
Abstract Interpretation: aSemantics-Based Tool for ProgramAnalysisNeil D. JonesDIKU, University of Copenhagen, DenmarkFlemming NielsonComputer Science Department, Aarhus University, DenmarkJune 30, 1994Contents1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 21.1 Goals and Motivations : : : : : : : : : : : : : : : : : : : : : 21.2 Relation to Program Veri�cation and Transformation : : : : 91.3 The Origins of Abstract Interpretation : : : : : : : : : : : : 101.4 A Sampling of Data-ow Analyses : : : : : : : : : : : : : : 111.5 Outline : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 122 Basic Concepts and Problems to be Solved : : : : : : : : : : : : 142.1 A Naive Analysis of the Simple Program : : : : : : : : : : : 152.2 Accumulating Semantics for Imperative Programs : : : : : 172.3 Correctness and Safety : : : : : : : : : : : : : : : : : : : : : 232.4 Scott Domains, Lattice Duality, and Meet versus Join : : : 312.5 Abstract Values Viewed as Relations or Predicates : : : : : 322.6 Important Points from Earlier Sections : : : : : : : : : : : : 362.7 Towards Generalizing the Cousot Framework : : : : : : : : 362.8 Proving Safety by Logical Relations : : : : : : : : : : : : : 423 Abstract Interpretation Using a Two-Level Metalanguage : : : : 443.1 Syntax of Metalanguage : : : : : : : : : : : : : : : : : : : : 463.2 Speci�cation of Analyses : : : : : : : : : : : : : : : : : : : : 523.3 Correctness of Analyses : : : : : : : : : : : : : : : : : : : : 663.4 Induced Analyses : : : : : : : : : : : : : : : : : : : : : : : : 743.5 Expected Forms of Analyses : : : : : : : : : : : : : : : : : : 843.6 Extensions and Limitations : : : : : : : : : : : : : : : : : : 894 Other Analyses, Language Properties, and Language Types : : : 901



2 4.1 Approaches to Abstract Interpretation : : : : : : : : : : : : 914.2 Examples of Instrumented Semantics : : : : : : : : : : : : : 954.3 Analysis of Functional Languages : : : : : : : : : : : : : : : 974.4 Complex Abstract Values : : : : : : : : : : : : : : : : : : : 1024.5 Abstract Interpretation of Logic Programs : : : : : : : : : : 1045 Glossary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1091 IntroductionDesirable mathematical background for this chapter includes� basic concepts such as lattices, complete partial orders, homomor-phisms, etc.� the elements of domain theory, e.g. as in the chapter by Abramskyor the books [Schmidt, 1986] or [Nielson, 1992a].� the elements of denotational semantics, e.g. as in the chapter byTennent or the books [Schmidt, 1986] or [Nielson, 1992a].� interpretations as used in logic.There will be some use of structural operational semantics [Kahn, 1987],[Plotkin, 1981], [Nielson, 1992a], for example deduction rules for a pro-gram's semantics and type system. The use of category theory will be keptto a minimum but would be a useful background for the domain-relatedparts of Section 3.1.1 Goals and MotivationsOur primary goal is to obtain as much information as possible about aprogram's possible run time behaviour without actually having to run iton all input data; and to do this automatically. A widely used techniquefor such program analysis is nonstandard execution, which amounts toperforming the program's computations using value descriptions or abstractvalues in place of the actual computed values. The results of the analysismust describe all possible program executions, in contrast to pro�ling andother run-time instrumentation which describe only one run at a time.We use the term \abstract interpretation" for a semantics-based version ofnonstandard execution.Nonstandard execution can be roughly described as follows:� perform commands (or evaluate expressions, satisfy goals etc.) usingstores, values, . . . drawn from abstract value domains instead of theactual stores, values, . . . used in computations.



3� deduce information about the program's computations on actual in-put data from the resulting abstract descriptions of stores, values,. . . .One reason for using abstract stores, values, . . . instead of the actual onesis for computability: to ensure that analysis results are obtained in �nitetime. Another is to obtain results that describe the result of computationson a set of possible inputs. The \rule of signs" is a simple, familiar abstractinterpretation using abstract values \positive", \negative" and \?" (thelatter is needed to express, for example, the result of adding a positive anda negative number).Another classical example is to check arithmetic computations by \cast-ing out nines", a method using abstract values 0, 1,. . . , 8 to detect errorsin hand computations. The idea is to perform a series of additions, sub-tractions and multiplications with the following twist: whenever a resultexceeds 9, it is replaced by the sum of its digits (repeatedly if necessary).The result obtained this way should equal the sum modulo 9 of the digitsof the result obtained by the standard arithmetic operations. For exampleconsider the alleged calculation123 � 457 + 76543 =?= 132654This is checked by reducing 123 to 6, 457 to 7 and 76543 to 7, and thenreducing 6 � 7 to 42 and so further to 6, and �nally 6 + 7 is reduced to4. This di�ers from 3, the sum modulo 9 of the digits of 132654, so thecalculation was incorrect. That the method is correct follows from:(10a� b) mod 9 = (a� b) mod 9a � b (mod 9) = (a mod 9 � b mod 9) (mod 9)a+ b mod 9 = (a mod 9 + b mod 9) (mod 9)The method abstracts the actual computation by only recording valuesmodulo 9. Even though much information is lost, useful results are stillobtained since this implication holds: if the alleged answer modulo 9 di�ersfrom the answer got by casting out nines, there is de�nitely an error.On the need for approximation Due to the unsolvability of the haltingproblem (and nearly any other question concerning program behaviour), noanalysis that always terminates can be exact. Therefore we have only threealternatives:� Consider systems with a �nite number of �nite behaviours (e.g. pro-grams without loops) or decidable properties (e.g. type checking asin Pascal). Unfortunately, many interesting problems are not so ex-pressible.



4 � Ask interactively for help in case of doubt. But experience has shownthat users are often unable to infer useful conclusions from the myr-iads of esoteric facts provided by a machine. This is one reason whyinteractive program proving systems have turned out to be less usefulin practice than hoped.� Accept approximate but correct information.Consequently most research in abstract interpretation has been concernedwith e�ectively �nding \safe" descriptions of program behaviour, yieldinganswers which, though sometimes too conservative in relation to the pro-gram's actual behaviour, never yield unreliable information. In a formalsense we seek a v relation instead of equality. The e�ect is that the pricepaid for exact computability is loss of precision.A natural analogy: abstract interpretation is to formal semantics asnumerical analysis is to mathematical analysis. Problems with no knownanalytic solution can be solved numerically, giving approximate solutions,for example a numerical result r and an error estimate �. Such a result isreliable if it is certain that the correct result lies within the interval [r-�,r+�]. The solution is acceptable for practical usage if � is small enough. Ingeneral more precision can be obtained at greater computational cost.Safety Abstract interpretation usually deals with discrete non-numericalobjects that require a di�erent idea of approximation than the numericalanalyst's. By analogy, the results produced by abstract interpretation ofprograms should be considered as correct by a pure semantician, as longas the answers are \safe" in the following sense. A boolean question canbe answered \true", \false" or \I don't know", while answers for the ruleof signs could be \positive", \negative" or \?". This apparently crudeapproach is analogous to the numerical analyst's, and for practical usagethe problem is not to give uninformative answers too often, analogous tothe problem of obtaining a small �.An approximate program analysis is safe if the results it gives can alwaysbe depended on. The results are allowed to be imprecise as long as theyalways err \on the safe side", so if boolean variable J is sometimes true,we allow it to be described as \I don't know", but not as \false". Again,in general more precision can be obtained at greater computational cost.De�ning the term \safe" is however a bit more subtle than it appears.In applications , e.g. code optimization in a compiler, it usually means \theresult of abstract interpretation may safely be used for program transfor-mation", i.e. without changing the program's semantics. To de�ne safetyit is essential to understand precisely how the abstract values are to beinterpreted in relation to actual computations.



5For an example suppose we have a function de�nitionf(X1; . . . ; Xn) = expwhere exp is an expression in X1; . . . ; Xn. Two subtly di�erent dependencyanalyses associate with exp a subset of f's arguments:Analysis I.fXi1; . . . ; Ximg = fXj j exp's value depends on Xj in at least onecomputation of f(X1; . . . ; Xn) gAnalysis II.fXi1; . . . ; Ximg = fXj j exp's value depends on Xj in everycomputation of f(X1; . . . ; Xn)gFor the examplef(W;X; Y; Z) = if W then (X + Y ) else (X + Z)analysis I yields fW, X, Y, Zg, which is the smallest variable set alwayssu�cient to evaluate the expression. Analysis II yields fW, Xg, signifyingthat regardless of the outcome of the test, evaluation of exp requires thevalues of both W and X, but not necessarily those of Y or Z.These are both dependence analyses but have di�erent modality. Anal-ysis I, for possible dependence, is used in the binding time analysis phaseof partial evaluation: a program transformation which performs as much aspossible of a program's computation, when given knowledge of only someof its inputs. Any variable depending on at least one unknown input in atleast one computation might be unknown at specialization time. Thus ifany amongW, X, Y, Z are unknown, then the value of exp will be unknown.Analysis II, for de�nite dependence, is a need analysis identifying thatthe values of W and X will always be needed to return the value. Such anal-yses are used for to optimize program execution in lazy languages. The ba-sis is that arguments de�nitely needed in a function call f(e1; e2; e3; e4; e5)may be pre-evaluated, e.g. using \call by value" for e2 and e3, instead ofthe more expensive \call by need".Strictness. Finding needed variables involves tracing possible compu-tation paths and variable usages. For mathematical convenience, manyresearchers work with a slightly weaker notion. A function is de�ned tobe \strict" in variable A if whenever A's value is unde�ned, the value ofexp will also be unde�ned, regardless of the other variables' values. For-mally this means: if A has the unde�ned value ? then exp evaluates to ?.Clearly f both needs and is strict in variables W and X in the example.For another, X is strict in a de�nition f(X) = f(X) + 1 since f(?) = ?,even though it is not needed.



6Violations of safety In practice unsafe data-ow analyses are sometimesused on purpose. For example, highly optimizing compilers may perform\code motion", where code that is invariant in a loop may be moved to apoint just before the loop's entry. This yields quite substantial speedupsfor frequently iterated loops but it can also change termination properties:the moved code will be performed once if placed before the loop, even ifthe loop exit occurs without executing the body. Thus the transformedprogram could go into a nonterminating computation not possible before\optimization".The decision as to whether such e�ciency bene�ts outweigh problemsof semantic di�erences can only be taken on pragmatic grounds. If onetakes a \completely pure view" even using the associative law to rearrangeexpressions may fail on current computers.We take a purist's view in this chapter, insisting on safe analyses andsolid semantic foundations, and carefully de�ning the interpretation of thevarious abstract values we use.Abstract interpretation cannot always be homomorphic A verywell-established way to formulate the faithful simulation of one system byanother is by a homomorphism from one algebra to another. Given two(one-sorted) algebras (D; fai : Dki ! Dgi2I )and (E; fbi : Eki ! Egi2I)with carriers D, E and operators ai, bi, a homomorphism is a function� : D ! E such that for each i and x1; . . . ; xki 2 D�(ai(x1; . . . ; xki)) = bi(�x1; . . . ; �xki)In the examples of sign analysis (to be given later) and casting out nines,abstract interpretation is done by a homomorphic simulation of the oper-ations +, � and �. Unfortunately, pure homomorphic simulation is notalways su�cient for program analysis.To examine the problem more closely, consider the example of nonre-cursive imperative programs. The \state" of such a program might be aprogram control point, together with the values of all variables. The seman-tics is naturally given by de�ning a state transition function, for instanceState = Program point � StoreStore = Variable! Valuenext : State ! State



7where we omit formally specifying a language syntax and de�ning \next"on grounds of familiarity.Consider the algebra (State, next : State ! State) and an abstraction(AbState, next : AbState ! AbState), where AbState is a set of abstractdescriptions of states. A truly homomorphic simulation of the computationwould be a function � : State ! AbState such that the following diagramcommutes: State -next State?AbState� next AbState- ?�In this case � is a representation function mapping real states into theirabstract descriptions, and next simulates next's e�ects, but is applied toabstract descriptions.This elegant view is, alas, not quite adequate for program analysis. Foran example, consider sign analysis of a program whereAbState = Program point � AbStoreAbStore = Variable ! f+,�, ?gnext : AbState ! AbStateRepresentation function � preserves control points and maps each variableinto its sign. (The use of abstract value \?", representing \unknown sign",will be illustrated later.) If the program containsp : Y := X + Y ; goto qand the current state is (p, [X 7! 1; Y 7! �2]) then we have�(next((p; [X 7! 1; Y 7! �2]))) = �((q; [X 7! 1; Y 7! �1]))= (q; [X 7! +; Y 7! �])On the other hand the best that next can possibly do is:



8 next(�((p; [X 7! 1; Y 7! �2]))) = next((p; [X 7! +; Y 7! �]))= (q; [X 7! +; Y 7!?])since X + Y can be either positive or negative, depending on the exactvalues of X;Y (unavailable in the argument of next). Thus the desiredcommutativity fails.In general the best we can hope for is a semihomomorphic simulation.A simple way is to equip E with a partial order v, where x v y intuitivelymeans \x is a more precise description than y", e.g. + v ?.In relation to safe value descriptions, as discussed in Section 1.1: if x isa safe description of precise value v, and x v y, then we will also expect yto be a safe description of v.Computations involving abstract values cannot be more precise thanthose involving actual values, so we weaken the homomorphism restrictionby allowing the values computed abstractly to be less precise than the resultof exact computation followed by abstraction.We thus require that for each i and x1; . . . ; xki 2 D�(ai(x1; . . . ; xki)) v bi(�x1; . . . ; �xki)and that the operations bi be monotone. For the imperative language thisis described by:State -next State?AbState� next AbStateuj- ?�The monotonicity condition implies�(nextn(s)) v nextn(�(s))for all states s and n � 0, so computations by sequences of state transitionsare also safely modeled.



9Abstract interpretation in e�ect simulates many computations atonce A further complication is that \real world" execution steps cannotbe simulated in a one-to-one manner in the \abstract world". In programfragment p: if X > Y then goto q else goto rnext((p, [X 7! +; Y 7! +])) could yield (q, [X 7! +; Y 7! +]) or (r,[X 7! +; Y 7! +]), since the approximate descriptions contain too lit-tle information to determine the outcome of the test. Operationally thisamounts to nondeterminism: the argument to next does not uniquely de-termine its result. How is such nondeterminism in the abstract world to betreated?One way is familiar from �nite automata theory: we liftnext : State ! Stateto work on sets of states, namely}next : }(State) ! }(State)de�ned by }next (state-set) = f next(s) j s 2 state-set gtogether with an abstraction function �: }(State) ! AbState. This direc-tion, developed by Cousot and Cousot and described in section 2.2, allowsnext to remain a function.Another approach is to let � be a relation instead of a function. Thisapproach is described briey in section 2.8 and is also used in section 3.The essentially nondeterministic nature of abstract execution impliesthat abstract interpretation techniques may be used to analyse nondeter-ministic programs as well as deterministic ones. This idea is developedfurther in [Nielson, 1983].1.2 Relation to Program Veri�cation and Transforma-tionProgram veri�cation has similar goals to abstract interpretation. A majordi�erence is that abstract interpretation emphasizes approximate programdescriptions obtainable by fully automatic algorithms, whereas programveri�cation uses deductive methods which can in principle yield more pre-cise results, but are not guaranteed to terminate. Another di�erence is thatan abstract interpretation, e.g. sign detection, must work uniformly for all



10programs in the language it is designed for. In contrast, traditional pro-gram veri�cation requires one to devise a new set of statement invariantsfor every new program.Abstract interpretation's major application is to determine the appli-cability or value of optimization and thus has similar goals to programtransformation [Darlington, 1977]. However most program transformationas currently practiced still requires considerable human interaction and isso signi�cantly less automatic than abstract interpretation. Further, pro-gram transformation often requires proofs that certain transformations canbe validly applied; abstract interpretation gives one way to obtain these.1.3 The Origins of Abstract InterpretationThe idea of computing by means of abstract values for analysis purposesis far from new. Peter Naur very early identi�ed the idea and applied it inwork on the Gier Algol compiler [Naur, 1965]. He coined the term pseudo-evaluation for what was later described as \a process which combines theoperators and operands of the source text in the manner in which an actualevaluation would have to do it, but which operates on descriptions of theoperands, not on their values" [Jensen, 1991]. The same basic idea is foundin [Reynolds, 1969] and [Sintzo�, 1972]. Sintzo� used it for proving a num-ber of well-formedness aspects of programs in an imperative language, andfor verifying termination properties.These ideas were applied on a larger scale to highly optimizing com-pilers, often under the names program ow analysis or data-ow analysis[Hecht, 1977], [Aho, Sethi and Ullman, 1986], [Kam, 1976]. They can beused for extraction of more general program properties [Wegbreit, 1975]and have been used for many applications including: generating assertionsfor program veri�ers [Cousot, 1977b], program validation [Fosdick, 1976]and [Foster, 1987], testing applicability of program transformations [Nielson, 1985a],compiler generation and partial evaluation [Jones, 1989], [Nielson, 1988b],estimating program running times [Rosendahl, 1989], and e�ciently paral-lelizing sequential programs [Masdupuy, 1991,Mercouro�, 1991].The �rst papers on automatic program analysis were rather ad hoc, andoriented almost entirely around one application: optimization of target orintermediate code by compilers. Prime importance was placed on e�ciency,and the ow analysis algorithms used were not explicitly related to thesemantics of the language being analysed. Signs of this can be seen in thewell-known unreliability of the early highly optimizing compilers, indicatingthe need for �rmer theoretical foundations.



111.4 A Sampling of Data-ow AnalysesWe now list some program analyses that have been used for e�cient im-plementation of programming languages. The aim is to show how largethe spectrum of interesting program analyses is, and how much they dif-fer from one another. Only a few of these have been given good semanticfoundations, so the list could serve as a basis for future work. Referencesinclude [Aho, Sethi and Ullman, 1986] and [Muchnick, 1981].All concern analysing the subject program's behaviour at particularprogram points for optimization purposes. Following is a rough classi�ca-tion of the analyses, grouped according to the behavioural properties onwhich they depend:Sets of values, stores or environments that can occur at a programpointConstant propagation �nds out which assignments in a program yield con-stant values that can be computed at compile time.Aliasing analysis identi�es those sets of variables that may refer to thesame memory cell.Copy propagation �nds those variables whose values equal those of othervariables.Destructive updating recognizes when a new binding of a value to a variablemay safely overwrite the variable's previous value, e.g. to reducethe frequency of garbage collection in Lisp [Bloss and Hudak, 1985],[Jensen, 1991], [Mycroft, 1981], [Sestoft, 1989].Groundness analysis (in logic programming) �nds out which of a Prologprogram's variables can only be instantiated to ground terms[Debray, 1986], [S�ndergaard, 1986].Sharing analysis (in logic programming) �nds out which variable pairs canbe instantiated to terms containing shared subterms [Debray, 1986],[Mellish, 1987], [S�ndergaard, 1986].Circularity analysis (in logic programming) �nds out which uni�cations inProlog can be safely performed without the time-consuming \oc-cur check" [Plaisted, 1984], [S�ndergaard, 1986].Sequences of variable valuesVariables invariant in loops identi�es those variables in a loop that areassigned the same values every time the loop is executed; used incode motion, especially to optimize matrix algorithms.



12Induction variables identi�es loop variables whose values vary regularlyeach time the loop is executed, also to optimize matrix algo-rithms.Computational pastUse-de�nition chains associates with a reference to X the set of all as-signments X := . . . that assign values to X that can \reach" thereference (following the possible ow of program control).Available expressions records the expressions whose values are implicitlyavailable in the values of program variables or registers.Computational futureLive variables variable X is dead at program point p if its value will neverbe needed after control reaches p, else live. Memory or registersholding dead variables may be used for other purposes.De�nition-use analysis associates with any assignment X := . . . the set ofall places where the value assigned to X can be referenced.Strictness analysis given a functional language with normal order seman-tics, the problem is to discover which parameters in a functioncall can be evaluated using call by value.MiscellaneousMode analysis To �nd out which arguments of a Prolog \procedure" areinput, i.e. will be instantiated when the procedure is entered, andwhich are output, i.e. will be instantiated as the result of callingthe procedure [Mellish, 1987].Interference analysis To �nd out which subsets of a of program's com-mands can be executed so that none in a subset changes variablesused by others in the same set. Such sets are candidates for par-allel execution on shared memory, vector or data ow machines.1.5 OutlineIdeally an overview article such as this one should describe its area both inbreadth and in depth - di�cult goals to achieve simultaneously, given theamount of literature and number of di�erent methods used in abstract in-terpretation. As a compromise section 2 emphasizes overview, breadth andconnections with other research areas, while section 3 gives a more formal



13mathematical treatment of a domain-based approach to abstract interpre-tation using a two-level typed lambda calculus. (The motivation is thatabstract interpretation of denotational language de�nitions allows approx-imation of a wide class of programming language properties.) Section 4 isagain an overview, referencing some of the many abstract interpretationsthat have been seen in the literature. Section 5 contains a glossary brieydescribing the many terms that have been introduced. Following is a moredetailed overview.Driven by examples, section 2 introduces several fundamental analysisconcepts seen in the literature. The descriptions are informal, few theoremsare proved, and some concepts are made more precise later within theframework of section 3.The section begins with a list of program analyses used by compilers,and does a parity analysis of an example program. The shortcomings ofnaive analysis methods are pointed out, leading to the need for a more sys-tematic framework. The framework used by Cousot for ow chart programsis introduced, using what we call the \accumulating" semantics, elsewherethe collecting or static semantics1.Appropriate machinery is introduced to approximate the accumulatingsemantics, and to prove the approximations safe. The distinction betweenindependent attribute and relational analyses is made, and the latter arerelated to Dijkstra's predicate transformers. Backwards analyses are thenbriey described.It is then shown how domain-based generalizations of these ideas canbe applied to languages de�ned by denotational semantics, thus going farbeyond ow chart programs. The main tools used are interpretations andlogical relations, and a general technique is introduced for proving safety.Section 3 uses representation functions and logical relations, rather thanabstraction of an accumulating semantics. The approach is metalanguageoriented and highly systematic, emphasizing the metalanguage for denota-tional de�nitions rather than particular semantic de�nitions of particularlanguages. It emphasizes compositionality with respect to domain con-structors, and the extension from the approximation of basic values andfunctions to all the program's domains, analogous to the construction of afree algebra from a set of generators. The components of the following goalare precisely formulated:abstract interpretation = correctness+ most precise analyses+ implementable analyses1There is a terminological problemhere: [Cousot, 1977a] used the term \static seman-tics", but this has other meanings, so several researchers have used the more descriptive\collecting semantics". Unfortunately this term too has been used in more than oneway, so we have invented yet another term: \accumulating semantics".



14Section 4 illustrates the need to interpret programs over domains otherthan abstractions of the accumulating semantics. Some program analy-ses not naturally expressed by abstracting either an accumulating or aninstrumented semantics are exempli�ed, showing the need for more sophis-ticated analysis techniques, and an overview is given of some alternativeapproaches including tree grammars.The idea of an \instrumented" semantics is introduced and correctnessis discussed. This section is problem-oriented, with simulation techniqueschosen ad hoc to �t the analysis problem and the language being anal-ysed. It thus centers more around programs' operational behaviour thanthe structure of their domains, with particular attention to describing theset of program states reachable in computations on given input data, andto �nite description of the set of all computations on given input. Thesection ends by describing approaches to abstract interpretation of Prolog.2 Basic Concepts and Problems to be SolvedWe begin with parity analysis of a very simple example program, and in-troduce basic concepts only as required. We discuss imperative programswithout procedure calls since this familiar program class has a simple se-mantics and is most often treated in the analysis algorithms found in com-piling textbooks. Later sections will discuss functional and logic programs,but many of their analysis problems are also visible, and usually in sim-pler form, in the imperative context. Throughout this section the readeris encouraged to ask himself \what is the analogue of this concept in afunctional or logic programming framework?".An example program, where � stands for integer division (and programpoints A,...,G have been indicated for future reference):A: while n 6= 1 doB: if n eventhen (C: n := n� 2; D: )else (E: n := 3 � n+ 1; F: )�odG:



15G FE DCBA- - -?? ?? ?
6
� n := 3n+ 1 n := n � 2���@@@ @@@ ���n?oddeven���@@@ @@@ ���6= 1= 1n?

