin finds the shortest opti-
mized version of a program by enumerating every possible pro-
gram [29]. Each candidate program is checked on manually sup-
plied test cases. A more recent take on superoptimization is De-
nali [23], which uses goal-directed search, allowing it to scale bet-
ter. As in our system, the search is performed by an automated the-
orem prover. Stochastic superoptimization [35] introduces a differ-
ent search technique: a Markov Chain Monte Carlo (MCMC) sam-
pler, maximizing a function of correctness and performance. This
approach scales to longer programs over much larger instruction
sets like x86. However, it did not translate well from a register-
based system to the stack-based GA144. Superoptimization has
also been used to generate peephole optimization rules [4]. Unlike
Chlorophyll, the peephole superoptimizer optimizes all possible se-
quences of up to 4 instructions offline (before compile time). We
cannot afford this offline technique since we wish to superoptimize
much longer sequences of instructions.

Another variation on superoptimization is component-based
synthesis [20]. It synthesizes a circuit-style (loop-free) composition
from a limited collection of instructions. This constrains the num-
ber of times any given instruction can be used, shrinking the search
space. This approach does not map well to GA144 because coming
up with a set of components from the high-level input is difficult,
especially since the stack-manipulation instructions needed for an
efficient program are not easily predictable.

Program synthesis is also used to optimize domain-specific pro-
grams. An automatic SIMD vectorization restructures a loop to ex-
pose data parallelism, extracts the equivalence relation from the
loop body, and then synthesizes a new loop body using the equiv-
alent relation as the specification [6]. Unlike our superoptimizer,
this SIMD synthesizer searches by enumeration with heuristics to
reduce synthesis time.

10. Conclusion
Building efficient optimizing compilers is difficult, even for tra-
ditional architectures that are designed for programmability. With
radically stripped down and evolving target architectures such as
GA144, the traditional compilation approach becomes even more
difficult and less practical to implement.

We have built the first synthesis-aided compiler for extremely
minimalist architectures, and introduced a new spatial program-
ming model for fine-grained partitioning to provide programma-
bility on top of programmer-unfriendly hardware. Our compiler de-
composes the compilation problem into smaller subproblems which
can be solved by various synthesizers and easy-to-implement trans-
formations. Although program synthesis may not scale to large
problems on its own, our work shows that we can overcome these
issues by decomposing problems into smaller ones and relying on
more human insight.

The contribution of this paper is not that our algorithms for
partitioning, layout, routing, and code generation are individually



superior to the existing ones. Instead, we show that our compiler
is simpler than a classical compiler while producing comparable
code. Program synthesis techniques enable compiler developers
to quickly develop new high-performance compilers for radical
architectures without knowing how to implement optimizations
specific to an architecture.
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