Side remark: Collatz' problem in number theory amounts to determiningwhether this program terminates for all positive initial n. To our knowledgeit is still unsolved.2.1 A Naive Analysis of the Simple ProgramAbstraction of a single execution If this program is run with initialvalue n = 5, then n takes on values 5; 16; 8; 4; 2 at point B, values 16; 8; 4; 2at C, etc. Using > to represent \either even or odd" the results of thissingle run can be abstracted as:n at A n at B n at C n at D n at E n at F n at Godd > even > odd even oddExtension to all possible executions This result was obtained byperforming one execution completely, and then abstracting its outcome.Such an analysis may of course not terminate, and it does not as wisheddescribe all executions. The question is: how to obtain even-odd informa-tion valid for all possible computations? A natural way is to simulate thecomputation, but to do the computation using the abstract valuesAbs = f?, even, odd, >ginstead of natural numbers, each representing a set of possible values of n;and to ensure that all possible control ow paths are taken.Doing this informally, we can see that if n is odd at program entry, itwill always be even at points C and F, always odd at point E, sometimeseven and sometimes odd at points B and D, and odd at G, provided control



16ever reaches G. Individual operations can be simulated by known propertiesof numbers, e.g. 3n+1 is even if n is odd and odd if n is even, while n� 2can be either even or odd.Simulating the whole program is not as straightforward as simulating asingle execution. The reason was mentioned before: execution over abstractvalues cannot in general be deterministic, since it must take account ofall possible execution sequences on real data satisfying the abstract datadescription.Towards a less naive analysis procedure The very earliest data-ow analysis algorithms amounted to glori�ed interpreters, and proceededby executing the program symbolically, keeping a record of the desiredow information (abstract values) as the interpretation proceeded. Suchalgorithms, which in essence traced all possible control paths through theprogram, were very slow and often incorrect. They further su�ered from anumber of problems of semantic nature, for example di�culties in seeinghow to handle nondeterminism due to tests with insu�cient informationto recognize their truth or falsity, convergence and divergence of controlpaths, loops and nontermination.Better methods were soon developed to solve these problems, including� putting a partial order on the abstract data values, so they alwayschange in the same direction during abstract interpretation, thus re-ducing termination problems� storing ow information in a separate data structure, usually boundto program points (such as entry points to \basic blocks", i.e. maxi-mal linear program segments)� constructing from the program a system of \data-ow equations",one for each program point� solving the data-ow equations (usually by computing their greatest�xpoint or least �xpoint).Much more e�cient algorithms were developed and some theoreticalframeworks were developed to make the new methods more precise; [Hecht, 1977],[Kennedy, 1981] and [Aho, Sethi and Ullman, 1986] contain good overviews.None of the \classical" approaches to program analysis can, however,be said to be formally related to the semantics of the language whoseprograms were being analysed. Rather, they formalized and tightened upmethods used in existing practice. In particular none of them was able toinclude precise execution as a special case of abstract interpretation (albeitan uncomputable one). This was �rst done in [Cousot, 1977a], the seminalpaper relating abstract interpretation to program semantics.



172.2 Accumulating Semantics for Imperative ProgramsThe approach of [Cousot, 1977a] is appealing because of its generality: itexpresses a large number of special program analyses in a common frame-work. In particular, this makes questions of safety (i.e. correctness) mucheasier to formulate and answer, and sets up a framework making it pos-sible to relate and compare the precision of a range of di�erent programanalyses. It is solidly based in semantics, and precise execution of the pro-gram is included as a special case. This implies program veri�cation mayalso be based on the accumulating semantics, a theme developed furtherin [Cousot, 1977b] and several subsequent works.The ideas of [Cousot, 1977a] have had a considerable impact on laterwork in abstract interpretation, for example [Mycroft, 1981], [Muchnick, 1981],[Burn, 1986], [Donzeau-Gouge, 1978], [Nielson, 1982], [Nielson, 1984], [Mycroft, 1987]).2.2.1 Overview of the Cousot ApproachThe article [Cousot, 1977a] begins by presenting an operational semanticsfor a simple ow chart language. It then develops the concept of whatwe call the accumulating semantics (the same as Cousots' static semanticsand some others' collecting semantics). This associates with each programpoint the set of all memory stores that can ever occur when program controlreaches that point, as the program is run on data from a given initialdata space. It was shown in [Cousot, 1977a] that a wide variety of owanalyses (but not all!) may be realized by �nding �nitely computableapproximations to the accumulating semantics.The (sticky) accumulating semantics maps program points to sets ofprogram stores. The set }(Store) of all sets of stores forms a lattice withset inclusion � as its partial order, so any two store sets A;B have leastupper bound A [B and greatest lower bound A\B. The lattice }(Store)is complete, meaning that any collection of sets of stores has a least upperbound in }(Store), namely its union.Various approximations can be expressed by simpler lattices, connectedto }(Store) by an abstraction function � : }(Store) ! Abs where Abs isa lattice of descriptions of sets of stores. Symbol t is usually used for theleast upper bound operation on Abs, u for the greatest lower bound, and>;? for the least, resp. greatest elements of Abs.An abstraction function is most often used together with a dual con-cretization function  : Abs! }(Store), and the two are required to satisfynatural conditions (given later).For a one-variable programwe could use as Abs the lattice with elementsf?;>; even, oddg;where the abstraction of any nonempty set of even numbers is lattice el-



18ement \even", and the concretization of lattice element \even" is the setof all even numbers. Abstract interpretation may thus be thought of asexecuting the program over a lattice of imprecise but computable abstractstore descriptions instead of the precise and uncomputable accumulatingsemantics lattice.In practice computability is often achieved by using a noetherian lat-tice, i.e. one without in�nite ascending chains. More general lattices can,however, be used, cf. the Cousots' \widening" techniques, or the use ofgrammars to describe in�nite sets �nitely.Let p0 be the program's initial program point and let p be anotherprogram point. The set of store con�gurations that can be reached atprogram point p, starting from a set S0 of possible initial stores is de�nedby: accp = fs j (p, s) = nextn((p0, s0)) for some s0 2 S0; n � 0 gThe accumulating semantics thus associates with each program point theset accp � Store.2.2.2 Accumulating Semantics of the Example ProgramFor the example program there is only one variable, so a set of stores hasform f[n 7! a1]; [n 7! a2]; [n 7! a3]; . . .gFor notational simplicity we can identify this with the set fa1, a2, a3, . . .g(an impossible simpli�cation if the program has more than one variable).Given initial set S0 = f5g the sets of stores reachable at each programpoint are:accA accB accC accD accE accF accGf5g f5,16,8,4,2g f16,8,4,2g f8,4,2,1g f5g f16g f1gThe following data-ow equations have a unique least �xpoint by complete-ness of }(Store), and it is easy to see that their �xpoint is exactly the tupleof sets of reachable stores as de�ned above.accA = S0accB = (accA [ accD [ accF ) \ fn j n 2 f0; 1; 2; . . .g n f1ggaccC = accB \ fn j n 2 f0; 2; 4; . . .ggaccD = fn� 2 j n 2 accCgaccE = accB \ fn jn 2 f1; 3; 5; . . .ggaccF = f3n+ 1 j n 2 accEg



19accG = (accA [ accD [ accF ) \ f1gThe equation set can be derived mechanically from the given program'ssyntax, e.g. as seen in [Cousot, 1977a] or [Nielson, 1982].2.2.3 Abstract Interpretation of the Example ProgramThe abstraction function � : }(Store)! Abs belowmay be used to abstracta set of stores, where Abs = f?, even, odd, >g:�(S) =8>><>>: ? if S = fg, elseeven if S � f0; 2; 4; . . .g; elseodd if S � f1; 3; 5; . . .g; else>De�ning ? v even v > and ? v odd v > makes Abs into a partiallyordered set. Least upper and greatest lower bounds t;u exist so it is alsoa lattice. >even odd?��� @@@@@@ ���Applying � to the sets of reachable stores yields the following:absA absB absC absD absE absF absGodd > even > odd even oddAbstraction of the set of all runs This method is still unsatisfactoryfor describing all computations since the value sets involved are unboundedand possibly in�nite. But we may model the equations above by applying� to the sets involved. The abstraction function � just given is easily seento be monotone, so set inclusion � in the world of actual computations ismodelled by v in the world of simulated computations over Abs. Union



20is the least upper bound over sets, so it is natural to model [ by t, andsimilarly to model \ by u.The arithmetic operations are faithfully modelled as follows, using fa-miliar properties of natural numbers:fn�2(abs) = � ? if abs = ?> elsef3n+1(abs) = 8>><>>: ? if abs = ?, elseeven if abs = odd, elseodd if abs = even, else> if abs = >This yields the following system of approximate data-ow equations, de-scribing the program's behaviour on Abs:absA = �(S0)absB = (absAt absDt absF ) u > (\u>" may be omitted)absC = absB u evenabsD = fn�2(absE)absE = absB u oddabsF = f3n+1(absE)absG = (absAt absDt absF ) u oddRemark Here fn�2 and f3n+1 were de�ned ad hoc; a systematic way tode�ne them will be seen in section 2.3.The lattice Abs is also complete. The operators u, t, fn�2 and f3n+1are monotone, so the equation system has a (unique) least �xpoint. Theabstraction function � is easily seen to be monotone, so if it also were ahomomorphism with respect to [, t and \, u, the least solution to theapproximate ow equations would be exactlyabsA = �(accA); . . . ; absG = �(accG):It is, however, not homomorphic since for example�(f2g) u �(f4g) = even 6= ? = �(f2g \ f4g)On the other hand the following do hold:



21�(A)t�(B) = �(A [B) fn�2(�(A)) w �(fn� 2 j n 2 Ag)�(A)u�(B) w �(A \B) f3n+1(�(A)) w �(f3n+ 1 j n 2 Ag)Using these, it is easy to see by inspection of the two equation systems(more formally: a simple �xpoint induction) that their least �x points arerelated by: absA w �(accA);absB w �(accB);...absG w �(accG)Following is the iterative computation of the least �xpoint, assuming S0 =f5g: absA absB absC absD absE absF absG iteration? ? ? ? ? ? ? 0odd ? ? ? ? ? ? 1odd odd ? ? ? ? odd 2odd odd ? ? odd ? odd 3odd odd ? ? odd even odd 4odd > ? ? odd even odd 5odd > even ? odd even odd 6odd > even > odd even odd 7, 8, . . .The conclusion is that n is always even at points C and F, and always oddat E and G.2.2.4 An Optimization Using the Results of the AnalysisThe ow analysis reveals that the program could be made somewhat moree�cient by \unrolling" the loop after F. The reason is that tests \n 6= 1"and \n even" must be both be true in the iteration after F, so they neednot be performed. The result iswhile n 6= 1 do if n even then n := n�2 else n := (3�n+1)�2� odwhich avoids the two tests every time n is odd. In practice, one of themain reasons for doing abstract interpretation is to �nd out when suchoptimizing transformations may be performed.



222.2.5 TerminationThe least �xed point may (as usual) be computed by beginning with [pp1 7!?; . . . ; ppm 7! ?] (every program point is mapped to the least elementof Abs), and repeatedly replacing the value currently assigned to ppi bythe value of the right side of ppi's equation. By monotonicity of u, fn�2etc., these values can only grow or remain unchanged, so the iterationsterminate provided the approximation lattice has no ascending chains ofin�nite height, as is the case here.[Cousot, 1977a] describes ways to achieve termination even when in�-nite chains exist, by inserting so-called widening operators in the data-owequations at each junction point of a loop. To explain the basic idea con-sider the problem of �nding the �xed point of a continuous function f .The usual Kleene iteration sequence is d0 = ?; � � � ; dn+1 = f(dn); � � � andis known to converge to the least �xed point of f but the sequence neednot stabilize, i.e. it need not be the case that dn+1 = dn for some n. Toremedy this one may introduce a widening operator 5 that dominates theleast upper bound operation, i.e. d0td00 v d05d00, and such that the chaind0 = ?; � � � ; dn+1 = dn5 f(dn) always stabilizes. This leads to overshoot-ing the least �xed point but always gives a safe solution. By iterating downfrom the stabilization-value (perhaps by using the technique of narrowing)one may then be able to recover some of the information lost.Constant propagation This is an example of a lattice which is in�nitebut has �nite height (three). It is used for detecting variables that don'tvary, and has Abs = f>, ?, 0, 1, 2, . . .gwhere ?v n v > for n = 0; 1; 2; . . ..>0 1 2 3 . . .?����� @@ HHHHHH@@ �� ���The corresponding abstraction function is:�(V ) =8<: ? if V = f gn if V = fng> otherwiseThere also exist lattices in which all ascending chains have �nite height,even though the lattice as a whole has unbounded vertical extent. Anexample: let Abs = (N;�).



232.2.6 Safety: First DiscussionThe analysis of the Collatz-sequence program is clearly \safe" in the follow-ing sense: if control reaches point C then the value of n will be even, andsimilarly for the other program points and abstract values. Correctness (orsoundness) of the even-odd analysis for all possible programs and programpoints is also fairly easy to establish, given the close connection of the owequations to those de�ning the accumulating semantics.Reachable program points A similar but simpler reachability analysis(e.g. for dead code elimination) serves to illustrate a point concerningsafety. It uses Abs = f>, ?g with ? v > and abstraction function �de�ned as follows (where a 2 Abs and S � Store):�(S) = ? if S = fg else >fn�2(a) = ? if a = ? else >f3n+1(a) = ? if a = ? else >Intuitively, ? abstracts only the empty set of stores and so appropriatelydescribes unreachable program points, while> describes reachable programpoints. Computing the �xpoint as above we get:absA absB absC absD absE absF absG> > > > > > >This might be thought to imply that all program points including Gare reachable, regardless of the initial value of n. On the other hand,reachability of G for input n implies termination, and it is a well-knownopen question whether the program does in fact terminate for all n.A more careful analysis reveals that ? at program point p represents\p cannot be reached", while > represents \p might be reached" and sodoes not necessarily imply termination. The example shows that we mustexamine the questions of correctness and safety more carefully, which wenow proceed to do.2.3 Correctness and SafetyIn this and remaining parts of section 2, we describe informally several dif-ferent approaches to formulating safety and correctness, and discuss someadvantages and disadvantages. A more detailed domain-based frameworkwill be set up in section 3.



242.3.1 Desirable Properties of the Abstract Value Set AbsIn order to model the accumulating semantics equations, Abs could be acomplete lattice: a set with a partial order v, with least upper and greatestlower bounds t and u to model [ and \, and such that any collection ofsets of stores has a least upper bound in Abs. Note: any lattice of �niteheight is complete. In the following we sometimes write a w a0 in place ofa0 v a.2.3.2 Desirable Properties of the Abstraction FunctionIntuitively \even" represents the set of all even numbers. This viewpointis made explicit in [Cousot, 1977a] by relating complete lattices Conc andAbs to each other by a pair �,  of abstraction and concretization functionswith types � : Conc ! Abs : Abs ! ConcIn the even-odd example above the lattice of concrete values is Conc =}(Store), and the natural concretization function is(?) = fg(even) = f0; 2; 4; . . .g(odd) = f1; 3; 5; . . .g(>) = f0; 1; 2; 3; . . .g = INCousot and Cousot impose natural conditions on � and  (satis�ed by theexamples):1. � and  are monotonic2. 8a 2 Abs, a = �((a))3. 8c 2 Conc, c vConc (�(c))For the accumulating semantics, larger abstract values represent largersets of stores by condition 1. Condition 2 is natural, and condition 3 saysthat S � (�(S)) for any S � Store.The conditions can be summed up as: (�, ) form a Galois insertion ofAbs into }(Store), a special case of an adjunction in the sense of categorytheory. It is easy to verify the followingLemma 1 If conditions 1-3 hold, then� 8c 2 Conc, a 2 Abs: c vConc (a) if and only if �(c) vAbs a, and



25� � is continuous 2Thus the abstract ow equations converge to a �xpoint. If � is semihomo-morphic on union, intersection and base functions, then the abstract owequations' �xpoint will be pointwise larger than or equal to the abstractionof the �xpoint of the accumulating semantics' equations.Again, note that stores are unordered, so � and  need only preserve thesubset ordering. The more complex situation that arises when modellingnonat domains is investigated in [Mycroft, 1983].2.3.3 Safety: Second DiscussionRecalling the program of section 2.2, we can de�ne the solution(absA,. . . ,absG) 2 Abs7 to the abstract ow equations to be safe withrespect to the accumulating semantics (accA,...,accG) 2 }(Store)7 if thereachable sets of stores are represented by the abstract values:accA � (absA);accB � (absB);...accG � (absG)This is easy to verify for the even-odd abstraction given before.Returning to the question raised after the \reachable program points"example, we see that safety at point G only requires that accG � (absG),i.e. that every store that can reach G appears in (absG). This also holdsif accG is empty, so (absG) = > does not imply that G is reachable in anyactual computation. For any program point X, absX = ? implies accX =fg, which signi�es that control cannot reach X. Thus abstract value ? canbe used to eliminate dead code.Safe approximation of base functions Consider a base function op :IN! IN, and extend it, by \pointwise lifting" to sets of numbers, yielding}op : }(IN) ! }(IN) where}op(N ) = fop(n) j n 2 NgSuppose �,  satisfy conditions 1-3. It is natural to de�ne op : Abs! Absto be a safe approximation to op if the following holds for all N � IN:}op(N ) � (op(�(N )))or, diagrammatically:



26 }(IN) -}op }(IN)?Abs � op Abs\j- 6By the conditions and lemma this is equivalent to�(}op(N )) v op(�(N))corresponding to diagram:}(IN) -}op }(IN)?Abs � op - Absuj?�Intuitively, for any subset N � IN, applying the induced abstract operationop to the abstraction of N represents at least all the values obtainable byapplying op to members of N .Induced approximations to base functions We now show how thebest possible approximation op can be extracted from op (at least in princi-ple, although perhaps not computably; a more detailed discussion appearsin section 3.4). Recall that smaller elements of Abs abstract smaller sets ofconcrete values and so are less approximate, i.e. more precise descriptions.



27Lemma 2 Given � : }(IN) ! Abs and  : Abs! }(IN) satisfying thethree conditions above, de�ne the operator induced by op to be op : Abs! Abs where op = � � }op � Then op is the most precise function on Abs satisfying �(}op(N )) vop(�(N )) for all N .Proof Suppose f : Abs ! Abs with �(} op(N )) v f(�(N )) for all N .Then for any a,op(a) = �(}op((a))) v f(�((a))) = f(a) 2The de�nition of op as a diagram:}(IN) -}op }(IN)6Abs  op - Abs?�For example, if op(n) = n� 2 then op is fn�2 as seen above, e.g.op(?) = �(fn� 2 j n 2 (?)g) = �(fg) = ?op(even) = �(fn� 2 j n 2 (eveng) = �(f0; 1; 2; . . .g) = >Unfortunately the de�nition of op does not necessarily give a terminatingalgorithm for computing it, even if op is computable. In practice the prob-lem is solved by approximating from above, i.e. choosing op to give valuesin Abs that may be larger (less informative) than implied by the aboveequation. We will go deeper into this in Subsection 3.5.



28A local condition for safe approximation of transitions A safetycondition on one-step transitions can be formulated analogously. De�nefor any two control points p, q the function nextp;q :}(Store) ! }(Store):nextp;q(S) = fs0 j (q; s0) = next((p; s)) for some s 2 SgThis is the earlier transition function, extended to include all transitionsfrom p to q on a set of stores. Exactly as above we can de�ne the abstracttransition function induced by � and  to benextp;q = � � nextp;q � This is again the most precise function satisfyingnextp;q(�(S)) v �(nextp;q(S))for all S.2.3.4 An Example: the Rule of SignsConsider the abstract values +, - and 0 with the natural concretizationfunction (0) = f0g(+) = f1; 2; 3; :::g(�) = f�1;�2;�3; . . .gThis can be made into a complete lattice by adding greatest lower andleast upper bounds in various ways. Assuming u, t should model \, [respectively, the following is obtained:>� 0 � 0� 0 +?��� @@@�� @@@@ ��@@@@@ �����



29with (?) = fg(� 0) = f0; 1; 2; 3; :::g(� 0) = f0;�1;�2;�3; :::g(>) = f. . . ;�2;�1; 0; 1; 2;3; . . .g = ZZand abstraction function�(S) = 8>>>>>><>>>>>>: ? if S =fg else+ if S � f1, 2, 3,...g else� 0 if S � f0, 1, 2, 3,. . .g else� if S � f-1,- 2, -3,. . .g else� 0 if S � f0, -1, -2, -3,. . .g else>The induced approximation for operator + : ZZ � ZZ! ZZ is:+0 ? � 0 + � 0 � 0 >? ? ? ? ? ? ? ?� ? � � > > � >0 ? � 0 + � 0 � 0 >+ ? > + + + > >� 0 ? > � 0 + � 0 > >� 0 ? � � 0 > > � 0 >? ? > > > > > >2.3.5 Composition of Safety DiagramsSuppose we have two diagrams for safe approximation of two base functionsop and op': }(IN) -}op }(IN)?Abs � op Absuj- ?�



30and }(IN) -}op' }(IN)?Abs � op0 Absuj- ?�It is easy to see that op0� op is a safe approximation to } op0 � } op,so the two may be composed:}(IN) -}op' � }op }(IN)?Abs � op0 � op Absuj- ?�On the other hand the diagrams for the induced approximations tobase functions cannot be so composed, since the best approximation to}op0 �}op may be better than the composition of the best approximationsto }op and }op0. (This is precisely because � is a semihomomorphism,not a homomorphism.) For a concrete example, let op and op0 respectivelydescribe the e�ects of the two assignmentsn := 4 � n+ 2; n := n� 2Then �(}op0 � }op(f0; 1; 2; :::g)) = �(f1; 3; 5; :::g) = oddwhereas op' � op (�(f0,1,2,...g) = op'(even) = >.



312.4 Scott Domains, Lattice Duality, and Meet versusJoinRelation to Scott-style domains The partial order v on Abs modelsthe set inclusion order � used for }(Store) in the accumulating seman-tics. In abstract interpretation, larger elements of Abs correspond to moreapproximate descriptions, so if a v a0 then a0 describes a larger set of con-crete values. For example, \even" describes any set of even numbers, and> describes the set of all numbers.In contrast, Scott domains as used in denotational semantics use anordering by \information content", where a larger domain element describesa single value that is more completely calculated. During a computation ?means \not yet calculated", intuitively a slot to be �lled later in with the�nal value. Appearance of ? in a program's �nal result signi�es \wasnever �lled in", and so represents nontermination (at least in languageswith eager evaluation).A value in a Scott domain represents perhaps incomplete knowledgeabout a single program value, for example a �nite part of an in�nite func-tion f . The partial order f v f 0 signi�es that f 0 is more completelyde�ned than f , and that f 0 agrees with f where ever it is de�ned. >, ifused at all, indicates inconsistent values.Clearly this order is not the same as the one used in abstract interpre-tation, and the di�erence is more than just one of duality.Least or Greatest Fixpoints? Literature on data-ow analysis as usedin compilers [Aho, Sethi and Ullman, 1986,Hecht, 1977,Kennedy, 1981] of-ten uses abstract value lattices which are dual to the ones we consider, solarger elements represent more precise descriptions rather than more ap-proximate. This is mainly a matter of taste; but has the consequence thatgreatest �xpoints are computed instead of least ones, and that the [ and\ of the accumulating semantics are modelled by u and t, respectively.We prefer least �xpoints due to their similarity to those naturally used inde�ning the accumulating semantics.Should t or u be Used on Converging Paths? We have argued thatt naturally models the e�ect of path convergence because it corresponds to[ in the accumulating semantics. On the other hand, there exist abstractinterpretations that are not approximations to the accumulating semantics,and for some of these path convergence is properly modelled by u. Tosee this, consider the two dependence analyses mentioned in section 1.1.For analysis I, path convergence should be modelled by t since a variabledependence is to be recorded if it occurs along at least one path. Foranalysis II it should be modelled by u since a dependence is recorded only



32if it occurs along all paths. So the choice between t and u on convergingpaths is just another incarnation of the modality distinction encounteredin section 1.2.5 Abstract Values Viewed as Relations or PredicatesThe accumulating semantics binds to each program point a set of stores.Suppose the program's variables are V1,. . . ,Vn, so a store is an element ofStore = fV1,...,Vng ! Value. In the examples above there was only onevariable, so a set of stores was essentially a set of values, which simpli�edthe discussion considerably. The question arises: how can we abstract aset of stores when n > 1?2.5.1 Independent Attribute AnalysesSuppose value sets are abstracted by �val : }(Value)!A. The independentattribute method models a set of stores S at program point p by mappingeach variable Vi to an abstraction of the set of values it takes in all thestores of S. This abstract value is thus independent of all other variables,hence the term \independent attribute". For example, f[X 7! 1; Y 7!2]; [X 7! 3; Y 7! 1]g) would be modelled by [X 7! odd; Y 7! >] .Formally, we modelS 2 }(Store) = }(fV1; . . . ; Vng ! Value)by a function absp 2 Abs = fV1; . . . ; Vng ! AThe store abstraction function �sto : }(Store) ! Abs is de�ned by�sto(S) = [Vi 7! �val(fs(Vi) j s 2 Sg)]i=1;...;nFor example, consider an even-odd analysis of a program with variablesX, Y, Z. The independent attribute method would abstract a set of twostores as follows:�sto(f[X 7! 1; Y 7! 2; Z 7! 1]; [X 7! 2; Y 7! 2; Z 7! 1]g) =[X 7! �val(f1; 2g); Y 7! �val(f2g); Z 7! �val(f1g)] =[X 7! >; Y 7! even; Z 7! odd]The independent attribute method abstracts each variable independentlyof all others, and so allows \cross over" e�ects. An example:



33�(f[X 7! 1; Y 7! 1]; [X 7! 2; Y 7! 2]g) = [X 7! >; Y 7! >] =�(f[X 7! 1; Y 7! 2]; [X 7! 2; Y 7! 1]g)This loses information about relationships between X's and Y 's values, e.g.whether or not they always have the same parity.2.5.2 Relational AnalysesRelations and predicates Abstract value absp is an abstraction of theset of stores accp, so the question arises as to how to represent it by alattice element. An approach used in [Cousot, 1977a], [Cousot, 1977b] isto describe accp and its approximations absp by predicate calculus formulas.For instance the set of two stores f[X 7! 1; Y 7! 1]; [X 7! 2; Y 7! 2]g abovecould be approximately described by the formula:(odd(X) ^ odd(Y )) _ (even(X) ^ even(Y ))More generally, suppose Store = fV1,...,Vng ! Value. Clearly Store isisomorphic to Valuen, the set of all n-tuples of values. Thus any set ofstores i.e. any element of }(Store)) can be interpreted as a set of n-tuples.For example, store set f[X 7! 1; Y 7! 1]; [X 7! 2; Y 7! 2]g corresponds tof(1,1), (2,2)g. Thus a store set is essentially a set of n-tuples or, in otherwords, an n-ary predicate or relation.For program point p, the accumulating semantics de�nes relationaccp(v1,. . . ,vn) to be true just in the case that (v1,...,vn) is a tuple ofvalues which can occur at p in one or more computations on the given ini-tial input data. This is the weakest possible relation among variables thatalways holds at point p.Relational Analyses These use more sophisticated methods to approx-imate }(Store), which can give more precise information. Examples ofpractically motivated program analysis problems that require relational in-formation include aliasing analysis in Pascal, the recognition of possiblesubstructure sharing in Lisp or Prolog, and interference analysis.For an example not naturally represented by independent attributes,suppose we wish to �nd out which of a program's variables always assumethe same value at a given program point p. A suitable abstraction of a set ofstores is a partition �p that divides the program's variables into equivalenceclasses, so any one class of �p contains all variables that have the same valueat p. The e�ect of an assignment such as \p: X:=Y; goto q" is that �qis obtained from �p by removing X from its previous equivalence class andadding it to Y's class.



34Intensional versus extensional descriptions Above we representedstore set f[X 7! 1; Y 7! 1]; [X 7! 2; Y 7! 2]gby the binary relation f(1,1), (2,2)g, and approximated it by the supersetf(x,y) j x and y are both even or both oddg, denoted by the predicatecalculus formula(odd(X) ^ odd(Y )) _ (even(X) ^ even(Y ))The view of \predicate as a set of tuples" and \predicate as a formula" isexactly the classical distinction between the extensional and the intensionalviews of a predicate.Descriptions by predicate calculus formulas must of necessity be onlyapproximate, since there are only countably many formulas but uncount-ably many sets of stores (if we assume an in�nite variable value set). Interms of predicate calculus formulas, for each program point p the appro-priate formulation of a safe approximation is that accp logically impliesabsp. In terms of sets of n-tuples: each accp is a subset of the set of alltuples satisfying absp.2.5.3 Abstract Interpretation and Predicate TransformersThe new view of the accumulating semantics is: given a program and apredicate describing its input data, the accumulating semantics maps everyprogram point to the smallest relation among variables that holds whenevercontrol reaches that point.From this viewpoint, the function nextp;q : }(Store) ! }(Store) isclearly the forward predicate transformer [Dijkstra, 1976] associated withtransitions from p to q. Further, accp is clearly the strongest postconditionholding at program point p over all computations on input data satisfyingthe program's input precondition.Program veri�cation amounts to proving that each accp logically im-plies a user-supplied program assertion for point p. Note however that thisabstract interpretation framework says nothing at all about program ter-mination. This approach is developed further in [Cousot, 1977b] and theirsubsequent works.Backwards analyses All this can easily be dualised: the backward predi-cate transformer next�1p;q : }(Store)! }(Store) is just the inverse of nextp;q ,and given a program postcondition one may �nd the weakest precondition onprogram input su�cient to imply the postcondition at termination. For thesimple imperative language, a backward accumulating semantics is straight-forward to construct. For the example program



35A: while n 6= 1 doB: if n eventhen (C: n := n� 2; D: )else (E: n := 3 � n+ 1; F: )�odG:the appropriate equations are:accA = (f1g \ accG) [ (f0; 2; 3; 4; . . .g \ accB)accB = (accC \Evens) [ (accE \Odds)accC = fn j n � 2 2 accDgaccD = (f1g \ accG) [ (f0; 2; 3; 4; . . .g \ accB)accE = fn j 3n+ 1 2 accF gaccF = (f1g \ accG) [ (f0; 2; 3; 4; . . .g \ accB)accG = Sfinalwhere accp is the set of all stores at point p that cause control to reachpoint G with a �nal store in Sfinal.Such a backward accumulating semantics can, for example, provide abasis for an analysis that detects the set of states that may lead to anerror. More generally backward analyses (although not the one shown here)may provide a basis for \future sensitive" analysis such as live variables,where variable X is \semantically live" at point p if there is a computationsequence starting at p and later referencing X's value. This is approximatedby: X is \syntactically live" if there is a program path from p to a use of X'svalue. Section 3 contains an example of live variable analysis for functionalprograms.Many analysis problems can be solved by either a forwards or a back-wards analysis. There can, however, be signi�cant di�erences in e�ciency.Backwards analysis of functional programs The backwards accu-mulating semantics is straightforward for imperative programs, partly be-cause of its close connections with the well studied weakest preconditions[Dijkstra, 1976], and because the state transition function is monadic. It issemantically less well understood, however, for functional programs, whererecent works include [Hughes, 1987], [Dybjer, 1987], [Wadler, 1987], and[Nielson, 1989]. Natural connections between backwards analyses and con-tinuation semantics are seen in [Nielson, 1982] and [Hughes, 1987].



362.6 Important Points from Earlier SectionsIn the above we have employed a rather trivial programming language soas to motivate and illustrate one way to approximate real computationsby computations over a domain of abstract values: Cousot's accumulatingsemantics. Before proceeding to abstract interpretation of more interestinglanguages we recapitulate what has been learned so far.� Computations in the abstract world are at best semihomomorphicmodels of corresponding computations in the world of actual values.� Safety of an abstract interpretation is analogous to reliability of a nu-merical analyst's results: the obtained results must always lie withinspeci�ed con�dence intervals (usually \one-sided intervals" in the caseof program analysis).� To obtain safe results for speci�c applications it is essential to un-derstand the interpretation of the abstract values and their relationto actual computational values. One example is modality, e.g. \allcomputations" versus \some computations".� Abstract values often do not contain enough information to determinethe outcome of tests, so abstract interpretation must achieve the e�ectof simulating a set of real computations.� Computations on complete lattices of abstract values appropriatelymodel computations on real values.� The partial order on these lattices expresses the degree of precision inan approximate description, and is quite di�erent from the traditionalScott-style ordering based on �lling in incomplete information.� Termination can be achieved by choosing lattices without in�niteascending chains.� Best approximations to real computations exist in principle, but maybe uncomputable.� There are close connections between the \accumulating semantics"and the predicates and predicate transformers (both forwards andbackwards) used in program veri�cation.2.7 Towards Generalizing the Cousot FrameworkAbstract interpretation is a semantics-based approach to program analy-sis, but so far we have only dealt with a single, rather trivial language.



37Rather than redo the same work for every new language, we set the foun-dations for developing a general framework based on denotational seman-tics. This is a widely used and rather general formalism for de�ningthe semantics of programming languages (see [Schmidt, 1986,Stoy, 1977,Gordon, 1979,Nielson, 1992a]). Other possibilities include axiomatic andstructural operational semantics [Plotkin, 1981], and natural semantics [Kahn, 1987,Nielson, 1992a]. They are also general frameworks, but ones in which fewapplications to abstract interpretation have been developed (although op-erational semantics seems especially promising).The approach will be developed stepwise. First, a denotational seman-tics is given for essentially the simple imperative language seen before. Thisis then factored into two stages, into a core semantics and an interpretation.The interpretation speci�es the details relevant to a speci�c (standard orabstract) interpretation of the program's values and operations, and thecore semantics speci�es those parts of the semantics that are to be used inthe same way for all interpretations. It is then shown how, given a �xedcore semantics, interpretations may be partially ordered with respect to\degree of abstractness", and it is shown that a concrete interpretation'sexecution results are always compatible with those of more abstract in-terpretations. This provides a basis for formally proving the safety of ananalysis, for example by showing that a given abstract interpretation is anabstraction of the accumulating interpretation. The last step is to describebriey a way to generalize this approach to denotational de�nitions of otherlanguages; this gives a bridge to the development of section 3.Earlier papers using this approach include [Donzeau-Gouge, 1978], [Nielson, 1982],[Jones, 1986].Denotational semantics has three basic principles:1. Every syntactic phrase in a program has a meaning, or denotation.2. Denotations are well-de�ned mathematical objects (often higher-orderfunctions).3. The meaning of a compound syntactic phrase is a mathematical com-bination of the meanings of its immediate subphrases.The last assumption is often called compositionality or, according toStoy, the denotational assumption. Phrase meanings are most often givenby expressions in the typed lambda calculus, although other possibilitiesexist. A denotational language de�nition consists of the following parts:� a collection of domain de�nitions, to be used as types for the lambdaexpressions used to de�ne phrase meanings



38 � a collection of semantic functions, usually one for each syntacticphrase type� a collection of semantic rules de�ning them, expressing the meaningsof syntactic phrases in terms of the meanings of their substructures,usually by lambda expressions.A tiny denotational language de�nition For an example, consider alanguage of while-programs with abstract syntaxc : Cmd ::= x := e j c ; c'j if e then c else c' j while e do ce : Exp ::= x j Constant j op(e1; . . . ;en)where x is assumed to range over a set Var of variables, op is a basicoperation (e.g. +;�; �;�), and Constant denotes any member of a notfurther speci�ed set Value of values. The part of a denotational semanticsrelevant to commands could be as follows, where the traditional \semanticparentheses" [[ and ]] enclose syntactic arguments. In the following Storeand Value are as before except that for concreteness we specify Value isthe set of numbers. Each can be thought of as a \at" Scott domain withd v d0 i� d = ? or d = d0.Specifying the semantics of a while loop requires (as usual) evaluatinga �xpoint over domain Store ! Store, ordered \pointwise": s v s0 i� s(x)v s0(x) for all variables x.Domain de�nitionss : Store = Var ! ValueValue= NumberTypes of semantic and auxiliary functionsC : Cmd ! Store ! StoreE : Exp ! Store ! ValueSemantic rulesC[[x := e]] = �s . s[x 7! E[[e]] s]C[[c ; c']] = �s . C[[c']](C[[c]] s)C[[if e then c else c']] = �s . E[[e]] s 6= 0 ! C[[c]] s, C[[c']] sC[[while e do c]] = �x �� . �s . E[[e]] � 6= 0 ! �(C[[c]] s), sNote that all the rules are compositional.



392.7.1 Factoring a Denotational SemanticsThe principle of compositionality provides an ideal basis for generalizingthe denotational semantics framework to allow alternate, nonstandard in-terpretations in addition to the \standard" semantics de�ning the meaningsof programs. The idea is to decompose a denotational language de�nitioninto two parts:� a core semantics, containing semantic rules and their types, but usingsome uninterpreted domain names and function symbols, and� an interpretation, �lling out the missing de�nitions of domain namesand function symbolsThe interpretation is clearly a many-sorted algebra. Examples include the\standard interpretation" de�ning normal program execution, an \accumu-lating interpretation" analogous to the accumulating semantics of section 2,and as well more approximate and e�ectively computable interpretationssuitable for program analysis, e.g. for parity analysis.Scott Domains versus Complete Lattices In denotational semanticsthe denoted values are nearly always elements of \domains" in the senseof Dana Scott and others. These are cpo's (complete partial orders with?), usually required to be algebraic. For material on domains see the listof references in the beginning of this chapter.On the other hand for abstract interpretation purposes, it is usual touse complete lattices for reasons mentioned earlier. There is no basic con-ict here since cpo's include complete lattices as a special case. On theother hand, the interpretation of the partial order is somewhat di�erent insemantics than in abstract interpretation (as mentioned in section 2.4), sosome care must be taken. This matter is further addressed in section 3.An example factorized semantics For the imperative language abovewe obtain the following, where domains Sto and Val, and functions assign,seq, cond, while are unspeci�ed:Domain de�nitionsMCmd = Sto ! StoMExp = Sto ! ValSto, Val: unspeci�edTypes of semantic and auxiliary functionsC : Cmd! MCmdE : Exp ! MExp



40 assign : Var � MExp ! MCmdseq : MCmd � MCmd ! MCmdcond : MExp � MCmd � MCmd ! MCmdwhile : MExp � MCmd ! MCmdSemantic rulesC[[x := e ]] = assign(x, E[[e]])C[[c ; c' ]] = seq(C[[c]], C[[c']])C[[if e then c else c']] = cond(E[[e]], C[[c]], C[[c']])C[[while e do c]] = while(E[[e]], C[[c]])The standard interpretation This is Istd = (Val, Sto; assign, seq,cond, while), de�ned byDomainsVal = Number (the at cpo)Sto = Var ! ValFunction de�nitionsassign = �(x, me) . �s . s[x 7! mes]seq = �(m1c, m2c) . m2c � m1ccond = �(me, m1c, m2c) . �s . me s 6= 0 ! m1c s, m2c swhile = �(me, mc) . �x �� . �s . me s 6= 0 ! �(mc s), s2.7.2 The Even-odd InterpretationWith the current machinery a general formulation of the even-odd analysisof section 2.2.3 may be given as our �rst nonstandard interpretation:Iparity = (Val, Sto; assign, seq, cond, while)where Val, etc. are given by:DomainsVal = f?, even, odd, >g with partial order? v even v > and ? v odd v >Sto = Var ! ValFunction de�nitionsassign = �(x, me) �s . s[x 7! mes]seq = �(m1c, m2c) . m2c � m1ccond = �(me, m1c, m2c) �s . m1c s t m2c swhile = �(me, mc) . �x �� �s . �(mcs) t s



41Remarks1. This is an independent attribute approximation: a set of stores ismodelled by mapping its variables' values independently to elementsof Val.2. For the conditional, no attempt is made to simulate the test. In-stead, the best description �tting both the then and else branches isproduced.3. The �xpoint clearly models the one in the standard interpretation,again without simulating the test. Termination is assured since Stohas �nite height and any one program has a �nite number of variables.2.7.3 The Accumulating Semantics as an InterpretationThe accumulating semantics seen earlier was only given by example. Withthe current machinery a general formulation may be given: Iacc = (Val,Sto; assign, seq, cond, while) where Val, etc. are given by:DomainsVal = }(Number)Sto = Storeset typical element SStoreset = }(Var ! Val) a set of storesFunction de�nitionsassign = �(x, me) . �S . fs[x 7! v] j s 2 S and v 2 mefsggseq = �(m1c, m2c) . m2c � m1ccond = �(me, m1c, m2c) . �S .m1c (fs 2 S j 0 62 mefsgg) [ m2c (fs 2 S j 0 2 mefsgg)while = �(me, mc) . �x ��. �S .fs 2S j me s = 0g [ �( mc fs 2 S j me s 6= 0g)Here the denotation of C[[Cmd]] has been \lifted" from Sto! Sto to }(Sto)! }(Sto), so it now transforms a set of current states into the set ofpossible next states. To relate this to the earlier accumulating semanticsof section 2.2, consider for example the program fragment \C : n := n�2;D" of section 2.2.2. ThenC[[n := n�2]]accC = accDIn general, C[[c]] realizes the same transformation on store sets as de�nedby the data ow equations for command c.



422.8 Proving Safety by Logical Relations2.8.1 Safety from a Denotational ViewpointSuppose we are given two interpretationsI = (Val, Sto; assign, seq, cond, while)andI' = (Val', Sto', assign', seq', cond',while')and a pair of abstraction functions� = (�val : Val ! Val', �sto : Sto ! Sto')where �val and �sto are monotone. We write this as �: I ! I'. De�ne s vs' to hold i� s (X) v s'(X) for all variables X 2 Var.De�nition � : I ! I' is safe if for all c 2 Cmd and s 2 Sto�sto(CI [[c]] s) v CI0 [[c]] (�sto s)where CI : Sto ! Sto is the semantic function obtained using assign, seq,etc. and CI0 is analogous but using assign', seq', etc.Recall that a v a0 signi�es that a0 is a more approximate descriptionthan a. This de�nition says that the result of computing in the \realworld" and then abstracting the resulting store gives a result that is safelyapproximable by �rst abstracting the real world's initial store, and thencomputing entirely in the \abstract world". It is thus simply a reformula-tion in denotational terms of the earlier condition on safe approximationof transitions: �(nextp;q(S)) v nextp;q(�(S))where p and q are (resp.) the entry and exit points of command c (and �plays the role of �).2.8.2 A Su�cient Local Condition for SafetyWhile pleasingly general, this de�nition is unfortunately global: it quan-ti�es over all commands c. It would be strongly desirable to have localconditions on assign, seq, etc. su�cient to guarantee safety in the senseabove. This can be done, but requires �rst setting up a bit of descriptivemachinery. The problem is that denotational de�nitions use higher orderfunctions and cartesian products, whereas the earlier conditions for safetywere developed only for �rst order domains.The solution we present is an instance of logical relations, an approachto relating values in di�erent but simlarly structured domains that will bedeveloped further in Section 3.3.Suppose we have two interpretations I and I' of our simple imperativecore semantics, related by � = (�val : Val! Val0; �sto : Sto! Sto0) where�val and �sto are again monotone. Our goal is to see how to extend � toapply to all domains built up from those of I and I'. Suppose further that



43domain A is built by � and ! from the domains of I, and a correspondingdomain A' is built in the same way from the domains of I'. We de�nethe binary relation a �� a0, which will hold whenever a' 2 A' is a safeapproximation of the corresponding element a 2 A.De�nition Suppose � = �val : Val! Val0 and v 2 Val; v0 2 Val0. Then1. v �� v0 if and only if �val(v) v v0 and similarly for � = �sto : Sto!Sto0.2. Let (a; b) 2 A�B, (a0; b0) 2 A'�B' and �A : A ! A', �B : B ! B'be monotone. Then (a; b) �� (a0; b0)if and only if a ��A a0 and b ��B b0:3. Let f : A ! B, g' : A' ! B' and �A : A ! A', �B : B ! B' bemonotone. Then f �� g if and only if8a 2 A 8a0 2 A0(a ��A a0impliesfa ��B ga0): 2This notation allows an alternate characterization of safety.Lemma � : I ! I' is safe if and only if CI[[c]] �� CI0 [[c]] for all c 2 CmdProof \If": by 3, CI[[c]] �� CI0 [[c]] holds if and only if CI[[c]]s ��sto CI0 [[c]]s' whenever s ��sto s'. In particular we have s �� �sto(s), hence�sto(CI [[c]]s) v CI0 [[c]]�sto(s)so � is safe (as de�ned before).\Only if": if � is safe and s �� s' then�sto(CI [[c]] s) v CI0 [[c]] (�stos) v CI0 [[c]] s'by monotonicity of CI0 [[c]] (easily veri�ed). 2It is now natural to extend the de�nition of �� to allow comparison ofinterpretations. Given this, we are �nally ready to de�ne a local safety con-dition which implies global safety. Proof is by a straightforward inductionon program syntax.



44De�nition Let � : I ! I' be de�ned as above. Then I �� I' if and onlyif assign �� assign0;seq �� seq0;cond �� cond0while �� while0:Theorem � : I ! I' is safe if I �� I'.A straightforward generalization of these ideas to arbitrary denotationalde�nitions provides a very general framework for program analysis by in-terpreting programs over nonstandard domains, and gives a way to showthat one abstract interpretation is a re�nement of and compatible withanother. This observation is the starting point for the development in thesection below.For a very simple example, the following is easy to show. Its signi�-cance is that the accumulating semantics is a faithful extension of with thestandard semantics.Lemma Let Istd = (Val, Sto; assign, seq, cond, while) and Iacc = (Val',Sto'; assign', seq', cond', while') be the standard and accumulating seman-tics. Then Istd �� Iacc, where �val(v) = fvg for v 2 Val and �sto(s)= fsgfor s 2 Sto.3 Abstract Interpretation Using a Two-LevelMetalanguageIn the previous section we have given a survey of many concepts in abstractinterpretation. We have stressed that abstract interpretation should begenerally applicable to programs in a wide class of languages, that it shouldalways produce correct properties and that it should always terminate.To ensure the general applicability of abstract interpretation we adoptthe framework of denotational semantics. Most modern approaches to de-notational semantics stress the role of a formal metalanguage in which thesemantics is de�ned. So rather than regarding denotational semantics asdirectly mapping programs to mathematical domains one regards denota-tional semantics as factored through the metalanguage. This is illustratedby the upper half of Figure 1: First one uses the semantic equations toexpand programs into terms in the metalanguage and then one interpretsthe terms in the metalanguage as elements in the mathematical domainsused in denotational semantics.
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Fig. 1. The Role of the MetalanguageFollowing our informal presentation of a parameterised semantics inSubsection 2.7 we take a similar factored approach to abstract interpreta-tion. This is illustrated in the lower half of Figure 1 which furthermorestresses that the semantic equations are the same. The Semantic Equa-tions thus correspond to the core semantics of Subsection 2.7. From thepoint of view of developing a general theory, the focus will be on the met-alanguage but we trust that the reader will be able to see for himself thatthe development is of wider applicability than just the simple metalan-guage considered here. Its syntax is de�ned in Subsection 3.1 and we giveexample interpretations (i.e. semantics) in Subsection 3.2.Correctness of abstract interpretation will be our guide throughout thedevelopment. In Subsection 3.3 we therefore give a structural de�nition ofcorrectness relations between interpretations thereby extending the devel-opment surveyed in Subsection 2.8. As an example we de�ne correctnessrelations between the standard interpretation and one of the abstract in-terpretations de�ned in Subsection 3.2.Closely related to the question of correctness is the question of whetherbest induced property transformers exist over the abstract domains. Wetreat this in Subsection 3.4 and we consider the easier case of relatingabstract interpretations to one another as well as the harder case of relatingan abstract interpretation to the standard interpretation. Induced propertytransformers need not terminate but are none the less useful as guides in



46determining the degree of approximation that will be needed to ensuretermination.The termination aspect motivates the study in Subsection 3.5 of coarserversions of the induced property transformers which have the advantage ofleading to analyses that will always terminate. Subsection 3.6 concludes bymentioning some generalisations that are possible [Nielson, 1989] and bydiscussing some issues that have not yet been incorporated in this treate-ment.3.1 Syntax of MetalanguageMost metalanguages for denotational semantics are based on some versionof the �-calculus. Depending on the kind of mathematical foundationsused for denotational semantics the metalanguage may be without explicittypes or it may have explicit types. We shall not pay great attention to thisdi�erence and in many instances the various algorithms for polymorphictype inference may be used to introduce types into an untyped notation.As our starting point we thus assume that our metalanguage is a smalltyped �-calculus.De�nition 3.1.1. The Typed �-Calculus has types t2T and expressionse2E given byt ::= Ai j t�t j t!te ::= fi[t ] j he,ei j fst e j snd e j�xi[t ].e j e(e) j xi j fix e j if e then e else eConcerning types we have base types Ai where i ranges over a countableindex set (say I ) and we have product and function space. Here � bindsmore tightly than ! and both associate to the right. We shall not specifythe details of the countable index set but we shall assume that we havebooleans Abool (also written Bool), integers Aint (also written Int) andother useful base types. However, nothing precludes us from having a basetype Asto of machine stores and if the store contains just two values, sayan integer and a boolean, we may write Aint�bool for Asto. (The di�erencebetween types like Aint�bool and Aint�Abool will become clear in Subsection3.2.)Concerning expressions we have basic expressions fi[t ] of type t whereagain i ranges over a countable index set. (This index set need not bethe same as the one used for the Ai above but whenever we need to nameit we shall use the same symbol I as above.) Again we expect to havefamiliar basic expressions like the truth values ftrue[Bool] and ffalse[Bool](also written true[Bool] and false[Bool] or just true and false), integers like



47f0[Int] (also written 0[Int] or just 0) and simple operations like equalityf=[Int�Int!Bool] (also written =[Int�Int!Bool] or just =). Much asfor the Ai nothing prevents us from writing e.g.f�x:�y:x=y+y [Int!Int!Bool] in order to clarify the intended meaning ofsome basic expression. The remaining constructs for expressions are pair-ing, selection of components, �-abstraction, application, variables, �xedpoints and conditional. We shall assume that application binds more tightlythan fst, snd and fix.3.1.1 The use of underliningWe shall postpone the discussion about well-formedness of expressions inthe typed �-calculus because the syntax is not yet in a form that will suitour purpose: to prescribe a systematic approach to separating a denota-tional semantics into its core part and its interpretation part (to use theterminology of Subsection 2.7). To motivate this we recall from Section2 that for a given programming language or example semantics there aresome constructs that we might wish to interpret in di�erent ways in dif-ferent analyses whereas there are other constructs that we might as wellinterpret in the same way in all analyses. To indicate this distinction ina precise way we shall use the convention that underlined constructs arethose that should have the freedom to be interpreted freely.Beginning with the types we might consider a syntax as given byt ::= Ai j Ai j t�t j t!tso that we would use Aint (also written Int) instead of Aint whenever theintegers are used in a context where we would like to perform abstractinterpretation upon their values. Thus if we want to consider the store ofan imperative programming language as a base type we will always use Astorather than Asto. If we want to consider a structured version of the storewhere we have a �xed set Aide of identi�ers and a �xed set Aval of valueswe shall use Aide!Aval rather than e.g. Aide!Aval or Aide!Aval.However, this notation for types does not allow us to illustrate all thepoints we will need for a general theory of abstract interpretation althoughit would su�ce for formalizing the development in Subsection 2.7. Exam-ples include the discussion of forward versus backward analyses and thediscussion of independent attribute versus relational methods. To cater forthis we propose the syntaxt ::= Ai j Ai j t�t j t�t j t!t j t!tand we shall use the phrase two-level types for these. This will turn out tobe a bit too liberal for our abilities so we shall need to impose various well-formedness conditions upon the types but in order to motivate them it is



48best to postpone this until they are needed for the technical development.In actual applications there might well be the need for distinguishing be-tween various occurrences of � and! and one might then allow a notationlike �i and!i where i ranges over some index set. However, as the theoryhardly changes we shall leave this extension to the reader.Turning to the expressions, a simple solution would be to keep thesyntax of expressions as given in De�nition 3.1.1 with the understandingthat the types t in the basic expressions fi[t ] now range over the largerset of two-level types. However, this is not quite in the spirit of the typed�-calculus as we now have types without corresponding constructors anddestructors. We shall therefore adopt a more comprehensive syntax ofexpressions by extending the use of underlining to the expressions.De�nition 3.1.2. The Two-level �-Calculus has types t2T and expres-sions e2E given byt ::= Ai j Ai j t�t j t�t j t!t j t!te ::= fi[t ] j he,ei j he,ei j fst e j fst e j snd e j snd e j�xi[t ].e j �xi[t ].e j e(e) j e(e) j xi jfix e j fix e j if e then e else e j if e then e else eHere the intention is that if e.g. e1 is of type t1 and e2 is of type t2 thenhe1,e2i will be of type t1�t2 and he1,e2i will be of type t1�t2 and similarlyfor the other operators. We do not have two versions of fi[t ] as fi[t ] simplyis a basic expression of the type indicated, nor do we have two versions ofxi as xi simply is a placeholder for a `pointer' to the enclosing �xi or �xi.In this notation an operation seq for sequencing two commands operatingon a store Sto might be de�ned byseq = �x1[Sto!Sto]. �x2[Sto!Sto]. �xsto[Sto]. x2(x1(xsto))It will have type(Sto!Sto)!(Sto!Sto)!(Sto!Sto)and may be used as in C[[c1;c2]] = seq(C[[c1]])(C[[c2]]).3.1.2 CombinatorsThe motivation behind the use of underlining was to separate the more `dy-namic' constructs that need to be interpreted freely from the more `static'constructs whose interpretation never changes. Unfortunately the two-level�-calculus is not in a form that makes this su�ciently easy. The problemis the occurence of free variables and especially those bound by �. This isnot a novel problem and solutions have been found:



49� When interpreting the typed �-calculus in arbitrary cartesian closedcategories one studies certain combinators (`categorical combinators')whose interpretation in a cartesian closed category is rather straight-forward.� When implementing functional languages one often transforms pro-grams to combinator form before performing graph reduction.This motivates:De�nition 3.1.3. The Two-level Metalanguage has types t2T and ex-pressions e2E given byt ::= Ai j Ai j t�t j t�t j t!t j t!te ::= fi[t ] j he,ei j Tuplehe,ei j fst e j Fst e j snd e j Snd ej �xi[t ].e j Curry e j e(e) j Applyhe,ei j xi j Id[t ] j e 2ej Const[t ] e j fix e j Fix e j if e then e else e j Ifhe,e,eiHere we have retained those expression constructs that were not under-lined, we have replaced the underlined expression constructs by combina-tors, and we have added the new combinators Id[t ], 2 and Const[t ]. Weshall regard application as binding more tightly than the pre�xed operators(fst, Fst, snd, Snd, Curry, Const[t ], fix and Fix). The intention withthe combinators may be clari�ed by:Tuplehe1,e2i � �x1.he1(x1), e2(x1)iFst e � �x1.fst e(x1)Snd e � �x1.snd e(x1)Curry e � �x1.�x2.e(hx1,x2i)Applyhe1,e2i � �x1.e1(x1)(e2(x1))Id[t ] � �x1.x1e1 2 e2 � �x1.e1(e2(x1))Const[t ]hei � �x1.eFix e � �x1. fix e(x1)Ifhe1,e2,e3i � �x1. if e1(x1) then e2(x1) else e3(x1)This should be rather familiar to anyone who knows a bit of categorical logicor a bit of a functional language like FP. In this notation the sequencingoperator seq used above simply isseq = �x1[Sto!Sto]. �x2[Sto!Sto]. x2 2 x1



50 tenv c̀1;c2 fi[t ] : t if c̀1 ttenv c̀1;c2 e1 : t1 tenv c̀1;c2 e2 : t2tenv c̀1;c2 he1,e2i : t1�t2tenv c̀1;c2 e1 : t!t1 tenv c̀1;c2 e2 : t!t2tenv c̀1;c2 Tuplehe1,e2i : t!t1�t2if c̀1 (t!t1) ! (t!t2) ! (t!t1�t2)tenv c̀1;c2 e : t1�t2tenv c̀1;c2 fst e : t1tenv c̀1;c2 e : t!t1�t2tenv c̀1;c2 Fst e : t!t1if c̀1 (t!t1�t2) ! (t!t1)tenv c̀1;c2 e : t1�t2tenv c̀1;c2 snd e : t2tenv c̀1;c2 e : t!t1�t2tenv c̀1;c2 Snd e : t!t2if c̀1 (t!t1�t2) ! (t!t2)tenv [t/xi] c̀1;c2 e : t 'tenv c̀1;c2 �xi[t ].e : t!t ' if c̀2 ttenv c̀1;c2 e : t�t '!t"tenv c̀1;c2 Curry e : t!t '!t"if c̀1 (t�t '!t") ! (t!t '!t")tenv c̀1;c2 e1 : t '!t tenv c̀1;c2 e2 : t 'tenv c̀1;c2 e1(e2) : ttenv c̀1;c2 e1 : t!t '!t" tenv c̀1;c2 e2 : t!t 'tenv c̀1;c2 Applyhe1,e2i : t!t"if c̀1 (t!t '!t") ! (t!t ') ! t!t"tenv c̀1;c2 xi : t if c̀2 t ^ tenv(xi) = tTable 1. Wellformedness of Expressions (part 1)and thus there hardly is any need to name it.To complete the de�nition of the two-level metalanguage we must ex-plain when expressions are well-formed. We have already said that weshall need to impose conditions on the types as we go along and the well-formedness condition will be inuenced by this although in a rather indirectway. As we shall see later these parameters may restrict types so that theye.g. denote complete lattices. We shall therefore write TML[c1,c2] for a



51tenv c̀1;c2 Id[t ] : t!t if c̀1 t!ttenv c̀1;c2 e1 : t0!t1 tenv c̀1;c2 e2 : t1!t2tenv c̀1;c2 e2 2 e1 : t0!t2if c̀1 (t1!t2) ! (t0!t1) ! (t0!t2)tenv c̀1;c2 e : t 'tenv c̀1;c2 Const[t ] e : t!t 'if c̀1 t ' ! t!t 'tenv c̀1;c2 e : t!ttenv c̀1;c2 fix e : ttenv c̀1;c2 e : t!t '!t 'tenv c̀1;c2 Fix e : t!t 'if c̀1 (t!t '!t ') ! (t!t ')tenv c̀1;c2 e1 : Bool tenv c̀1;c2 e2 : t tenv c̀1;c2 e3 : ttenv c̀1;c2 if e1 then e2 else e3 : ttenv c̀1;c2 e1 : t!Bool tenv c̀1;c2 e2 : t!t ' tenv c̀1;c2 e3 : t!t 'tenv c̀1;c2 Ifhe1,e2,e3i : t!t 'if c̀1 (t!Bool) ! (t!t ') ! (t!t ') ! (t!t ')Table 2. Wellformedness of Expressions (part 2)version of the two-level metalanguage where types are constrained as indi-cated by the parameters c1 and c2. We then write c̀ t to express thatthe type t is well-formed with respect to the constraint c. Whenever wesay that t is a well-formed type of TML[c1,c2] we shall mean c̀2 t becausein general c2 will be more liberal than c1, i.e. c1 will imply c2. Next wewrite tenv c̀1;c2 e : tfor the well-formedness of an expression e of intended type t assuming thatthe free variables of e have types as given by tenv . Here tenv is a typeenvironment, i.e. a mapping from a �nite subset of the variables fxiji2I gto the types T . We refer to Tables 1 and 2 for the de�nition of tenv c̀1;c2 e: t but we point out that the constraint c2 is used to constrain the types ofvariables whereas the constraint c1 is used to constrain the types of basicexpressions and combinators.



52 We shall say that the expression e is closed if it has no free variables sothat tenv may be taken as a mapping from the empty set. Also we shallsay that a combinator  is used with type t , if c̀1 t is the side conditionthat needs to be veri�ed in order to apply the rule for  . As an example, 2is used with type (Sto!Sto)!(Sto!Sto)!(Sto!Sto) in the expressionfor seq displayed above.Fact 3.1.4. If tenv c̀1;c2 e : t1 and tenv c̀1;c2 e : t2 then t1 = t2. 23.1.3 Pragmatics of the metalanguageWe shall end this subsection with a few pragmatic considerations about therelationship between the two-level metalanguage and the typed �-calculuswe took as our starting point. One of our �rst points was not to paygreat attention to the di�erence between a typed �-calculus and an un-typed �-calculus because the various algorithms for type analysis mightbe of use in transferring types into an otherwise untyped expression. Inquite an analogous way we shall not pay great attention to the di�erencebetween a typed �-calculus and a two-level �-calculus as one can developan algorithm for binding time analysis [Nielson, 1988b] that is useful fortransferring the underlining distinction into a typed expression withoutthis distinction. Continuing this line of argument we shall not pay greatattention to the di�erence between a two-level �-calculus and the two-levelmetalanguage adopted in De�nition 3.1.3 because one can develop a vari-ant of bracket abstraction (called two-level �-lifting [Nielson, 1988c]) thatwill aid in transforming underlined constructs to combinator form.The choice of combinators in the two-level metalanguage suits the �-calculus well but one may regard them as nothing but glori�ed versions ofthe basic expressions fi[t ], i.e. that for a few of the basic expressions fi[t ]we have decided to use a di�erent syntax. This means that one could aswell study combinator-like basic expressions that would be more suitablefor languages like PASCAL, PROLOG, OCCAM or action semantics.However, we always have the �-notation available and we would only wishto restrict this in settings where the resulting metalanguage is so big asto make it hard to develop an analysis. We shall see examples of this inthe next subsection where we de�ne the parameterised semantics of themetalanguage.3.2 Speci�cation of AnalysesFollowing most approaches to denotational semantics we shall interpretthe types of the metalanguage as domains. We saw in Section 2 that forabstract interpretation there is a special interest in the complete latticesand we shall restrict our attention to the algebraic lattices which are those



53complete lattices that are additionally domains. Roughly the idea willbe to interpret the non-underlined type constructs as domains whereasunderlined type constructs will be interpreted as algebraic lattices whenwe are specifying abstract interpretations and as domains when we arespecifying the standard interpretation.To be selfcontained we shall briey review a few concepts that havebeen treated at greater length in previous chapters of this handbook.De�nition 3.2.1. A chain in a partially ordered set D=(D ,v) is a se-quence (dn)n of elements indexed by the natural numbers such that dnvdmwhenever n�m. A cpo D is a partially ordered set with a least element,?, and in which every chain (dn)n has a (necessarily unique) least upperbound, Fndn. The cpo D is consistently complete if every subset Y of Dthat has an upper bound in D also has a least upper bound FY in D . Anelement b in a cpo D is compact if whenever bvFndn for a chain (dn)n wehave some natural number n such that bvdn. A subset B of D is a basisif every element d of D can be written as d = Fnbn where (bn)n is a chainin D with each bn an element of B . A domain is a consistently completecpo with a countable basis BD of compact elements. We shall use the termalgebraic lattice for those complete lattices that are also domains, i.e. forthose domains in which any subset has an upper bound. 2De�nition 3.2.2. A function f :D!E from a domain D=(D ,v) to an-other domain E=(E ,v) is monotonic if it preserves the partial order andis continuous if it preserves the least upper bounds of chains, i.e. f (Fndn)= Fn f (dn). It is additive (sometimes called linear) if it preserves all leastupper bounds, i.e. f (FY ) = Fff (y)jy2Y g whenever Y has a least upperbound. It is binary additive if f (d1td2) = f (d1)tf (d2) and is strict if itpreserves the least element, i.e. f (?)=?. It is compact preserving if itpreserves compact elements, i.e. f (b)2BE whenever b2BD. A continuousfunction f :D!D from a domain D=(D ,v) to itself has a least �xed pointgiven by FIX(f ) = Fn f n(?), i.e. f (FIX(f )) = FIX(f ) and whenever f (d)= d (or indeed f (d) v d) we have FIX(f ) v d . 2De�nition 3.2.3. A predicate P over a domain D=(D ,v) is a functionfrom D to the set ftrue,falseg of truth values. It is admissible if P(?) holdsand if P(Fndn) holds whenever (dn)n is a chain such that P(dn) holds forevery element dn. For an admissible predicate P we have the inductionprincipleP(d) ) P(f (d))P(FIX(f ))whenever f is continuous. In a similar way we de�ne the notion of ad-missible relation since a relation between the domains D1,...,Dn (n�1) isnothing but a predicate over the cartesian product D1�...�Dn (where thepartial order is given in the usual componentwise manner). 2



543.2.1 Interpreting the typesFor a type t the de�nition of its interpretation [[t ]](I) is by structure on thesyntax of t . As we shall see it will make use of the parameter I wheneverunderlined constructs are encountered. Actually, the parameter I may beregarded as being a pair (It,Ie) and for the de�nition of [[t ]](I) it is onlythe It component that will be needed.[[ Ai ]](I) = some a priori speci�ed domain Aiwith Abool the domain ftrue,false,?g of booleansand Aint the domain f...,-1,0,1,...,?g of integers[[ t1�t2 ]](I) = [[ t1 ]](I) � [[ t2 ]](I)where the elements are the pairs of elementsand the partial order is de�ned componentwise[[ t1!t2 ]](I) = [[ t1 ]](I) ! [[ t2 ]](I)where the elements are the continuous functionsand the partial order is fvg i� 8d : f (d)vg(d)[[ Ai ]](I) = I ti[[ t1 � t2 ]](I) = I t�([[t1]](I),[[t2]](I))[[ t1 ! t2 ]](I) = I t!([[t1]](I),[[t2]](I))The demands on the parameter I are expressed inDe�nition 3.2.4. An interpretation I (or It) of types is a speci�cationof � a property I tP = P of domains (e.g. `is a domain' or `is an algebraiclattice'),� for each i a domain I ti with property P,� operations I t� and I t! on domains with property P such that theresult is a domain with property P.We shall use the term domain interpretation for an interpretation of typeswhere the property P equals `is a domain' and we shall use the term latticeinterpretation for an interpretation of types where the property P equals`is an algebraic lattice'. 2



55Clearly domain interpretations are of relevance when specifying a stan-dard semantics and lattice interpretations are of relevance when specifyingabstract interpretations.Unfortunately we will have to impose certain well-formedness conditionsupon types for the above equations to de�ne a domain. As an example,Int�Int will not be well-formed because[[ Int�Int ]](I) = I t�(Aint, I tint)and even though I tint is an algebraic lattice (e.g. that for the detectionof signs), Aint is not and so one cannot apply I t� when I is a latticeinterpretation. Since we have argued that the use of (algebraic) lattices isa very natural setup for abstract interpretation we conclude that we shouldban Int�Int.With this motivation we shall de�ne the predicateslt(t) to ensure that t will be interpreted as an algebraic lattice whenperforming abstract interpretation,dt(t) to ensure that t will be interpreted as a domain in any inter-pretation.De�nition 3.2.5. The predicates lt (for lattice type) and dt (for domaintype) are de�ned byAi Ai t1�t2 t1�t2 t1!t2 t1!t2lt false true lt1^lt2 lt1^lt2 dt1^lt2 lt1^lt2dt true true dt1^dt2 lt1^lt2 dt1^dt2 lt1^lt2where we write lt1 for lt(t1) etc. 2We shall regard a type t as being well-formed whenever dt(t) holds andwrite d̀t t as a record of this.Proposition 3.2.6. The equations for [[t ]](I) de�ne a domain when t is awell-formed type in TML[dt,dt] and I is a domain or lattice interpretation.2 Proof: Let I be an interpretation of types that speci�es the propertyI tP = P where P(D) either means that D is a domain or that D is analgebraic lattice. By induction on the structure of types t we will show� if dt(t) then [[t ]](I) speci�es a domain,� if lt(t) then dt(t) and [[t ]](I) has property P.The cases Ai and Ai are straightforward. The case t1�t2 follows becauseD1�D2 is a domain whenever D1 and D2 are and an algebraic lattice when-ever D1 and D2 are. The case t1�t2 follows from the assumptions. The



56case t1!t2 follows because D1!D2 is a domain when D1 and D2 are andan algebraic lattice when D1 is a domain and D2 is an algebraic lattice.The case t1!t2 follows from the assumptions. 2We thus see that a type like Int�Int is not well-formed whereas (general-ising [Nielson, 1989]) a type like (Int!Int)�Int will be well-formed andwill denote an algebraic lattice in any abstract interpretation (i.e. in anylattice interpretation). Furthermore it should now be clear that Aint�bool,Aint�Abool, Aint�bool and Aint�Abool will be treated di�erently in the seman-tics.3.2.2 Interpreting the expressionsTo de�ne the meaning of a well-formed expression we shall consider a typeenvironment tenv with domain fx1,...,xng2 and a well-formed expression eof type t , i.e.tenv d̀t;dt e : tWithout loss of generality we may assume that d̀t t i whenever t i = tenv(xi)as otherwise xi could be removed from the type environment (due to theformulation of the axiom for xi in Table 1). The semantics of e relative tothe interpretation I is an entity[[ e ]]tenv(I) 2 [[t1]](I)�...�[[tn]](I)![[t ]](I)where again t i = tenv(xi). That this makes sense is a consequence ofFact 3.2.7. If tenv d̀t;dt e : t then d̀t t . 2The de�nition of [[e]]tenv(I) is by structural induction on e and again weshall use the interpretation I, i.e. (It,Ie), supplied as a parameter whenwe come to the underlined constructs. Writing [[e]]I� for [[e]]tenv(I)(�) wehave [[ fi[t ] ]]I� = I ei[t ][[ he1,e2i ]]I� = ([[e1]]I�,[[e2]]I�)[[ Tuplehe1,e2i ]]I� = IeTuple[t ]([[e1]]I�)([[e2]]I�) where Tuple is usedwith type t[[ fst e ]]I� = d1 where (d1,d2) = [[e]]I�[[ Fst e ]]I� = IeFst[t ]([[e]]I�) where Fst is used with type t[[ snd e ]]I� = d2 where (d1,d2) = [[e]]I�[[ Snd e ]]I� = IeSnd[t ]([[e]]I�) where Snd is used with type t2It is rather demanding to assume that dom(tenv) is always of the form fx1,...,xngfor some natural number n, but as it simpli�es the notation considerably we shall stickto this assumption. Alternatively, one might model a type environment as a list of pairsof the form (xi,t i).



57[[ �xi[t ].e ]]I� = �d2[[t ]](I). [[e]]tenv[t=xi ](I)(�[d/xi])where (d1,...,dn)[d/xi] = (d1,...,d ,...,dn) if i�nand (d1,...,dn)[d/xi] = (d1,...,dn,d) if i=n+1[[ Curry e ]]I� = IeCurry[t ]([[e]]I�) where Curry is used with type t[[ e1(e2) ]]I� = ([[e1]]I�)([[e2]]I�)[[ Applyhe1,e2i ]]I� = IeApply[t ]([[e1]]I�)([[e2]]I�) where Apply is usedwith type t[[ xi ]]I� = d i where (d1,...,dn) = �[[ Id[t ] ]]I� = IeId[t!t ][[ e1 2 e2 ]]I� = Ie2[t ]([[e1]]I�)([[e2]]I�) where 2 is used with type t[[ Const[t ] e ]]I� = IeConst[t 0]([[e]]I�) where Const[t ] is of type t '[[ fix e ]]I� = FIX([[e]]I�)[[ Fix e ]]I� = IeFix[t ]([[e]]I�) where Fix is used with type t[[ if e1 then e2 else e3 ]]I� = 8<: [[e2]]I� if [[e1]]I�=true[[e3]]I� if [[e1]]I�=false? if [[e1]]I�=?[[ Ifhe1,e2,e3i ]]I� = IeIf[t ]([[e1]]I�)([[e2]]I�)([[e3]]I�) where If is usedwith type tTo prevent any misconception we point out that the pattern matching, e.g.d1 where (d1,d2) = [[e]]�Imay be replaced by the use of explicit destructors, e.g.p#1 where p = [[e]]�Iand that similarly the `where' may be replaced by textual substitution, e.g.([[e]]�I)#1The demands on the parameter I are clari�ed by:De�nition 3.2.8. An interpretation I is a speci�cation of� an interpretation It of types that is a domain interpretation or alattice interpretation,� for each basic expression or combinator an entity in the requireddomain, i.e.



58 I ei[t ] 2 [[t ]](I)IeTuple[(t!t 0)!(t!t 00)!(t!t 0�t 00)] 2 [[t!t ']](I) ! [[t!t"]](I) ![[t!t '�t"]](I)IeFst[(t!t 0�t 00)!(t!t 0)] 2 [[t!t '�t"]](I) ! [[t!t ']](I)IeSnd[(t!t 0�t 00)!(t!t 00)] 2 [[t!t '�t"]](I) ! [[t!t"]](I)IeCurry[(t 0�t 00!t)!(t 0!t 00!t)] 2 [[t '�t"!t ]](I) ! [[t '!t"!t ]](I)IeApply[(t!t 0!t 00)!(t!t 0)!(t!t 00)] 2 [[t!t '!t"]](I) ! [[t!t ']](I)! [[t!t"]](I)IeId[t!t ] 2 [[t!t ]](I)Ie2[(t 0!t 00)!(t!t 0)!(t!t 00)] 2 [[t '!t"]](I)! [[t!t ']](I)! [[t!t"]](I)IeConst[t 0!t!t 0] 2 [[t ']](I) ! [[t!t ']](I)IeFix[(t!t 0!t 0)!(t!t 0)] 2 [[t!t '!t ']](I) ! [[t!t ']](I)IeIf[(t!Bool)!(t!t 0)!(t!t 0)!(t!t 0)] 2 [[t!Bool]](I) ! [[t!t ']](I)! [[t!t ']](I) ! [[t!t ']](I)Here we must assume that the types t indexing each I e [t ] are suchthat [[� � �]](I) is only applied to well-formed types, i.e. types t ' suchthat d̀t t ', and this is equivalent to assuming that d̀t t .To simplify the notation we shall henceforth feel free to omit the type andtype environments as subscripts and thus write [[e]](I) for [[e]]tenv(I) andI e for Ie [t ]. (In a sense we regard the combinators as having a kind ofpolymorphic interpretation.)Proposition 3.2.9. The equations for [[e]](I) de�ne a value when e is awell-formed expression in TML[dt,dt] and I is a domain or lattice inter-pretation. 2Proof: The assumptions on I ensure that [[t ]](I) is a well-de�ned do-main whenever d̀t t . We shall show by structural induction on an expres-sion e thatif tenv d̀t;dt e : t where dom(tenv) = fx1,...,xng, tenv(xi) = t i andd̀t t ithen [[e]]tenv(I) 2 [[t1]](I)�...�[[tn]](I)![[t ]](I) and this domain doesexist.The proof makes use of Fact 3.1.4 to ensure that the type t of e is unique sothat also the types indexing each I e are unique. Furthermore it makes useof Fact 3.2.7 to ensure that the type t of e is well-formed so that, given the



59inference rules of Tables 1 and 2, we only request a Ie [t ] in a domain thatmust exist by Proposition 3.2.6. The structural induction is now mostlystraightforward and we shall omit the details. 23.2.3 Example interpretationsWe now present a total of �ve examples: a lazy standard semantics, detec-tion of signs (in an independent attribute formulation), strictness, liveness,and detection of signs (in a relational formulation). The main point ofthese examples is to demonstrate the generality obtained by varying theinterpretation of the underlined types and type constructors. The last twoexamples are somewhat technical and the details are not vital for the re-mainder of the development.Example 3.2.10. (Lazy Standard Semantics) In this example we de�nethe standard semantics of the metalanguage. This amounts to specifying adomain interpretation S and for types we have:� the property S tP equals `is a domain',� S ti = Ai (the a priori chosen domains for the types Ai),� S t� = � (cartesian product) and S t! = ! (continuous functionspace).In other words we do not distinguish between underlined and non-underlinedtypes and constructors and this should not be surprising in a standard se-mantics. (We may note from this example that well-formedness of a typet is a su�cient condition for [[t ]](S) to be de�ned but it is not necessaryas [[t ]](S) is in fact de�ned as a domain for all types t .) If we wanted aneager standard semantics instead we might take S t� to be a so-called smashproduct and S t! to be strict function space.Turning to the expression part we have:S ei[t ] is some a priori �xed element of [[t ]](S)e.g. S etrue = true etc.S eTuple = �v1. �v2. �w . (v1(w),v2(w))S eFst = �v . �w . d1 where (d1,d2)=v(w)S eSnd = �v . �w . d2 where (d1,d2)=v(w)S eCurry = �v . �w1. �w2. v(w1,w2)S eApply = �v1. �v2. �w . v1(w)(v2(w))S eId = �w .wS e2 = �v1. �v2. �w . v1(v2(w))S eConst = �v . �w . v



60 S eFix = �v . �w . FIX(v(w))S eIf = �v1. �v2. �v3. �w . 8<: v2(w) if v1(w)=truev3(w) if v1(w)=false? if v1(w)=?This de�nition is in agreement with the informal explanation of the com-binators that we gave in Subsection 3.1. 2Example 3.2.11. (Detection of Signs | I) In this example we do needthe distinction between underlined and non-underlined types in order tobe able to formalize the abstract interpretation for detecting the signs ofthe integers. We specify a lattice interpretation I and for types we have:� the property I tP equals `is an algebraic lattice',� the lattices I ti include >� 0 � 0{ 0 +?�� ����@@ @@@@!!!!!aaaaaI tint = ?tt �>@@�� ��@@I tbool =� I t� = � (cartesian product) and I t! =! (continuous function space).Turning to the expressions we have:I ei[t ] is some a priori �xed element of [[t ]](I)e.g. I etrue = tt, I e1 = + etc.I eTuple = �v1. �v2. �w . (v1(w),v2(w))I eFst = �v . �w . d1 where (d1,d2)=v(w)I eSnd = �v . �w . d2 where (d1,d2)=v(w)I eCurry = �v . �w1. �w2. v(w1,w2)I eApply = �v1. �v2. �w . v1(w)(v2(w))I eId = �w .wI e2 = �v1. �v2. �w . v1(v2(w))I eConst = �v . �w . vI eFix = �v . �w . FIX(v(w))I eIf = �v1. �v2. �v3. �w . 8>><>>: v2(w) if v1(w)=ttv3(w) if v1(w)=�? if v1(w)=?v2(w)tv3(w) if v1(w)=>



61To see that IeIf[(t!Bool)!(t!t 0)!(t!t 0)!(t!t 0)] is well-de�ned we shall as-sume that the type in the subscript is well-formed. Then we have lt(t ') sothat by (the proof of) Proposition 3.2.6 the domain [[t ']](I) is a completelattice. Hence the least upper bound exists and as the binary least up-per bound operation is continuous, I eIf will be an element of the required(continuous) function space. 2Example 3.2.12. (Strictness) Simplifying the lattices of the previous ex-ample we arrive at a strictness analysis. Since this analysis is by far themost cited analysis for lazy functional languages we briey present its spec-i�cation. As in the previous example we specify a lattice interpretation Tand for types we have:� the property T tP equals `is an algebraic lattice',� the lattices T ti areT ti =��01� T t� = � (cartesian product) and T t! = ! (continuous functionspace).Turning to the expressions we have:T ei[t ] is some a priori �xed element of [[t ]](T)e.g. T etrue = 1, T e1 = 1 etc.T eTuple = �v1. �v2. �w . (v1(w),v2(w))T eFst = �v . �w . d1 where (d1,d2)=v(w)T eSnd = �v . �w . d2 where (d1,d2)=v(w)T eCurry = �v . �w1. �w2. v(w1,w2)T eApply = �v1. �v2. �w . v1(w)(v2(w))T eId = �w .wT e2 = �v1. �v2. �w . v1(v2(w))T eConst = �v . �w . vT eFix = �v . �w . FIX(v(w))T eIf = �v1. �v2. �v3. �w . � ? if v1(w)=0v2(w)tv3(w) if v1(w)=1Well-de�nedness of this speci�cation follows much as in the previous ex-ample. 2Example 3.2.13. (Liveness) In the previous two examples we used theability to interpret the Ai in a di�erent manner than in the standard seman-tics. In this example we shall additionally need the ability to interpret the



62type constructor ! in a di�erent manner than in the standard semantics.The reason for this is that liveness analysis is a backward analysis whichmeans that the direction of the analysis is opposite to the ow of control.We specify the analysis by de�ning a lattice interpretation L and for typeswe have:� the property L tP equals `is an algebraic lattice',� the lattices L ti areL ti = ��deadlive� the operators are L t� = � (cartesian product) and L t! =  , i.e.L t!(D ,E ) = D E = E!D which is the domain of continuous func-tions from E to D .Intuitively, dead means \will never be used later in any computation", whilelive means \may be used later in some computation". It might be arguedthat the analysis should be called a \deadness" analysis because it is theproperty dead that can be trusted; however, it is common terminology touse the term \liveness" analysis. We should also point out that a backwardsliveness analysis for owchart programs has been seen before (in section2.5.3).Note that the backward nature of the analysis is recorded by inter-preting ! as  just as the forward nature of an analysis is recorded byinterpreting ! as ! (as in the previous example).Turning to expressions we shall impose additional constraints on thetypes that these are allowed to have. The motivation is that liveness anal-yses usually are developed for owchart languages only and here we do notwish to give a more encompassing de�nition. Doing so is indeed a hardresearch problem as it seems to involve mixing forward and backward com-ponents into one analysis; hence interpreting ! as  is likely to be toosimple-minded in the general case [Hughes, 1988,Ammann, 1994].De�nition The predicates sr and sc are de�ned by3Ai Ai t1�t2 t1�t2 t1!t2 t1!t2sr false true false sr1^sr2 false falsesc true false sc1^sc2 false sc1^sc2 sr1^sr23These acronyms relate to previous papers by one of the authors and sr stands for`run-time types in TMLs' whereas sc stands for `compile-time types in TMLs'.



63The intention with sr(t) is that t is an all-underlined product of base typesand the intention with sc(t) is that t only contains underlined constructs ifthese constructs are parts of an all-underlined type with just one functionspace constructor in it. Clearly sr(t) implies lt(t) and hence dt(t), andsc(t) implies dt(t). We may thus restrict our attention to types thatsatisfy the predicate sc. For expressions this means that we do not needto interpret Curry (as (t '�t"!t) ! (t '!t"!t) no longer is well-formed),Apply (as (t!t '!t") ! (t!t ') ! (t!t") no longer is well-formed), Fix(as (t!t '!t ') ! (t!t ') no longer is well-formed) or Const (as t '!t!t 'no longer is well-formed). The expression part Le of an interpretation forTML[sc,sc] may thus be speci�ed by:L ei[t ] is some a priori �xed element of [[t ]](L)e.g. L e= = �w . � (>,>) if w = live(?,?) if w = deadL eTuple = �v1. �v2. �(w1,w2). v1(w1)tv2(w2)L eFst = �v . �w . v(w ,?)L eSnd = �v . �w . v(?,w)L eId = �w .wL e2 = �v1. �v2. �w . v2(v1(w))L eIf = �v1. �v2. �v3. �w . v1(live)tv2(w)tv3(w)Here we should note, in particular, that L e2 uses the reverse order of com-position wrt. S e2 and I e2.| This ends Example 3.2.13. 2Example 3.2.14. (Detection of Signs | II) In our �nal example we shallconsider an analysis where the type constructor � should be interpretedin a di�erent manner than in the standard semantics. The analysis weconsider is once more the detection of signs analysis but this time usinga relational method where the interdependence between components ina pair is taken into account. The formalisation amounts to de�ning alattice interpretation R but a complete treatment requires a fair amount ofmachinery so we refer to [Nielson, 1984,Nielson, 1985b,Nielson, 1989] andonly sketch the construction. For types we have:� the property R tP equals `is an algebraic lattice',� the lattices R ti include



64 >� 0 � 0{ 0 +?�� ����@@ @@@@!!!!!aaaaaR tint = ?tt �>@@�� ��@@R tbool =� R t� = 
 (tensor product) and R t! =! (continuous function space).Note here that the relational nature of the analysis is recorded by interpret-ing � as a so-called tensor product, 
, just as the independent attributenature of an analysis is recorded (in Example 3.2.11) by interpreting � asa cartesian product, �. We now need to de�ne and motivate the tensorproduct 
.De�nition A tensor product of two algebraic lattices L1 and L2 is analgebraic lattice L1
L2 and a separately binary additive4 and continuousfunction cross : L1�L2 ! L1
L2 that has the following universal property:Whenever f : L1�L2 ! L is a separately binary additive and continousfunction between algebraic lattices then there exists precisely one continu-ous and binary additive function f � : L1
L2 ! L (called the extension off ) such thatL1
L2L1�L2 L?crossXXXXzf����:f �commutes, i.e. such that f � � cross = f .Proposition A tensor product always exists (and it is unique to withinisomorphism).Proof: See [Bandelt, 1980] (or [Nielson, 1984] for an elementary proof). Itis important for this result that some lattice structure is assumed as thetensor product does not exist for arbitrary domains. 2Having been assured of the existence of the tensor product the next task isto motivate why it is relevant. We do so by calculating the tensor productin a special case and by showing that the tensor product has the ability to4A function f : L1�L2 ! L is separately binary additive if �l1.f (l1,l 02) and�l2.f (l 01 ,l2) are binary additive for all l 012L1 and l 022L2.



65express the interdependence between components in a pair. For this let Sbe a set and S? the domain with elements S[f?g and the partial order vgiven by s1vs2 i� s1=s2 or s1=?. For a domain D in which all elementsare compact, as holds for S? and S?�S?, the lower powerdomain P l(D)may be de�ned as( fY�D j ?2Y ^ 8d2D : 8y2Y : dvy ) d2Y g, �)This is an algebraic lattice and P l(S?) is isomorphic to the powerset P(S ).One can verify that setting P l(S?)
P l(S?) = P l(S?�S?) and cross =�(Y 1,Y 2).Y 1�Y 2 satis�es the de�nition of a tensor product and that theextension of a function f is given byf � = �Y . Ff f (fd1jd1vy1g, fd2jd2vy2g) j (y1,y2)2Y gThis shows that in the particular case of a tensor product of powerdomains,the tensor product has the ability to express the interdependence betweencomponents in a pair.Remark Another kind of motivation amounts to explaining the role ofbinary additive functions. In general an algebraic lattice imposes certainlimitations upon the combinations of properties that can be expressed, forexample that one cannot express the property `l1 and l2 but not l '. (In thelattice R tint for the detection of signs one may take l1={, l=0 and l2=+.)The binary additive functions are those functions that somehow respectthese limitations. The constraining factor in the de�nition of L1
L2 thenis that when considering each component (as is evidenced by the demandson f ) one should respect the limitations inherent in the Li. This meansthat e.g. cross(+,{)tcross({,{) must also describe cross(0,{).We have to refer to [Nielson, 1984,Nielson, 1985b] for a further discus-sion of the role of tensor products. For completeness we shall also �nish bysketching the expression part of the lattice interpretation R:R ei[t ] is some a priori �xed element of [[t ]](R)e.g. R etrue = tt, R e1 = + etc.R eTuple = �v1. �v2. �w . cross(v1(w),v2(w))R eFst = �v . �w . d1 where (d1,d2) = id�(v(w))R eSnd = �v . �w . d2 where (d1,d2) = id�(v(w))R eCurry = �v . �w1. �w2. v(cross(w1,w2))R eApply = �v1. �v2. �w . v1(w)(v2(w))R eId = �w .wR e2 = �v1. �v2. �w . v1(v2(w))R eConst = �v . �w . v



66 R eFix = �v . �w . FIX(v(w))R eIf = �v1. �v2. �v3. �w . 8>><>>: v2(w) if v1(w)=ttv3(w) if v1(w)=�? if v1(w)=?v2(w)tv3(w) if v1(w)=>However, we should point out that with respect to the treatment given in[Nielson, 1984,Nielson, 1989] the equations for Tuple and If are correctbut too imprecise. To improve this we would need to break an argumentinto its atoms (these are the elements immediately above ?) and processthese separately.| This ends Example 3.2.14. 23.2.4 SummaryTo summarise, we have seen that for the purposes of abstract interpreta-tion we need the ability to interpret underlined base types in di�erent waysin order to describe the properties used in the di�erent analyses. Further-more, we have seen that the well-known distinction between forward andbackward analyses may be formalized by the way ! is interpreted (!) andthat the well-known distinction between independent attribute and rela-tional methods may be formalized by the way � is interpreted (!). Thisgives credit to the claim that a two-level metalanguage is a natural settingin which to develop a theory of abstract interpretation.3.3 Correctness of AnalysesTo have faith in an analysis one must be able to prove that the propertiesresulting from the analysis are correct, e.g. with respect to the values thatthe standard semantics operates on. First of all this necessitates a frame-work in which one can formulate the desired correctness relations. Secondlyit is desirable that the correctness follows for all terms in the metalanguage(hence all programs considered in Figure 1) once the correctness of the ba-sic expressions and combinators has been established. (In the terminologyof Subsection 2.8 this amounts to showing that local correctness is a su�-cient condition for global correctness.) Then one can consider the analysesone by one and complete the de�nition of the correctness relations and usethis to prove the correctness of the basic expressions and combinators.To formulate the correctness relations we shall adopt the frameworkof logical relations [Plotkin, 1980] (essentially called relational functors in[Reynolds, 1974]). For this we shall assume the existence of two domainor lattice interpretations I and J and the task is to de�ne an admissiblerelation R[[t ]] between [[t ]](I) and [[t ]](J ), i.e.R[[t ]] : [[t ]](I) � [[t ]](J ) ! ftrue,falseg



67in such a way that R[[t ]] formalizes our intuitions about correctness. Weshall feel free to write d R[[t ]] e as well as R[[t ]](d ,e). In the interest ofreadability we prefer the notation R[[t ]] for [[t ]](R) but regardless of this Rshould be considered a parameter to [[t ]](� � �). The de�nition of R[[t ]] is byinduction on the structure of t :R[[Ai]](d ,e) � d=eR[[t1�t2]]((d1,d2),(e1,e2)) � R[[t1]](d1,e1) ^ R[[t2]](d2,e2)R[[t1!t2]](f ,g) � 8d ,e: R[[t1]](d ,e) ) R[[t2]](f (d),g(e))R[[Ai]] � RiR[[t1�t2]] � R�(R[[t1]],R[[t2]])R[[t1!t2]](f ,g) � R!(R[[t1]],R[[t2]])The demands on R, i.e. (Ri)i, R� and R!, are made clear in:De�nition 3.3.1. A correctness correspondence (or just correspondence)R between domain or lattice interpretations I and J is a speci�cation of� admissible relations Ri : I ti � J ti ! ftrue,falseg,� operations R� and R! upon admissible relations such thatR�(R1,R2) : I t�(D1,D2) � J t�(E1,E2) ! ftrue,falsegR!(R1,R2) : I t!(D1,D2) � J t!(E1,E2) ! ftrue,falsegare admissible relations whenever Ri:D i�E i!ftrue,falseg are admis-sible relations, D1 and D2 are domains that satisfy the property I tPand E1 and E2 are domains that satisfy the property J tP.Proposition 3.3.2. The equations for R[[t ]] de�ne an admissible relationwhen t is a well-formed type in TML[dt,dt] and R is a correctness corre-spondence as above. 2Proof:We must show by structural induction on t that R[[t ]] is an admissi-ble relation between [[t ]](I) and [[t ]](J ) and that these domains exist. This isa straightforward structural induction and we omit the details. (Note thatthe only reason for demanding t to be a well-formed type in TML[dt,dt],i.e. d̀t t , is for [[t ]](I) and [[t ]](J ) to be guaranteed to exist). 2The correctness of the basic expressions and combinators amounts toshowing that the appropriate correctness relations hold between their in-terpretations as given by I and J . We shall write R(I,J ), or I R J , forthis and the formal de�nition is:whenever  is a basic expression or combinator and the follow-ing hold



68 I e 2 [[t1]](I) ! � � � [[tn]](I) ! [[t ]](I)J e 2 [[t1]](J ) ! � � � [[tn]](J ) ! [[t ]](J )for well-formed types t1, ..., tn and t in TML[dt,dt], then wehaveR[[t1]](d1,e1) ^ � � � ^ R[[tn]](dn,en)) R[[t ]]( I e (d1)� � �(dn), J e (e1)� � �(en))A shorter statement of the desired relation between I e and J e is thatR[[t1!� � �tn!t ]](I e , J e ) must hold. This exploits the fact thatt1!� � �tn!t is well-formed (i.e. satis�es dt) if and only if all of t1, ..., tnand t are and we may thus regard I e as an element of [[t1!� � �tn!t ]](I)and similarly for J e .It now follows that the correctness of an analysis amounts to the cor-rectness of the basic expressions and combinators:Proposition 3.3.3. To show the correctness R([[e]](I),[[e]](J )) of a closedexpression e in TML[dt,dt] it su�ces to prove R(I,J ). 2Proof: Let R be a correctness correspondence between the domain orlattice interpretations I and J and such that I R J holds. We then proveby structural induction on a well-formed expression e thatif tenv d̀t;dt e : t with dom(tenv)=fx1,� � �,xng, tenv(xi)=t iand d̀t t ithenR[[t1]](d1,e1) ^ � � � ^ R[[tn]](dn,en))R[[t ]]( [[e]](I)(d1,� � �,dn),[[e]](J )(e1,� � �,en))The structural induction is mostly straightforward. In the case where e =fix e0 we use the induction principle of De�nition 3.2.3. 2Example 3.3.4. We shall now use the above development to show thecorrectness of the detection of signs analysis of Example 3.2.11 with respectto the lazy standard semantics of Example 3.2.10. The �rst task is to de�nea correctness correspondence cor between the domain interpretation S andthe lattice interpretation I. We have� the admissible relations cori includecorint(d ,p) � p w 8>><>>: { if d<0 ^ d 6=?0 if d=0+ if d>0 ^ d 6=?? otherwise



69corbool(d ,p) � p w 8<: tt if d=true� if d=false? otherwiseso that e.g. corint(7,:{) and corbool(true,>),� the operations upon admissible relations arecor�(R1,R2) ((d1,d2),(p1,p2)) � R1(d1,p1) ^ R2(d2,p2)cor!(R1,R2) (f ,h) � 8d ,p: R1(d ,p) ) R2(f (d),h(p))(much as for [[� � ��� � �]](R) and [[� � �!� � �]](R) above),and it is straightforward to verify that this does specify a correctness cor-respondence.The next task is to show cor(S,I) so that Proposition 3.3.3 can beinvoked. For the basic expressions fi[t ] we must showcor[[t ]](S ei ,I ei )Little can be said here as we have not mentioned many f i[t ] in Examples3.2.10 and 3.2.11 but we may note thatcor[[Bool]](true,tt)cor[[Int]](1,+)both hold. For the combinators Tuple, Fst and Snd related to productit is straightforward to verify the required relations as the de�nition ofthese combinators is `the same' in S and I. A similar remark holds for thecombinators Curry, Apply, Id, 2 and Const related to function space. Forthe combinator Fix we may assumeR(ws1,wi1) ^ R'(ws2,wi2) ) R'(vs(ws1)(ws2),vi(wi1)(wi2))R'(ws,wi)and must showR'(FIX(vs(ws)),FIX(vi(wi)))where R is cor[[t ]] and R' is cor[[t ']] for types t and t ' that both satisfy thepredicate lt. As in the proof of Proposition 3.3.3 this follows using theinduction principle of De�nition 3.2.3. Finally for the combinator If wemay assumeR(ws,wi) ) vi1(wi) w 8<: tt if vs1(ws)=true� if vs1(ws)=false? otherwiseR(ws,wi) ) R'(vs2(ws),vi2(wi))R(ws,wi) ) R'(vs3(ws),vi3(wi))R(ws,wi)



70and must showR'(8<: vs2(ws) if vs1(ws)=truevs3(ws) if vs1(ws)=false? otherwise 9=; ,8>><>>: vi2(wi) if vi1(wi)=ttvi3(wi) if vi1(wi)=�vi2(wi)tvi3(wi) if vi1(wi)=>? otherwise 9>>=>>;)where again R is cor[[t ]] and R' is cor[[t ']] for types t and t ' that both sat-isfy the predicate lt. The proof amounts to considering each of the casesvs1(ws)=true, vs1(ws)=false and vs1(ws)=? separately and will need:Fact If t satis�es lt then cor[[t ]](ws,wi) ^ wivwi ' implies cor[[t ]](ws,wi ').The proof of this fact is by structural induction on t . The case t = Ai canonly be conducted if we tacitly assume that Ai is one of Abool or Aint. 2For reasons of space we shall not prove the correctness of the remaininganalyses de�ned in Subsection 3.2. There are no profound di�culties inestablishing the correctness of the detection of signs analysis de�ned inExample 3.2.14. For the liveness analysis of Example 3.2.13 the notion of acorrectness correspondence is too weak but a variation of the developmentpresented here may be used to prove its correctness (see [Nielson, 1989]).We should point out that the complications in the proof of correctness ofthe liveness analysis are due to the fact that the properties in the livenessanalysis do not describe actual values but rather their subsequent use infuture computations. The terms �rst-order analyses (e.g. detection ofsigns) and second-order analyses (e.g. liveness) have been used for thisdistinction [Nielson, 1985a,Nielson, 1989].3.3.1 Safety: Comparing two analysesA special case of correctness is when one compares two analyses and showsthat the properties resulting from one analysis correctly describe the prop-erties resulting from the other. We shall use the term safety for this andwe shall see in the next subsection that from the safety of one analysis withrespect to a correct analysis one is often able to infer the correctness of theformer analysis.As an example we might consider two analyses that operate on the sameproperties but have di�erent ways of modelling the basic expressions andcombinators. We formalize this by considering two lattice interpretationsI and J with I tP=J tP, I ti =J ti , I t�=J t� and I t!=J t! (in short It=J t).When we want to be more speci�c we shall let I be the interpretation Ifor the detection of signs (Example 3.2.10). If we wish to express thatthe results of J are coarser than those of I, e.g. that [[e]](I)=+ whereas[[e]](J )=:{, we must de�ne a correctness correspondence and we shall usethe notation �. Given the motivation presented in Section 2 we take�i � v



71��(R1,R2) � v�!(R1,R2) � vbecause the idea was to use the partial order v to express the amount ofprecision among various properties5. In a more abstract way one mightsay that a correspondence R between two lattice interpretations I and Jis a safety correspondence when Ri�v, R�(v,v)�v and R!(v,v)�vwhenever It=J t. Clearly � is a safety correspondence.We shall claim that � is the proper relation to use for relating I and J .On an all-underlined type t (e.g. Int or Int!Int) the relation �[[t ]] clearlyequals v which is the relation that also Section 2 used. On a type t withoutany underlined symbols (e.g. Int or Int!Int) it is straightforward to see(as we show below) that �[[t ]] equals = and this is the correct relation touse given that we only perform abstract interpretation on underlined basetypes and constructors. In particular, �[[t ]] is more adequate than v in thiscase.However, there are types upon which �[[t ]] behaves in a strange way.As an example let t0=Bool!Bool and consider a basic expression f0[t0]such thatI e0 = J e0 = �d . � true if d=>? otherwiseThen I e0 �[[t0]] J e0 fails because we have?v> but not?=true. This meansthat �[[t0]] is not even reexive. Clearly we want �[[t ]] to be a partial orderand it is also natural to assume that it implies v because we have arguedfor the use of v to compare properties of an all-underlined type. We shallachieve this by restricting the types to be considered just as we did toensure that [[t ]](I) and [[t ]](J ) were domains.First we need a few de�nitions:De�nition 3.3.5. A suborder � on a domain D=(D ,v) is a partial orderthat satis�esd1�d2 ) d1vd2for all d1 and d2. 2For an arbitrary safety correspondence R, e.g. �, this motivates de�n-ing the predicatespt(t) to ensure that R[[t ]] amounts to =,it(t) to ensure that R[[t ]] amounts to v,5This need not be so in general (see [Mycroft, 1983]) but considerably simpli�es thetechnical development.



72 lpt(t) to ensure that R[[t ]] is a suborder.The predicate pt was called pure in [Nielson, 1988a,Nielson, 1989] becauseit will restrict the types to have no underlined symbols. The predicates itand lpt should be thought of as slightly more discriminating analogues oflt and dt. They were called impure and level-preserving , respectively, in[Nielson, 1988a,Nielson, 1989] but with one di�erence: TML[dt,dt] allowsmore well-formed types than does [Nielson, 1988a] or [Nielson, 1989].De�nition 3.3.6. The predicates pt (for pure type), it (for impure type)and lpt (for level-preserving type) are de�ned by:Ai Ai t1�t2 t1�t2 t1!t2 t1!t2pt true false pt1^pt2 false pt1^pt2 falseit false true it1^it2 it1^it2 lpt1^it2 it1^it2lpt true true lpt1^lpt2 it1^it2 (pt1^lpt2)_ it1^it2(lpt1^it2)Note that the di�erence between lt and dt versus it and lpt is due to thedi�erence between the de�nition of dt(t1!t2) and lpt(t1!t2).lt lptdtit pt@@ @@@@�� �� Fig. 2. Wellformedness-constraintsLemma 3.3.7. The formal de�nition of the predicates pt, it and lptsatisfy the intentions displayed above. 2Proof: For an arbitrary safety relation R, e.g. �, between latticeinterpretations I and J with It=J t we prove by induction on types t that� pt(t) ) lpt(t) ^ R[[t ]]�=,� it(t) ) lpt(t) ^ lt(t) ^ R[[t ]]�v,� lpt(t)) dt(t) ^ R[[t ]] is a suborder.



73The �rst result is a straightforward structural induction and we shall notgive any details. The second and third result must be proved jointly as itand lpt are mutually interdependent.The cases Ai and Ai are straightforward. In the case t=t1�t2 we �rstassume that it(t). Then it(t1) and it(t2) so that lpt(t1), lpt(t2), lt(t1),lt(t2), R[[t1]]�v and R[[t2]]�v. It follows that lpt(t), lt(t) and R[[t ]]�v.Next we assume that lpt(t). Then lpt(t1) and lpt(t2) so that dt(t1),dt(t2), R[[t1]] is a suborder and R[[t2]] is a suborder. It follows that dt(t)and that R[[t ]] is a suborder. In the case t=t1�t2 the assumptions it(t)and lpt(t) are equivalent so we assume that it(t) holds. Then it(t1) andit(t2) so that lt(t1), lt(t2), R[[t1]]�v and R[[t2]]�v. It follows that lpt(t),lt(t), dt(t) and R[[t ]]�v which is a suborder. The case t=t1!t2 is similar.In the �nal case t=t1!t2 we �rst assume it(t). Then lpt(t1) and it(t2)so that dt(t1), lt(t2), R[[t1]] is a suborder and R[[t2]]�v. It follows thatlpt(t), lt(t) and hence also dt(t). The relation R[[t ]] holds on (f ,g) whenR[[t1]](d ,e) ) f (d)vg(e)for all d and e. If fvg and R[[t1]](d ,e) we have dve and hence f (d)vg(e)so that R[[t ]](f ,g). If R[[t ]](f ,g) we have R[[t1]](d ,d) and hence f (d)vg(d)for all d and this amounts to fvg . Thus R[[t ]] equals the suborder v.Next we assume that lpt(t). There are two cases to consider but we havejust treated lpt(t1)^it(t2) so that we may assume pt(t1) and lpt(t2). Itfollows that lpt(t1), dt(t1), R[[t1]]�=, dt(t2) and R[[t2]] is a suborder.Hence dt(t) and the relation R[[t ]] holds on (f ,g) whenever8d : R[[t2]](f (d),g(d))and this is clearly a suborder. | This ends the proof of Lemma 3.3.7. 23.3.2 SummaryWe shall now restrict the types of the basic expressions and combinatorsso that they have level-preserving types. This amounts to consideringTML[lpt,dt] as there is no need also to require the types of variablesto be level-preserving. For the basic expressions fi[t ] this condition sim-ply amounts to requiring t to be level-preserving, i.e. satisfy the predicatelpt. For the combinators a general form of their types may be found inthe sideconditions in Tables 1 and 2. These general forms are expressed interms of subtypes t , t ', t", t0, t1 and t2 and the restriction to TML[lpt,dt]amounts to demanding that all these subtypes are impure, i.e. satisfy thepredicate it.The relationship between TML[lpt,dt] and TML[dt,dt] is clari�edby:



74Fact 3.3.8. If tenv l̀pt;dt e : t then tenv d̀t;dt e : t and hence d̀t t . 2Thus TML[lpt,dt] is a proper subset of TML[dt,dt] and Fact 3.1.4,Proposition 3.2.6, Proposition 3.2.9, Proposition 3.3.2 and Proposition3.3.3 apply to TML[lpt,dt] as well.Given Lemma 3.3.7 we then have that � is a partial order in the col-lection of interpretations for TML[lpt,dt] contrary to what is the casewhen one considers the collection of all interpretations for TML[dt,dt]. Inparticular we have I�I whenever I is an interpretation for TML[lpt,dt]and by Proposition 3.3.3 we then have ([[e]](I)) �[[t ]] ([[e]](I)) for all closedexpressions e of type t (even if t is not level-preserving).3.4 Induced AnalysesOne shortcoming of the development of the previous subsection is thata correct analysis may be so imprecise as to be practically useless. Anexample is an analysis where all basic expressions and combinators areinterpreted as the greatest element > (whenever they are used with a latticetype). The notion of correctness is topological in nature but we wouldideally like something that was a bit more metric in nature so that wecould express how imprecise a correct analysis is. Unfortunately no onehas been able to develop an adequate metric for these purposes.The alternative then is to compare various analyses. We shall take thepoint of view that the choice of the type part of an interpretation, i.e.the choice of what properties to use for underlined types etc., representsa deliberate choice as to the degree of precision that is desired6. Thusthe de�nition of � in the previous subsection allows us to compare variousanalyses provided that they use the same selection of properties. So if weare confronted with two analyses we may compare them and might be ableto say that one analysis is more imprecise than (i.e. �) another and sowe might prefer the other analysis. This is not a complete recipe as �is only a partial order and in general not a total order. Also even if wehave preferred some analysis there is no easy way to tell whether we coulddevelop an analysis that would be even more precise.This motivates the development in the present subsection where weshow that under certain circumstances there is a most precise analysis overa given selection of properties. Following [Cousot, 1979] we shall termthis the induced analysis. As we shall see in the next subsection theremay well be pragmatic reasons for adopting an analysis that is less precisethan the induced analysis. However, even if one does so we believe thatthe induced analysis serves an important role as a standard against whichanalyses may be compared: whenever the analysis of one's choice models6This is a more restricted point of view than is put forward in [Ste�en, 1987].



75a basic expression or combinator less precisely than the induced analysisdoes then one may judge the degree of imprecision and decide whether itis warranted for pragmatic reasons (e.g. termination, low time-complexity,easy to implement, etc.).For the technical development we shall assume that we have a domain orlattice interpretation I and a lattice interpretation J . (Actually, we onlyneed the type part of J and for the majority of the development we alsoonly need the type part of I.) Here one should think of I as the standardsemantics, e.g. the lazy standard semantics of Example 3.2.10, and oneshould think of J as some analysis, e.g. the detection of signs of Example3.2.11. However, the development also specialises to the case where Iis some analysis much as the notion of correctness correspondence in theprevious subsection specialised to the notion of safety correspondence.We then propose to de�ne a transformation function �[[t ]] from [[t ]](I)to [[t ]](J ), i.e.�[[t ]] : [[t ]](I) ! [[t ]](J ).Again one should regard � as a parameter to [[t ]](� � �) just as I and J are.The de�nition of �[[t ]] is by induction on the structure of t :�[[Ai]] � �d .d�[[t1�t2]] � �(d1,d2). (�[[t1]](d1),�[[t2]](d2))�[[t1!t2]] � �f . �p. Ff �[[t2]](f (d)) j �[[t1]](d1)vp g�[[Ai]] � � i�[[t1�t2]] � ��(�[[t1]],�[[t2]])�[[t1!t2]] � �!(�[[t1]],�[[t2]])Several points now need to be addressed. First we must clarify the claimswe shall make about the functions �[[t ]] and the demands that this enforceson the parameter �. Secondly we must �nd a way of constraining the typest such that the functions �[[t ]] exist and have the desired properties. Finally,we must show that the de�nition of �[[t ]] is as intended, and in particularthat it is correct. Closely related to this is the question of why the equationfor �[[t1!t2]] uses v andF rather than�[[� � �]] and its associated least upperbound operator W.3.4.1 ExistenceFirst we need some de�nitions and simple facts:De�nition 3.4.1. A representation transformation (or just a transforma-tion) f from a domain D=(D ,v) to a domain E=(E ,v) is a function thatis strict, continuous and compact preserving (see De�nition 3.2.2). 2



76Fact 3.4.2. Let (�,) be a pair of adjoined functions between algebraiclattices. Then � is strict and continuous but not necessarily compact pre-serving. If  is additionally continuous then � is compact preserving. 2Example 3.4.3. Recall the de�nition of S tint and I tint in Examples 3.2.10and 3.2.11. A representation transformation from S tint to I tint may be de-�ned by�d . 8>><>>: + if d>00 if d=0{ if d<0? if d=?(Note that all elements in S tint and I tint are compact.) 2The demands on the paramter � are clari�ed by:De�nition 3.4.4. A representation transformer � from a domain or lat-tice interpretation I to a lattice interpretation J is a speci�cation of:� representation transformations � i : I ti ! J ti ,� operations �� and �! such that��(f 1,f 2) : I t�(D1,D2) ! J t�(E1,E2)�!(f 1,f 2) : I t!(D1,D2) ! J t!(E1,E2)are representation transformations whenever f i : D i ! E i are rep-resentation transformations, D1 and D2 are domains that satisfy theproperty I tP and E1 and E2 are algebraic lattices.Example 3.4.5. A representation transformer b from the interpretation Sof Example 3.2.10 to the interpretation I of Example 3.2.11 may be de�nedby: � representation transformations bi : S ti ! I tiwith bint = �d . 8>><>>: + if d>00 if d=0{ if d<0? if d=?and bbool = �d . 8<: tt if d=true� if d=false? if d=?� operations b� and b! given byb�(f 1,f 2) = �(d1,d2). (f 1(d1),f 2(d2))b!(f 1,f 2) = �f . �p. Ff f 2(f (d)) j f 1(d)vp g



77Here we cannot be more speci�c about the bi as Example 3.2.11 only isspeci�c about I tint and I tbool but clearly the bint and bbool exhibited arerepresentation transformations. Assuming that f 1 and f 2 are representa-tion transformations the well-de�nedness of b�(f 1,f 2) is immediate. It isclearly strict and continuous and it preserves compact elements because thecompact elements in a cartesian product are the pairs of compact elementsin each component. Also b!(f 1,f 2) is well-de�ned because the least upperbound is taken in an algebraic lattice (called E2 in De�nition 3.4.4). Thatb!(f 1,f 2)(f ) is a continuous function and that b!(f 1,f 2) is a representa-tion transformation is slightly more involved. We omit the details as theyfollow rather easily from the case t=t1!t2 in the proof of the followingproposition. 2Well-de�nedness of �[[t ]] follows from the following fact and proposition:Fact 3.4.6. If t is a pure type and � a representation transformer then�[[t ]] is the representation transformation �d .d and [[t ]](I)=[[t ]](J ). 2Proposition 3.4.7. The equations for �[[t ]] de�ne a representation trans-formation when t is a level-preserving type and � is a representation trans-former. 2Proof: We show by structural induction on t that if lpt(t) then theabove equations de�ne a function�[[t ]] : [[t ]](I) ! [[t ]](J )and that this function is a representation transformation.The case t=Ai is straightforward. The case t=t1�t2 follows from theinduction hypothesis given that the compact elements in a cartesian prod-uct D '�D" are the pairs of compact elements of D ' and D" respectively,i.e. BD0�D00 = BD0�BD00 . The case t=Ai follows from the assumptionson �. In a similar way the cases t=t1�t2 and t=t1!t2 follow from theassumptions on � and the induction hypothesis.It remains to consider the case where t=t1!t2. There are two `alter-natives' in the de�nition of lpt(t1!t2) so we �rst consider the possibilitywhere t1 is pure and t2 is level-preserving. We shall writeY(f ,p) = f �[[t2]](f (d)) j �[[t1]](d)vp gand by Fact 3.4.6 we get Y(f ,p) = f �[[t2]](f (d)) j dvp g. By continuity off and �[[t2]] this set contains an upper bound for itself, namely �[[t2]](f (p)).Hence FY(f ,p) always exists and equals �[[t2]](f (d)). Next we consider thesituation where t1 is level-preserving and t2 is impure. Then t2 is also alattice type, i.e. lt(t2), so that [[t2]](J ) is an algebraic lattice. It is thenstraightforward that FY(f ,p) exists.



78 We have now shown that �[[t1!t2]](f )(p) always exists when t1!t2is level-preserving. To show that �[[t1!t2]](f ) exists we must show thatFY(f ,p) depends continuously on p, i.e. that �p. FY(f ,p) is continuous.First we writeZ(f ,p) = f �[[t2]](f (b)) j �[[t1]](b)vp ^ b is compact gThis set has FY(f ,p) as an upper bound so by consistent completenessFZ(f ,p) exists and we clearly have FZ(f ,p) v FY(f ,p). Actually,FZ(f ,p)=FY(f ,p) as any element d such that �[[t1]](d)vp may be written as d=Fnbn where each bn is compact. Then Z(f ,p) contains all �[[t2]](f (bn)) soFZ(f ,p) w Fn �[[t2]](f (bn)) = �[[t2]](f (d)) and hence FZ(f ,p) w FY(f ,p)as d was arbitrary.To show that �p. FZ(f ,p) is continuous let p = Fn pn. Clearly FnFZ(f ,pn) v FZ(f ,p) so it su�ces to show that FZ(f ,p) v Fn FZ(f ,pn).If b is compact and �[[t1]](b) v Fn pn then by the induction hypothesis�[[t1]](b) is compact so that �[[t1]](b) v pn for some n. Hence �[[t2]](f (b))v FZ(f ,pn) and this shows the result.Finally, we must show that �[[t1!t2]] is a representation transformation.So observe that �[[t1!t2]](?) = ? follows because �[[t2]] is strict. That�[[t1!t2]] is continuous follows because �[[t2]] is. It now remains to showthat �[[t1!t2]] preserves compact elements. For a domain D!E , wherealso D and E are domains, we shall write[d ,e] = �d '. � e if d 'wd? otherwiseThe function is continuous if d is compact and is a compact element ofD!E if additionally e is compact. The general form of a compact elementin D!E is[b1,e1]t� � �t[bn,en](for n�1) where all b i and e i are compact and we assume that fe jjj2Jd0ghas an upper bound (and by consistent completeness a least upper bound)whenever d '2D and Jd 0=fj jb jvd 'g. We shall say that [b1,e1]t� � �t[bn,en]is a complete listing if for all d '2D there exists j '2f1,� � �,ng such that b j0= Ffb jjj2Jd 0g and e j0 = Ffe jjj2Jd 0g. Clearly any compact element canbe represented by a complete listing (as the least upper bound of a �niteset of compact elements is compact).For a complete listing [b1,e1]t� � �t[bn,en] of a compact element in[[t1]](I)![[t2]](I) we now calculate�[[t1!t2]]([b1,e1]t� � �t[bn,en]) =�p. Ff �[[t2]](([b1,e1]t� � �t[bn,en])(b)) j �[[t1]](b)vp ^ b is com-pact g =



79(as the listing is complete and �[[t1]] is strict and continuous)�p. Fj Ff �[[t2]]([b j,ej](b)) j �[[t1]](b)vp ^ b is compact g =Fj �p. Ff �[[t2]](e j) j �[[t1]](b j)vp g =Fj [�[[t1]](b j),�[[t2]](e j)]By the induction hypothesis all �[[t1]](b j) and �[[t2]](e j) are compact. Toshow that the above element is compact we must show that f�[[t2]](e j)jj2Jd 0ghas an upper bound when d '2[[t1]](J ) and Jd 0 = fj j�[[t1]](b j)vd 'g. Fromthe de�nition of lpt(t1!t2) we know that it(t2) or pt(t1). If it(t2)then [[t2]](J ) is an algebraic lattice so that the set clearly has an upperbound. If pt(t1) then Jd 0=fj jb jvd 'g so there is j'2f1,� � �,ng such thate j0= Ffe jjj2Jd0g given the assumption about `complete listing'. It followsthat �[[t2]](e j0 ) is an upper bound of the set f�[[t2]](e j)jj2Jd0g. | Thisends the proof of Proposition 3.4.7. 2Remark 3.4.8. The function �[[t1!t2]] is intended as a transformationfrom the domain [[t1!t2]](I) to the domain [[t1!t2]](J ). As the readeracquainted with category theory [MacLane, 1971] will know any partiallyordered set may be regarded as a simple kind of category. In a similarway a continuous (or at least monotonic) transformation between partiallyordered sets may be regarded as a covariant functor. With this in mind wemay calculate�[[t1!t2]](f ) = �p. Ff (�[[t2]]�f )(d) j �[[t1]](d)vp g= Lan�[[t1]](�[[t2]]�f )where we use the formula in [MacLane, 1971, Theorem 4.1, page 236] forthe left Kan extension of �[[t2]]�f along �[[t1]]. 2Remark 3.4.9. The �rst component � of a pair (�,) of adjoined func-tions is often called a lower adjoint and the second component  an upperadjoint. In Fact 3.4.2 we said that any lower adjoint is a representationtransformation provided we restrict our attention to adjoined pairs of con-tinuouos functions. Assume now that the representation transformer �speci�es lower adjoints �i and that �� and �! preserve lower adjoints.Then also �[[t ]] will be a lower adjoint whenever t is level-preserving. Writ-ing [[t ]] for the corresponding upper adjoint we then have�[[t1!t2]](f ) = �[[t2]] � f � [[t1]](Here we have used the fact that an upper adjoint is uniquely determined byits lower adjoint, i.e. if (�,1) and (�,2) are adjoined pairs then 1=2.)2



803.4.2 Weak invertibilityTo express that �[[t ]] lives up to the intentions we �rst need to construct aweak notion of inverse.De�nition 3.4.10. A function f ' : D�E!D is a weak inverse of afunction f : D!E and a relation R : E�E!ftrue,falseg iff (d) v eimpliesd v f '(d ,e)f (f '(d ,e)) R efor all d2D and e2E . 2Here the intention is that f ' is the `inverse' of f , or to be more precise,that (f ,f ') behaves as much like an adjoined pair of functions as possible.However, D is not (necessarily) an algebraic lattice and so we cannot �nda `best' description of some e2E . Rather we must be content with �ndinga description f '(d ,e) that is `close' to some d2D of interest.We now propose the following de�nition of a weak inverse �'[[t ]] of �[[t ]]and �[[t ]]:�'[[Ai]] � �(d ,e). e�'[[t1�t2]] � �((d1,d2),(e1,e2)). (�'[[t1]](d1,e1), �'[[t2]](d2,e2))�'[[t1!t2]] � �(f ,g). �d . �'[[t2]](f (d),g(�[[t1]](d)))�'[[Ai]] � �(d ,e). d�'[[t1�t2]] � �(d ,e). d�'[[t1!t2]] � �(d ,e). dThe behaviour of �'[[t ]] is easy to characterise in a few special cases:Fact 3.4.11. If t is pure then �'[[t ]](d ,e) = e. 2Fact 3.4.12. If t is impure then �'[[t ]](d ,e) = d . 2In the general case we have:Lemma 3.4.13. The equations for �'[[t ]] de�ne a weak inverse of �[[t ]] and�[[t ]] whenever t is level-preserving. 2Proof: We prove the result by structural induction on t . The caset=Ai is straightforward as �[[Ai]] = �d .d and �[[Ai]]�=. The case t=t1�t2follows from the induction hypothesis. The case t=Ai is straightforward as�[[Ai]]�v. Also the cases t=t1�t2 and t=t1!t2 are straightforward as wehave �[[t ]]�v.It remains to consider the case t=t1!t2. So assume that�[[t1!t2]](f )vg , i.e.



81�[[t1]](d) v e ) �[[t2]](f (d)) v g(e) (*)for all d and e. To show f v �'[[t1!t2]](f ,g) we consider an argumentd and must showf (d) v �'[[t2]](f (d),g(�[[t1]](d)))and this follows from the induction hypothesis given the assumption (*).To show that�[[t1!t2]](�'[[t1!t2]](f ,g)) �[[t1!t2]] gwe lete �[[t1]] e'and must showFf �[[t2]](�'[[t1!t2]](f ,g)(d)) j �[[t1]](d)ve g �[[t2]] g(e')i.e. Ff �[[t2]](�'[[t2]](f (d),g(�[[t1]](d)))) j �[[t1]](d)ve g �[[t2]] g(e')We now consider the `alternatives' in the de�nition of lpt(t1!t2) one byone. If t1 is pure the inequality reduces to�[[t2]](�'[[t2]](f (e),g(e))) �[[t2]] g(e)as e=e'. The desired result then follows from the induction hypothesis. Ift2 is impure the inequality reduces to�[[t1]](d) v e ) �[[t2]](�'[[t2]](f (d),g(�[[t1]](d)))) v g(e')So assume that �[[t1]](d)ve. Using (*) and the induction hypothesis for t2we then get�[[t2]](�'[[t2]](f (d),g(�[[t1]](d)))) v g(�[[t1]](d))The result then follows as �[[t1]](d)veve'. | This ends the proof of Lemma3.4.13. 2The main point of the above lemma is to establish the following corollaryshowing that another de�nition of �[[t1!t2]] is possible. However, as isevidenced by [Nielson, 1988a] the present route presents fewer technicalcomplications.Corollary 3.4.14. �[[t1!t2]](f ) = �p. W f�[[t2]](f (d)) j �[[t1]](d) �[[t1]] pgwhenever t1!t2 is level-preserving and W denotes the least upper boundoperator wrt. �[[t2]]. 2Proof: We shall write



82 X(f ,p) = f �[[t2]](f (d)) j �[[t1]](d) �[[t1]] p gand recall the de�nition of Y(f ,p) given in the proof of Proposition 3.4.7.As X(f ,p) � Y(f ,p) and FY(f ,p) exists we get that FX(f ,p) exists andFX(f ,p) v FY(f ,p). Next let �[[t1]](d)vp and note that by settingd '=�'[[t1]](d ,p) we have dvd ' and �[[t1]](d ') �[[t1]] p. Hence�[[t2]](f (d)) v �[[t2]](f (d ')) v FX(f ,p)so that FY(f ,p) v FX(f ,p) and thus FY(f ,p) = FX(f ,p).Next we shall show that FX(f ,p) is the least upper bound of X(f ,p)wrt. �[[t2]]. For this we consider the `alternatives' in the de�nition oflpt(t1!t2) one by one. If t1 is pure the set X(f ,p) equals the singletonf�[[t2]](f (p))g and clearly �[[t2]](f (p)) is the least upper bound of this setwrt. the suborder �[[t2]]. If t2 is impure the suborder �[[t2]] amounts to vand then clearly FX(f ,p) is the least upper bound of X(f ,p) wrt. v. 23.4.3 OptimalityIt remains to demonstrate that the transformation �[[t ]] has the requiredproperties (whenever t is a level-preserving type). We express the correct-ness using a relation R[[t ]] as de�ned in the previous subsection and clearly� and R have to `cooperate':De�nition 3.4.15. An admissible relation R : D�E!ftrue,falseg coop-erates with a representation transformation f : D!E and an admissiblerelation R' : E�E!ftrue,falseg ifR(d ,p) � R'(f (d),p)A correctness correspondence R cooperates with a representation trans-former � if� Ri cooperates with �i and v, and� if Ri cooperates with f i and v (for i=1,2) thenR�(R1,R2) cooperates with ��(f 1,f 2) and v, andR!(R1,R2) cooperates with �!(f 1,f 2) and vExample 3.4.16. The correctness correspondence cor of Example 3.3.4cooperates with the representation transformer b of Example 3.4.5. 2Lemma 3.4.17. If R cooperates with � thenR[[t ]] cooperates with �[[t ]] and �[[t ]]



83for all level-preserving types t . 2Proof: We must prove R[[t ]](d ,p) � (�[[t ]](d) �[[t ]] p) by structural induc-tion on a level-preserving type t .The case t=Ai is straightforward as R[[t ]]�=, �[[t ]]=�d .d and �[[t ]]�=.The case t=t1�t2 follows from the induction hypothesis and the compo-nentwise de�nitions of R[[t1�t2]], �[[t1�t2]] and �[[t1�t2]]. The case t=Aiis immediate from the assumptions. The cases t=t1�t2 and t=t1!t2are straightforward given the assumptions, the induction hypothesis andLemma 3.3.7.It remains to consider the case t=t1!t2. We �rst assume thatR[[t1!t2]](f ,g) and by the induction hypothesis this amounts to�[[t1]](d) �[[t1]] e ) �[[t2]](f (d)) �[[t2]] g(e) (*)for all d and e. To show �[[t1!t2]](f ) �[[t1!t2]] g we assume that e �[[t1]]e' and must showW f �[[t2]](f (d)) j �[[t1]](d) �[[t1]] e g �[[t2]] g(e')where we have used Corollary 3.4.14. For this it su�ces to show that�[[t1]](d) �[[t1]] e ) �[[t2]](f (d)) �[[t2]] g(e')and this follows from (*) as g �[[t1!t2]] g implies g(e) �[[t2]] g(e'). Nextwe assume that �[[t1!t2]](f ) �[[t1!t2]] g , i.e. thate �[[t1]] e' ) W f �[[t2]](f (d)) j �[[t1]](d) �[[t1]] e g �[[t2]] g(e')holds for all e and e'. It follows that�[[t1]](d) �[[t1]] e ^ e �[[t1]] e' ) �[[t2]](f (d)) �[[t2]] g(e')and by choosing e'=e and using the induction hypothesis we haveR[[t1]](d ,e) ) R[[t2]](f (d),g(e))for all d and e. But this amounts to R[[t1!t2]](f ,g). 23.4.4 SummaryLet � : I!J , or � : It!J t to be precise, be a representation transformerand let �̂ be a correctness correspondence that cooperates with �. Anexample was given in Example 3.4.16 and we should stress that we do notclaim that �̂ is a function as it does not seem possible to de�ne �̂� and �̂!from �� and �! in general.If I is an interpretation for TML[lpt,dt] we may de�ne an interpreta-tion �(I) for TML[lpt,dt], called the induced analysis, as follows:



84 � (�(I))t = J t,� for each basic expression or combinator  used with type t :(�(I)) e = �[[t ]](I e )We can now be assured that� �(I) is correct, i.e. I �̂ �(I),� �(I) is optimal, i.e. I �̂ J ) �(I) � JIn both cases we use that I �̂ K amounts to �(I) � K given that �̂ coop-erates with � and that � is a partial order when we restrict our attentionto interpretations of TML[lpt,dt].3.5 Expected Forms of AnalysesEven though the induced analyses of the previous subsection are optimalthey are not necessarily in a form where they are practical or even com-putable. As an example consider composition 2 which is interpreted as S e2= �v1. �v2. �w . v1(v2(w)) in the lazy standard semantics. The inducedversion is�[[(t '!t")!(t!t ')!(t!t")]] (S e2) =�vi1. F f�[[(t!t ')!(t!t")]] (S e2(vs1)) j �[[t '!t"]](vs1)vvi1g =�vi1. �vi2. F f�[[t!t"]] (S e2(vs1)(vs2)) j �[[t '!t"]](vs1)vvi1 ^�[[t!t ']](vs2)vvi2g =�vi1. �vi2. F f�[[t!t"]] (vs1�vs2) j �[[t '!t"]](vs1)vvi1 ^ �[[t!t ']](vs2)vvi2gand this is not as easy to implement as one could have hoped for. In thespecial case where � speci�es lower adjoints as in Remark 3.4.9 we have aslightly nicer induced version (writing � for �):�[[(t '!t")!(t!t ')!(t!t")]] (S e2) =�vi1. �[[(t!t ')!(t!t")]] (S e2([[t '!t"]](vi1))) =�vi1. �vi2. �[[t!t"]] (S e2([[t '!t"]](vi1))( [[t!t ']](vi2)))If we assume that �! is as in Example 3.4.5, i.e.�!(f 1,f 2) = �f . �p. F f f 2(f (d)) j f 1(d)vp gthen it follows much as in Remark 3.4.9 that �[[t!t"]](f ) = �[[t"]]�f �[[t ]],[[t '!t"]](f ) = [[t"]]�f ��[[t ']] and [[t!t ']](f ) = [[t ']]�f ��[[t ]]. It followsthat



85�[[(t '!t")!(t!t ')!(t!t")]] (S e2) =�vi1. �vi2. �[[t"]] � ([[t"]]�vi1��[[t ']]) � ([[t ']]�vi2��[[t ]]) � [[t ]] =�vi1. �vi2. (�[[t"]]�[[t"]]) � vi1 � (�[[t ']]�[[t ']]) � vi2 � (�[[t ]]�[[t ]])but as �[[� � �]]�[[� � �]] in general will di�er from the identity also this is notas easy to implement as one could have hoped for.What we shall do instead is to use functional composition in all analy-ses. This may not be as precise as possible but will be easier to implementand, as we shall show below, will indeed be correct and thus will makeapplications easier. A similar treatment can be given for the other combi-nators and we shall consider a few examples in this subsection. Additionalexamples may be found in [Nielson, 1989,Nielson, 1986b].Example 3.5.1. For a lattice interpretation J ofTML[lpt,dt] we suggestmodelling the composition combinator 2 as functional composition, i.e.J e2 = �v1. �v2. �w . v1(v2(w))and we shall say that this is the expected form of 2. Actually the expectedform depends on whether we consider forward or backward analyses, i.e.whether! is interpreted as! or as , as is illustrated by Examples 3.2.11and 3.2.13 but in this subsection we shall only consider forward analyses.To demonstrate the correctness of this expected form let I be a domainor lattice interpretation with I e2 = �v1. �v2. �w . v1(v2(w)). Here I maybe thought of as the standard semantics or some other lattice interpretationthat uses the expected form for 2. We shall then show�[[(t '!t")!(t!t ')!(t!t")]](I e2)�[[(t '!t")!(t!t ')!(t!t")]]J e2where � : I ! J is a representation transformer. In analogy with theassumption that ! is interpreted as ! in both I and J it is natural toassume that �! is as in Example 3.4.5, i.e.�!(f 1,f 2) = �f . �p. F f f 2(f (d)) j f 1(d)vp gAs (t '!t")!(t!t ')!(t!t") is level-preserving it follows that t , t ' and t"are impure so that �[[t ]]�v, �[[t ']]�v and �[[t"]]�v. The desired resultthen amounts to assuming that�[[t ']](wi) v wj ) �[[t"]](vi1(wi)) v vj 1(wj )�[[t ]](wi) v wj ) �[[t ']](vi2(wi)) v vj 2(wj )�[[t ]](wi) v wjand showing that



86 �[[t"]](vi1(vi2(wi)) v vj 1(vj 2(wj ))and this is straightforward. 2Example 3.5.2. For a lattice interpretation J of TML[lpt,dt] we sug-gest that the expected form of Fix amounts to a �nite, say 27, number ofiterations starting with the `most imprecise' property >, i.e.J eFix = �v .�w . (v(w))27(>)(Recall that if Fix is used with type (t!t '!t ')!(t!t ') then t ' will be animpure type so that [[t ']](J ) is an algebraic lattice and thus >=F[[t ']](J )does exist.) This choice of expected form di�ers from the choice made inthe standard semantics of Example 3.2.10 (or the detection of signs analysisof Example 3.2.11) and is motivated by the desire to ensure that an analysisby abstract interpretation terminates. However, it means that we have togive seperate proofs for the correctness of this expected form with respectto the standard semantics and for the correctness of continuing to use thisexpected form.So let I be a domain or lattice interpretation with I eFix = �v . �w .FIX(v(w)). Let � : I ! J be a representation transformer with �! asin the previous example. We must then show�[[(t!t '!t ')!(t!t ')]](�v .�w .FIX(v(w)))�[[(t!t '!t ')!(t!t ')]](�v .�w .(v(w))27(>))where again t and t ' will be impure so that �[[t ]] and �[[t ']] both equal v.This amounts to assuming�[[t ]](wi1) v wj 1 ^ �[[t ']](wi2) v wj 2 )�[[t ']](vi(wi1)(wi2)) v vj (wj 1)(wj 2)�[[t ]](wi) v wjand showing�[[t ']](FIX(vi(wi))) v (vj (wj ))m(>)for m=27. We shall prove this by induction on m and the base case m=0 isimmediate. The induction step then follows from the induction hypothesisand the fact that (vi(wi))(FIX(vi(wi))) equals (FIX(vi(wi))).Next let K be a lattice interpretation that uses the expected form forFix and let � : J ! K be a representation transformer with �! as above.We must then show�[[(t!t '!t ')!(t!t ')]](�v .�w .(v(w))27(>))�[[(t!t '!t ')!(t!t ')]](�v .�w .(v(w))27(>))



87This amounts to assuming�[[t ]](wj 1) v wk1 ^ �[[t ']](wj 2) v wk2 )�[[t ']](vj (wj 1)(wj 2)) v vk(wk1)(wk2)�[[t ]](wj ) v wkand showing�[[t ']]((vj (wj ))m(>)) v (vk(wk))m(>)for m=27. This is once again by induction on m. 2Example 3.5.3. In TML[lpt,dt] the meaning of fix remains constant,i.e. fix is not interpreted by an interpretation but always amounts to theleast �xed point FIX. Consider now a version of TML where the meaningof fix is not constant and thus must be given by an interpretation. Whenfix is used with type (t!t)!t this means that we will have to restrict(t!t)!t to be level-preserving. It is straightforward to verify that thismeans that t must either be pure or impure. When t is pure it is naturalto let an interpreation J use the expected formJ e�x = �v . FIX(v)whereas when t is impure it is natural to let J use the expected formJ e�x = �v . v27(>).The correctness of this is shown in [Nielson, 1989]. 2Example 3.5.4. For a lattice interpretation J ofTML[lpt,dt] we suggestthat the expected form of If amounts to simply combining the e�ects ofthe true and else branches, i.e.J eIf = �v1. �v2. �v3. �w . (v2(w)) t (v3(w))This is slightly coarser than what we did in Examples 3.2.11 and 3.2.14 inthat v1 is not taken into account but this is in agreement with commonpractice in data ow analysis [Aho, Sethi and Ullman, 1986].To show the correctness of this let I be a domain interpretation alongthe lines of the lazy standard semantics, i.e.I tbool = AboolI eIf = �v1. �v2. �v3. �w . 8<: v2(w) if v1(w)=truev3(w) if v1(w)=false? if v1(w)=?



88(as well as I t!=! as is the case for all interpretations considered in thissubsection). Also let � : I ! J be a representation transformer with �!as in the previous example. We must then show�[[(t!Bool)!(t!t ')!(t!t ')!(t!t ')]] (I eIf )�[[(t!Bool)!(t!t ')!(t!t ')!(t!t ')]](J eIf )and this follows much as in Example 3.3.4 so we dispense with the details.Next let K be a lattice interpretation that also uses the expected formfor If. Then we must show�[[(t!Bool)!(t!t ')!(t!t ')!(t!t ')]] (�v1. �v2. �v3. �w . (v2(w))t (v3(w)))�[[(t!Bool)!(t!t ')!(t!t ')!(t!t ')]](�v1. �v2. �v3. �w . (v2(w)) t (v3(w)))and for this we shall need to assume that � speci�es lower adjoints as inRemark 3.4.9. Then �[[t ']] is (binary) additive and it is then straightforwardto show the desired result. 2Example 3.5.5. For a lattice interpretation J of TML[lpt,dt] the ex-pected forms of the combinators Tuple, Fst and Snd depend on how � isinterpreted. When � is the tensor product 
 one may suggest expectedforms based on the de�nitions given Example 3.2.14 but as we have notcovered the tensor product in any detail we shall not look further into thishere. We thus concentrate on the case where � is interpreted as cartesianproduct and here we suggestJ eTuple = �v1. �v2. �w . (v1(w),v2(w))J eFst = �v . �w . d1 where (d1,d2)=v(w)J eSnd = �v . �w . d2 where (d1,d2)=v(w)For correctness we shall assume that I is a domain or lattice interpretationthat uses `analogous de�nitions', either because it is the standard seman-tics, or because it is some lattice interpretation that also uses the expectedforms. Furthermore we shall assume that � : I ! J is a representa-tion transformer with �! as in the previous examples and with �� as inExample 3.4.5, i.e.��(f 1,f 2) = �(d1,d2). (f 1(d1),f 2(d2))The correctness is then expressed and proved using the pattern of theprevious examples and we omit the details. 2Example 3.5.6. For a lattice interpretation J of TML[lpt,dt] we shallsuggest the following expected forms for Curry and Apply:



89J eCurry = �v . �w1. �w2. v(w1,w2)J eApply = �v1. �v2. �w . v1(w)(v2(w))Here we assume that ! is interpreted as ! and that � is interpretedas cartesian product �. To show correctness we consider a domain orlattice interpretation I that uses `analogous de�nitions'. Concerning therepresentation transformer � : I ! J we shall assume that �! and �� areas in the previous example. The correctness is then expressed and provedusing the pattern of the previous examples and we omit the details. 2These examples have illustrated that the practical application of aframework for abstract interpretation may be facilitated by studying cer-tain expected forms for the combinators. In this way one obtains correctand implementable analyses than can be arranged always to terminatealthough at the expense of obtaining more imprecise results than thoseguaranteed by the induced analyses.3.6 Extensions and LimitationsIn this section we have aimed at demonstrating the main approach, themain de�nitions, the main theorems and the main proof techniques em-ployed in a framework for abstract interpretation. To do so we have useda rather small metalanguage based on the typed �-calculus and in thissubsection we conclude by discussing possible extensions and current limi-tations.The discussion will center around [Nielson, 1989]. The metalanguageTMLm considered there has sum types and recursive types in additionto the base types, product types and function types. However, the well-formedness conditions imposed on the two-level types in [Nielson, 1989]are somewhat more demanding than those imposed here. Let mc(t) de-note the condition that every underlined type constructor in t has argu-ments that are all-underlined and that any underlined construct occurs ina subtype of the form t '!t". Then the fragment of TMLm [Nielson, 1989]that only has base types, product types and function types correspondsto TML[lpt^mc,dt^mc]7 rather than the TML[lpt,dt] studied here. Asan example this means that a type like (Aint!Aint)�Abool is well-formed inTML[lpt,dt] but not in TML[lpt^mc,dt^mc].Concerning sum types one can perform a development close to that per-formed for product types. In a sense an analogue to the relational methodis obtained by modelling + as cartesian product whereas an analogue ofthe independent attribute method is obtained by interpreting + as a kindof sum (adapted to produce an algebraic lattice). For recursive types thereare various ways of solving the recursive type equations and one of these7One may verify that dt^mc is equivalent to mc.



90amounts to truncating a recursive structure at a �xed depth. Turning toexpressions an analysis like detection of signs is formulated and proved cor-rect for the whole metalanguage and also strictness analysis can be handled[Nielson, 1988a]. It is also shown that induced analyses exist in general andthis is used to give a characterisation of the role of the collecting semantics(accumulating standard semantics in the terminology of the Glossary). Fora second-order and backward analysis like live variables analysis a formu-lation much like the one given in Example 3.2.13 is proved correct. As wealready said in Subsection 3.1 this may be extended with several versionsof underlined type constructors without a profound change in the theory.Even forTML[lpt^mc,dt^mc] the development in [Nielson, 1989] goesa bit further than overviewed here. The presence of the constraint mcmakes it feasible to study interpreations, so-called frontier interpretations,where the interpretation of underlined types is not speci�ed in a structuralway. (In a sense one considers a version of the metalanguage without �and ! but with a greatly expanded index set I' over which the index iin Ai ranges.) This makes is feasible to give a componentwise de�nitionof the composition �'�� of frontier representation transformers. This isof particular interest when �' only speci�es representation transformationsthat are lower adjoints. Writing �'=� one can then show that (���)[[t ]]= �[[t ]]��[[t ]] for level-preserving types t and this may be regarded as thebasis for developing abstract interpretations in a stepwise manner. Alsothe transformation from � to �̂ becomes functional and one can show that^� � � = �̂ � �̂.From a practical point of view a main limitation is that we have notincorporated stickiness, i.e. we transform a property through a programbut we do not record the properties that reach a given program point.Such a development would be very desirable when one wants to exploit theresults of an analysis to enable program transformations that are not valid,i.e. meaning preserving, in general. This is illustrated in [Nielson, 1985a]that uses the results of analyses as speci�ed in [Nielson, 1982]. It appliesequally well to the ow analysis techniques used in practical compilers.However, it is not a minor task to incorporate this in the present frame-work. One reason is that the way it is done depends heavily on details ofthe evaluation order used in an implementation and these details are notspeci�ed by the standard semantics.4 Other Analyses, Language Properties, andLanguage TypesIn the �rst sections we described the roots of abstract interpretation andgave a motivated development of the Cousot approach. We then showed



91how their methods can be systematically extended to languages de�nedby denotational semantics, using logical relations to lift approximationsfrom base domains to product and function space domains. This extensionallows analysis of a wide range of programming languages, by abstractlyinterpreting the domains and operations appearing in the denotational se-mantics that de�ne them.In section 3 the denotational approach was generalized even more: werigorously developed an abstract interpretation framework based on rein-terpreting some of the primitive operations appearing in the metalanguageused to write denotational language de�nitions. This yields a frameworkthat is completely independent of any particular programming language.We now describe some other analysis methods, language properties, andlanguage types. As to methods, we will see that it is sometimes necessary toinstrument a semantics to make it better suited for analysis, i.e. to modifyit so it better models operational aspects relevant to program optimization.(A related approach, not yet as fully developed, is to derive analyses fromoperational semantics rather than denotational ones.)Abstract interpretation has its roots in applications to optimizing com-pilers for imperative languages, so it is not surprising that the early papersby Cousot on semantically based methods were about such programs. Alater wave of activity concerned e�cient implementation of high-level func-tional languages. Recent years have witnessed a rapid growth of researchin abstractly interpreting logic programming languages, Prolog in particu-lar. Analysis of both functional and logic programming languages will bediscussed briey.In contrast to the previous section we only give an overview of basicideas, motivations and a few examples, together with some references tothe relevant literature (large | a bibliography from 1986 may be found in[Nielson, 1986c]).4.1 Approaches to Abstract InterpretationWe now briey assess what we did in earlier sections, and give some al-ternative approaches to program analysis by abstract interpretation. Eachhas some advantages and disadvantages.4.1.1 The Cousot ApproachThis was the �rst truly semantics-based framework for abstract interpre-tation, and had many ideas that inuenced development of the �eld, forexample abstraction and concretization functions, natural mathematicalconditions on them, and the collecting (or static) semantics. The collect-ing semantics is \sticky", meaning that it works by binding informationdescribing the program's stores to program points. This provided a nat-



92ural link to the earlier and more informal ow analysis methods used inoptimizing compilers, based on constructing and then solving a set of \dataow equations" from the program.The abstraction and concretization functions are a pair of functions � :C ! Abs and  : Abs ! C between concrete values C and abstract valuesAbs. Both are required to be complete lattices, and �,  must satisfy somefairly stringent conditions ( must be a Galois insertion from Abs into C).An important new concept was that of a program interpretation, ab-stracting the program's stores. A partial order on interpretations was de-�ned, making it possible to prove rigorously that one interpretation is acorrect abstraction of another. This allows program analysis methods tobe proven \safe", i.e. to be correct approximations to actual program be-haviour.A limitation is that the Cousot approach only applies to ow chartprograms, and has been di�cult to extend to, for example, programs withprocedures (examples include [Jones, 1982] and [Sharir, 1981]). Anotherlimitation is in its data: as originally formulated, only stores were ab-stracted, and no systematic way to extend the framework to more generaldata types was given.4.1.2 Logical RelationsThis solved the problem of extending the Cousots' methods to more generaldata, using logical relations as de�ned in [Reynolds, 1974], [Plotkin, 1980].(In the discussion above on local conditions for safety, the logical relationwas �� on values.) Safe approximation of composite domains is de�nedby induction on the form of the domain de�nitions, leading to a naturalsu�cient condition for safety of an abstract interpretation that generalizesthe Cousots'. In this approach, concretization is not mentioned at all, nordoes it seem to be necessary.Example works using this approach are [Mycroft, 1986], [Jones, 1986]and [Nielson, 1984].4.1.3 A Method Based on a MetalanguageThe previous method applies only to one language de�nition at a time.Yet more generality can be obtained by abstractly interpreting the meta-language used to write the denotational semantics (typically the lambdacalculus). This is done in [Nielson, 1984] and subsequent papers, and issummarized in Section 3. A two-level lambda calculus is used to separatethose parts of a denotational semantics that are to be approximated fromthose to remain uninterpreted.The approach seems to be inherently \non-sticky", as it concerns ap-proximating intermediate values and lacks a means for talking about pro-gram points.



934.1.4 Operationally Based MethodsAmajor purpose of abstract interpretation is its application to e�cient pro-gram implementation, e.g. in highly optimizing compilers. For applicationpurposes, it thus seems more relevant to use analyses based on a semanticsof the language being analyzed, rather than on the metalanguage in whichthe semantics is written.But there is a y in the ointment: many implementation dependentproperties relevant to program optimization are simply not present in astandard denotational semantics. (This is not at all surprising, if we recallthat the original goal of denotational semantics [Stoy, 1977] was to assignthe right input-output behaviour to the programs without giving implemen-tation details.) Examples include:� the dependence analyses mentioned in the �rst section (for needednessanalysis, or partial evaluation)� sequential information about values, e.g. that a variable grows mono-tonically� order of parameter evaluation� time or space usage� available expressions.Interesting properties that can be extracted from a denotational seman-tics include strictness analysis and a (rather weak form of) termination[Burn, 1986], [Abramsky, 1990]. In the approach of [Abramsky, 1990] thisis done by focusing on logical relations and then developing \best inter-pretations" with respect to these: the notion of safety leads to a strictnessanalysis, whereas the dual notion of liveness leads to a termination of anal-ysis. This is all related to adjunctions between categories and the use ofthe formula for Kan extensions. However, while a compositional strictnessanalysis is indeed useful, a compositional termination analysis is not be-cause it has to \give up" for recursion; amending this would entail �ndinga well-founded order with respect to which the recursive calls do decreaseand this is beyond the development of [Abramsky, 1990].Operational Semantics It would seem obvious to try to extract theseproperties from an operational semantics [Plotkin, 1981], [Kahn, 1987]. How-ever this is easier said than done, for several reasons. One is that there isno clearly agreed standard for what is allowed to appear in an operationalsemantics, other than that it is usually given by a set of conditional logicalinference rules (for instance single-valuedness of an expression evaluationfunction must be proven explicitly). Another is that operational semantics



94do not by their nature give all desirable information, e.g. the resource usageor dependency information mentioned above.It must be said, though, that operational semantics has a large potentialas a basis for abstract interpretation, since it more faithfully models actualcomputational processes, as witnessed by the many unresolved problemsconcerning full abstraction in denotational semantics. Further, operationalsemantics is typically restricted to �rst-order values and so avoids some-times painful questions involving Scott domains. For instance, there arestill several open questions about how to approximate power domains forabstract interpretation of nondeterministic programs.4.1.5 Instrumented SemanticsMuch early work in static program analysis was based on approximatinginformal models of program execution - and was complex and sometimeswrong. On the other hand, the validity of certain program optimizationsand compilation techniques may depend strongly on execution models, e.g.some of the properties just mentioned.A denotationally based method to obtain information about programexecution is to instrument the standard semantics, extending it to includeadditional detail, perhaps operational. The approach can be described bythe following diagram, where the left arrow follows since the instrumentedsemantics extends the standard one, and the right one comes from the re-quirement of safe approximation. On the other hand all three are obtainedby various interpretations of the core semantics, so analysis is still done byabstractly executing source programs.instrumentedsemanticsstandardsemanticsv abstractsemanticsw���� @@@IThe collecting semantics illustrates one way to instrument, by collectingthe state sets at program points. This is practically signi�cant since manyinteresting program properties are functions of the sets of states that occurat the program's control points.More general instrumentation could record a trace or history of theentire computation, properties of the stores or environments, forward orbackward value dependencies, sequences of references to variables and muchmore. This could be used to collect forward dependence information,mono-tone value growth or perform step counting. The sketched approach puts



95the program ow analyses used in practice on �rmer semantical founda-tions.The absence of an arrow between the standard and the abstract seman-tics is disturbing at �rst, since correctness is no longer simply a matterof relating abstract values to the concrete ones occurring in computations.However this is inevitable, once the need to incorporate some level of op-erational detail has been admitted. One must be sure that the extensionof the standard semantics properly models the implementation techniqueson which optimization and compilation can be based; and this cannot bejusti�ed on semantical grounds alone.On the other hand, an approximate semantics can be proven correctwith respect to the instrumented version by exactly the methods of theprevious sections.4.2 Examples of Instrumented SemanticsThe possible range of instrumented semantics is enormous, and many vari-ants have already been invented for various optimization purposes. Herewe give just a sampling.4.2.1 Program Run TimesA program time analysis can be done by �rst extending the standard se-mantics to record running times, and then to approximate the resultinginstrumented semantics. Here we use the denotational framework of sec-tion 2.7. The earlier semantics is extended by accumulating, together withthe store, the time since execution began.The time interpretation This is Itime = (Val, Sto; assign, seq, cond,while), de�ned byDomainsVal = Number (the at cpo)Sto = (Var ! Val) � NumberFunction de�nitionsassign = �(x, me) . �(s,t) . (s[x 7! mes], t+1)seq = �(m1c, m2c) . m2c � m1ccond = �(me, m1c, m2c) . �(s,t).me s 6= 0 !m1c (s, t+1), m2c (s, t+1)while = �(me, mc) . �x �� . �(s,t).me s 6= 0 ! �(mc(s,t+1)), (s,t+1)This was used as the basis for the approximate time analyses reported in[Rosendahl, 1989].



964.2.2 Execution TracesA closely related idea is to instrument a semantics by including full com-putation histories. This gives in a sense all the raw material that canbe used to extract \history-dependent" information, and thus a basis fora very wide range of program analyses. This approach was used in P.Cousot's thesis work, and has since been seen in [Donzeau-Gouge, 1978]and [Nielson, 1982].In a functional setting, Sestoft has traced sequences of variable def-initions and uses (i.e. bindings and references) in order to see whichvariables can be \globalized", i.e. allowed to reside in global memory in-stead of the computation stack [Sestoft, 1989]. A similar idea is used in[Bloss and Hudak, 1985] for e�cient implementation of lazy functional lan-guages; they trace references to functions' formal parameters to see whichones can be computed using call by value, i.e. prior to function entry.4.2.3 Store PropertiesThe sequencing information just mentioned is quite clearly not presentin a standard semantics. Another information category very useful foroptimization has to do with store properties. A standard semantics for alanguage with stuctured values often treats them simply as trees. i.e. terms;but in reality memory sharing is used, so new terms are constructed usingpointers to old ones rather than a very expensive recopying. For e�cientimplementation, compile-time analyses must take sharing into account, forexample to minimize costs of memory allocation and gargage collection.(Careful proofs of equivalence between the two formulations for a termrewriting language can be seen in [Barendregt et al, 1989].)In [Jones, 1981a] a simple imperative language with Lisp-like primitivesis discussed. The semantics is described operationally, using �nite graphsfor the store. The following diagram describes a store with X = a :: (b ::c), Y = b :: c and Z = (b :: c) :: c, where Y is shared by X and Z.X Za b cY ��	��	��	 @@R@@R?This instrumented semantics is modelled in [Jones, 1981a] by approximat-ing such stores by \k-limited graphs", where k is a distance parameter. Theidea is that the graph structure is modelled exactly for nodes of distancek or less from a variable. All graph nodes farther than k from a variable



97name are modelled by nodes of the forms \?c", \?s" or \?", indicating thatthe omitted portion of the graph is (respectively) possibly cyclic; acyclicbut with possibly shared nodes; or acyclic and without sharing.Stransky has done further work in this direction [Stransky, 1990].4.3 Analysis of Functional LanguagesMotivations for analysing functional languages are partly to counter thetime costs involved in implementing powerful programming features such ashigher order functions, pattern matching, and lazy evaluation; and partly toreduce their sometimes large and not easily predictable space requirements.The problem of strictness analysis briey mentioned in Section 1.1 hasreeived much attention, key papers being [Burn, 1986], [Wadler, 1987], and[Hughes, 1990]. Polymorphism, which allows a function's type to be usedin several di�erent instantiations, creates new problems in abstract inter-pretation. Important papers include [Abramsky, 1986] and [Hughes, 1990].Approximating functions by functions on abstract values A nat-ural and common approach is to let an abstraction of a function be afunction on abstract values. One example is Section 3's general frameworkusing logical relations and based on the lambda calculus as a metalanguage.The �rst higher-order strictness analysis was the elegant method of[Burn, 1986]. In this work the domains of a function being analyzed forstrictness are modeled by abstract domains of exactly the same structure,but with f?;>g in place of the basis domains. Strictness informationis in essence obtained by computing with these abstracted higher-orderfunctions. However, a �xpoint iteration is needed, since the abstractionssacr�ce the program's determinacy (cf. the end of Section 1.1).While suitable for many problems concerning functional and other lan-guages, abstracting functions by functions is not always enough for theprogram analyses used in practice. An example where this simply does notgive enough information is constant propagation in a functional language.As before, the goal is to determine whether or not one of the arguments ofa program function is always called with the same value and, if so, to �ndthat value at analysis time.For this it is not enough to know that if a function f is called withargument x, it will return value x + 1. It is also essential to know whichvalues f can be called with during program execution, since a compilercan exploit knowledge about constant arguments to generate better targetcode.For another example, the higher-order strictness analysis in [Burn, 1986]has turned out to be unacceptably slow in practice, even for rather smallprograms. The reason is that the abstract interpretation involves comput-



98ing �xpoints of higher-order functions. Abstract domains for the functionbeing analyzed have the same structure as the originals, but with f?;>gfor all basis domains. This implies that analysis of even a small functionsuch as \fold right" can lead to a combinatorial explosion in the size ofthe abstract domains involved, requiring subtle techniques to be able tocompute the desired strictness information and avoid having to traversethe entire abstract value space.4.3.1 First Order Minimal Function GraphsTheminimal function graph of a program function was de�ned in [Jones, 1986]to be the smallest set of pairs (argument, function value) su�cicient tocarry out program execution on given input data. For example, considerthe function de�ned by the following program:f(X) = if X = 1 then1else ifXeven then f(X=2)elsef(3 �X + 1)Its minimal function graph for program input X = 3 isf(3; 1); (10; 1); (5;1); (16; 1); (8; 1); (4;1); (2; 1); (1; 1)gThe minimal function graph semantics maps a programmer-de�ned func-tion to something more detailed than the argument-to-result function tra-ditionally used in a standard semantics, and is a form of instrumentedsemantics. In [Jones, 1986] it is shown how the \constant propagation"analysis may be done by approximating this semantics, and the idea ofproving correctness by semihomomorphic mappings between various inter-pretations of a denotational semantics is explained.Earlier methods to approximate programs containing function calls weredescribed in [Cousot, 1977c], [Sharir, 1981] and [Jones, 1982].4.3.2 Higher Order FunctionsHigher order functions as well as �rst order ones may be approximatedusing logical relations. Examples include the analyses of Section 3.2.3 and[Burn, 1986], but such methods cannot closely describe the way functionsare used during execution.For example, if the value of exp in an application exp(exp0) is modelledby a function from abstract values to abstract values, this does not containenough information to see just which programmer-de�ned functions maybe called at run time; and such information may be essential for e�cientcompilation.



99This leads to more operational approaches to abstractly interpretingprograms containing higher order functions. An early step in this directionwas the rather complex [Jones, 1981b], and more recent and applications-motivated papers include [Sestoft, 1989,Shivers, 1991].Closure analysis This method from can be described as an operationallyoriented semantics-based method. Programs are assumed given as systemsof equations in the now popular named combinator style, with all functionscurried, and function de�nitions of the formfX1 . . .Xn = expression containingX1:::Xn and function namesIn this language, a value which is a function is obtained by an incompletefunction application. Operationally such a value is a so-called closure ofform < fv1 . . .vi > where v1 . . .vi are the values of f 's �rst i arguments.The paper [Sestoft, 1989] contains algorithms for a closure analysis,yielding for example information that in a particular application exp(exp0),the operator exp can evaluate to an f-closure with one evaluated argument,or to a g-closure with two evaluated arguments.Instead of approximating a function by a function, each programmer-de�ned function f is described by a global function description table con-taining descriptions of all arguments with which it can be called (just as inthe minimal function graphs discussed earlier).An approximation to a value which is a function is thus represented byan approximate closure of the form< fa1 . . .ai > where the ai approximatethe vi.But then how is vi itself approximated? (There seems to be a risk ofin�nite regression.) Supposing vi can be a closure < gw1 . . .wj >, we cansimply approximate it by the pair < g; j >. The reason this works is that,when needed, a more precise description of g's arguments can be obtainedfrom g's entry in the global function description table.Analysis starts with a single global function description table entry de-scribing the program's initial call, and abstract interpretation continuesuntil this table stabilizes, i.e. reaches its �xpoint. Termination is guaran-teed because there are only �nitely many possible closure descriptions.Closure analysis describes functions globally rather than locally, andso appears to be less precise in principle than approximating functionalvalues by mathematical functions. This is substantiated by complexityresults that show the analyses of [Burn, 1986] to have a worst-case lowerbound of exponential time, whereas closure analysis works in time boundedby a low-degree polynomial.The techniques developed in [Sestoft, 1989,Shivers, 1991] have shownthemselves useful for a variety of practical ow analysis problems involv-ing higher order functions, for example in e�cient implementation of lazy



100evaluation [Sestoft and Argo, 1989] and partial evaluation [Bondorf, 1991].Similar ideas are used in [Jones, 1993b] to provide an operationally orienteddenotational minimal function graph semantics for higher order programs.One application is to prove the safety of Sestoft's algorithms.4.3.3 Backwards Analysis and ContextsAs observed in Section 2.5.3, backwards analysis of an imperative programamounts to �nding the weakest precondition on stores su�cient to guar-antee that a certain postcondition will hold after command execution. Forfunctional programs, an analogous concept to postcondition is that of thecontext of a value, which describes the way the value will be used in theremainder of the computation.Clearly the usage of the result of a function will a�ect the usage ofits arguments to the function will be used. For an extreme example, ifthe result of function call f(e1; . . . ; en) is not needed, then the argumentse1; . . . ; en will not be needed either.The example is not absurd; consider the following abstract program,using pattern matching and a list notation where nil = [] is the empty list,: is the concatenation operator, [a1,. . . ,an] abbreviates a1 : . . . : an : nil.length ([]) = 0length(Z:Zs) = 1 + length(Zs)f(X) = if test(X) then [] else g(X) : f(X-1)When evaluating a call length(f(exp)), the values of g(. . .) are clearly ir-relevant to the length of f(exp), and g need not be called at all. (Thiscan be used to optimize code in a lazy language.) For another example, iff(n; x) = xn and a call f(e1; e2) appears in a context where its value is aneven number, one can conclude that e1 is positive and e2 is even.Context information thus propagates backwards through the program:from the context of an enclosing expression to the contexts of its subex-pressions, and from the context of a called function to the contexts of itsparameters in a call.Some uses of backwards functional analysesStrictness analysis identi�es arguments in a lazy or call by name lan-guage for which the more e�cient call by value evaluation may be usedwithout changing semantics. Both forwards and backwards algorithms ex-ist, but backwards methods seem to be faster. Early work on backwardsmethods includes [Hughes, 1985] and [Hughes, 1987], later simpli�ed forthe case of domain projections in [Wadler, 1987] and [Hughes, 1990].Storage reclamation. Methods are develped in [Jensen, 1991] to recog-nize when a memory cell has been used for the last time, so it may safelybe freed for later use. An application is substantially to reduce the number



101of garbage collections.Partial evaluation automatially transforms general programs into ver-sions specialized to partially known inputs. A specialized program is usu-ally faster that the source it was derived from, but often contains redundantdata structures or unused values (specializations of general-purpose data inthe source). Backwards analysis is used for \arity raising", which improvesprograms by removing unnecessary data and computation [Romanenko, 1990].Information ow While the analogy to the earlier backwards analysesis clear, the technical details are di�erent and rather more complicated. Abottleneck is that, while functions may have many arguments, they produceonly one result. Thus one cannot simply invert the \next" relation todescribe program running in the reverse direction.Given a function de�nitionfX1 . . .Xn = expression containingX1:::Xn and function namesone can associate a context transformer f i : Context! Context with eachargument Xi. The idea is that if f is called with a result context C, thenf i(C) will be the context for f 's ith argument.In e�ect this is an independent attribute formulation of f 's input-output relation, necessarily losing intervariable interactions. Unfortunatelyit means that backwards analyses cannot in principle exactly describe theprogram's computations, as is the case with forward analyses.What is a context, semantically? The intuition \the rest of the com-putation" can be expressed by the current continuation, since since a con-tinuation is a function taking the current expression value into the pro-gram's computational future. This approach was taken in [Hughes, 1987],but is technically rather complex since it entails that a context is an ab-straction of a set of continuations|tricky to handle since continuations arehigher-order functions.In the later [Wadler, 1987] and [Hughes, 1990], the concept of contextis restricted to properties given by domain projections, typically speci�ngwhich parts of a valuemight later be used. A language for �nite descriptionsof projections and their manipulation was developed, ow equations werederived from the program to be analyzed, and their least �xpoint solutiongives the desired information.Some example contexts that have shown themselves useful for the e�-cient implementation of lazy functional programs include:� ABSENT: the value is not needed for further computation



102� ID: the entire value may be needed� HEAD: the value is a pair, and its �rst component may be needed(but the second will not be)� SPINE: the value is a list, and all its top-level cells may be needed(the length function demads a SPINE context of its argument)4.4 Complex Abstract ValuesFinding �nite approximate descriptions of in�nite sets of values is an es-sential task in abstract interpretation. We mentioned in Section 2.5 thatabstracting stores or environments amounts to �nding �nite descriptions ofrelations among the various program variables. This was straightforward inthe even-odd example given earlier, e.g. \odd" represented f1,3,5,...g, etc.,and operations on numbers were easily modeled on this �nite domain ofabstract values. Analysis problems requiring more sophisticated methodsinclude� functions as values (especially higher order functions)� mutual relationships among variable values� describing structured data, e.g. nested lists and trees4.4.1 Functions as valuesSome approaches were described above (approximation by functions onabstract values, and closure analysis), and several more have been studied.4.4.2 Relations on n-tuples of numbersIn this special case there is a well-developed theory: linear algebra, inparticular systems of linear inequalities. [Cousot, 1978] describes a wayto discover linear relationships among the variables in a Pascal-like pro-gram. Such relations may be systematically discovered and exploited for,for example, e�cient compilation of array operations. Related work, in-volving the inference of systems of modulus equations, has been appliedto pipelining and other techniques for utilizing parallelism [Granger, 1991,Mercouro�, 1991]. This work has been further developed into a system forautomatic analysis of Pascal programs.4.4.3 GrammarsThe analysis of programs manipulating structured data, e.g. lists as in Lisp,ML, etc, requires methods to approximate the in�nite sets of values thatvariables may take on during program runs. There is also a well-developedtheory and practice for approximating such in�nite sets, involving regulargrammars or their equivalent, regular expressions.



103An Example Grammar Construction Consider the followingabstractprogram, using the list notation of Section 4.3.3.f(N) = �rst(N, sequence(nil))�rst(nil, Xs) = nil�rst(M : Ms, X : Xs) = Ms : �rst(Ms, Xs)sequence(Y) = Y : sequence(1 : Y)We assume an initial call of form f(N) where the input variable N rangesover all lists of 1's, and further that the language is lazy. Conceptually,call \sequence(nil)" generates the in�nite list [[],[1],[1,1],[1,1,1],. . .]. Thepossible results of the program are all of its �nite pre�xes:Output = f[], [[],[1]], [[],[1],[1,1]], [[],[1],[1,1],[1,1,1]],. . .gThe method of [Jones, 1987a] constructs form this program a tree grammarG containing (after some simpli�cation) the following productions. Theydescribe the terms which are the program's possible output values:N ::= nil j 1 : N Program input = f argumentfresult ::= �rstresult�rstresult := nil j Ms : �rstresultM ::= 1Ms ::= NX ::= YXs ::= sequenceresultY ::= nil j 1 : Ysequenceresult ::= Y : sequenceresultWith fresult as initial nonterminal, G generates all possible lists, each ofwhose elements is a list of 1's. More generally, by this approach, an abstractvalue in Abs is a tree grammar, and the concretization function maps thetree grammar and one of its nonterinal symbols A into the set of termsthat A generates.Safety The natural de�nition of safe program approximation is that thegrammar generates all possible runtime values computed by the program(and usually a proper superset). By the grammar above, nonterminal fresultclearly generates all terms in Output | and so is a safe approximation tothe actual program behaviour.It is not a perfect description, since fresult generates all possible lists oflists of 1's, regardless of order.



104Nonexistence of an abstraction function � For this analysis an ab-stract value is a large object: a grammarG, and the concretization function maps G's nonterminals into term sets which are supersets of the valuesets that variables range over in actual computations. It is natural to ask:what is the corresponding abstraction function �?In this case, there is no unique natural �, for a mathematical reason.The point is that regular tree grammars as illustrated above generate onlyregular sets of terms, a class of sets with well-known properties. On theother hand, the program above, and many more, generate nonregular setsof values (Output is easily proven nonregular). It is well known that forany nonregular set S of terms, there is no \best" regular superset of S. Ingeneral, increasing the number of nonterminals will give better and better\�ts", i.e. smaller supersets, but a perfect �t to a nonregular set is (byde�nition) impossible.References The papers [Reynolds, 1969] and [Jones, 1981a,Jones, 1987a]contain methods to construct, given a program involving structured val-ues, a regular tree grammar describing it. Essentially similar techniques,although formalized in terms of tables rather than grammars, have beenapplied to the lambda calculus [Jones, 1981b], interprocedural imperativeprogram analysis [Jones, 1982], a language suitable as an intermediate lan-guage for ML [Deutsch, 1990], and the Prolog Language [Heintze, 1992].4.5 Abstract Interpretation of Logic ProgramsGiven the framework already developed, we concentrate on the factors thatmake logic program analysis di�erent from those seen earlier. Further, weconcentrate on Prolog, in which a program is a sequence of clauses, eachof the form \head  body":h(t1,. . . ,tm)  b1(t01,. . . ,t0n) ^ . . .^ bk(t001 ,. . . ,t00p).where h, b1,. . . ,bk are predicate names and the ti are terms built up fromconstructors and variables. Variable names traditionally start with capitalletters, e.g. X. Constructors are as in functional languages (e.g. \:" and\[]"), but runtime values are rather di�erent, as they may contain free or\uninstantiated" variables. Each bi(t1,. . . ) is called a goal.An example program, for appending two lists:append(Xs, [], Xs)  .append(X:Xs,Ys,X:Zs)  append(Xs,Ys,Zs).



1054.5.1 Semantics of Prolog ProgramsProlog can be viewed either as a pure logical theory (so a program is a setof \Horn clauses" with certain logical consequences), or as an operationallyoriented programming language. When used operationally, programs maycontain features with no interpretation in mathematical logic, to improvee�ciency or facilitate communication with other programs. Examples: in-put/output operations, tests as to whether a variable is currently instanti-ated, and operations to add new clauses to the program currently running,or to retract existing clauses.A ground term is one containing no variables. The bottom-up or log-ical interpretation of \append" is the smallest 3-ary relation on groundterms which satis�es the implications in the program. It thus containsappend(1:[],2:[],1:2:[]) and append(1:2:[],3:4:[],1:2:3:4:[]), among others.Top-down interpretation is used for Prolog program execution. Com-putation begins with a query, which is a \body" as described above. Theresult is a �nite or in�nite sequence of answer substitutions, each of whichbinds some of the free variables in the query. In a top-down semantics,the basic object of discourse is not a store or an environment, but a sub-stitution that maps variables to new terms | which may in turn containuninstantiated variables, i.e. be nonground.The result of running the program above with an initial query ap-pend(1:2:[],3:4:[],Ws) would be the one-element answer sequence[Ws 7! 1:2:3:4:[]]while the result of running with query append(Us,Vs,1:2:[]) would be thesequence of three answers[Us 7! 1:2:[], Vs 7! []][Us 7! 1:[], Vs 7! 2:[]][Us 7! [], Vs 7! 1:2:[]]and the result of running with query append(1:2:[],Vs,Ws) would be ananswer containing an uninstantiated variable:[Vs 7! Ts, Ws 7! 1:2:Ts]4.5.2 Special Features of Logic ProgramsThe possibility of more than one answer substitution is due to the back-tracking strategy used by Prolog to �nd all possible ways to satisfy thequery. These are found by satisfying the individual goals qi(. . . ) left toright,unifying each with all possible clause left sides in the order they ap-pear in the program. Once uni�cation with a clause head has been done,



106its body is then satis�ed in turn (trivially true if it is empty). This pro-cedure is often described as a depth-�rst left-to-right search search of the\SLD-tree".Bindings made when satisfying qi are used when satisfying qj for j > i,so in a certain sense the current substitution behaves like an updatablestore. A di�erence is that it is \write-once" in that old bindings may notbe changed. However changes may be made by instantiating free variables.4.5.3 Types of AnalysesAll this makes program analysis rather complex, and the spectrum seenin the literature is quite broad. Many but not all analyses concentrate on\pure" Prolog subsets without nonlogical features. Some are bottom-up,and others are top-down.4.5.4 Needs for AnalysisA �rst motivation for analysis is to optimize memory use | Prolog is noto-rious for using large amounts of memory. One reason is that due to back-tracking the information associated with a predicate call cannot be poppedwhen the call has been satis�ed, but must be preserved for possible futureuse, in case backtracking should cause control the call to be performedagain. Considerable research on \intelligent backtracking" is being doneto alleviate this problem, and involves various abstract interpretations ofpossible program behaviour.Another motivation is speed. Uni�cation of two terms containing vari-ables is a fundamental operation, and one that is rather slower than assign-ment in imperative languages, or matching as used in functional languages.One reason is that uni�cation involves two-way bindings: variables in eitherterm may be bound to parts of the other term (or transitively even to partsof the same term). Another is the need for the occur check: to check that avariable never gets bound to a term containing itself (although sometimesconvenient for computing, programs containing such \circular" terms haveno natural logical interpretation).4.5.5 Examples of AnalysisAnalyses to speed up uni�cation The following are useful to recognizewhen special forms of uni�cation can be used such as assignment or one-waymatching:Mode analysis determines for a particular goal those of its free variableswhich will be unbound whenever a goal is called, and which will be boundas a result of the call [Mellish, 1987].Groundness anaysis discovers which variables will always be bound toa ground (variable-free) term when a given program point is reached. Forexample \append", when called with a query with ground Xs and Ys, yield



107a substitution with ground Zs; when called with bround Zs, all answers willhave ground Xs and Ys; and when called with only Xs ground, the answerswill never be ground.Groundness analysis is more subtle than it appears due to possiblealiasing and shared substructures, since binding one variable to a groundterm may a�ect variables appearing in another part of the program be-ing analyzed. Simple groundness and sharing analyses are described in[Jones, 1987b]. A more elegant method using propositional formulas builtfrom ^ and, was introduced in [Marriott, 1987] and compared with othermethods in [Cortesi, 1991].Safely avoiding the occur checkCircularity analysis is a related and more subtle problem, the goal beingto discover which uni�cations may safely be performed without doing thetime-consuming \occur check". The �rst paper on this was by Plaisted[Plaisted, 1984], with a very complex and hard to follow method. A moresemantics-based method was presented in [S�ndergaard, 1986].Other analyses The \di�erence list" transformation can speed programsup by nonlinear factors, and can be applied systematically; but it canalso change program semantics if used indiscriminately. Analyses to de-termine when the transformation may be safely applied are described in[Marriott, 1988].Other uses include binding time analysis for o�ine partial evaluation,and deciding when certain optimizing transformations can be applied. Oneexample is deforestation [Wadler, 1988].4.5.6 Methods of AnalysisAnalysis methods can roughly be divided into the pragmatically oriented,including [Bruynooghe, 1991], [Mellish, 1987], and [Nilsson, 1991]; and thesemantically oriented, including [Cortesi, 1991], [Debray, 1986], [Jones, 1987b],and [Marriott, 1993].A natural analogue to the accumulating semantics seen earlier was usedin [Jones, 1987b] and a number of later papers, and presumes given a se-quence of clauses and a single query. It is a \sticky" semantics in whichthe program points are the positions just before each clause goal or thequery, and at the end of each clause and the query. With each such pointis accumulated the set of all substitutions that can obtain there duringcomputations on the given query (so those for the query end describe theanswer substitutions).Approximation of substitutions and uni�cation. These are nontriv-ial problems for several reasons. One is renaming: each clause is (implicitly)



108universally quanti�ed over all variables appearing in it, so uni�cation of apredicate call with a clause head requires renaming to avoid name clashes,and the same variable may appear in many \incarnations" during a sin-gle program execution. Many approximations merge information about allincarnations into a single abstraction, but this is not safe for all analyses.Aliasing is also a problem, since variables may be bound to one anotherso binding one will change the bindings of all that are aliased with it. Termscontaining free variables have the same problem: binding one variable willchange the values of all terms containing it.Finally, uni�cation binds variables to structured terms, so approxima-tions that do not disregard structure entirely have some work to do toobtain �nite descriptions. A recent example is [Heintze, 1992].[Marriott, 1993] is interesting in two respects: it uses the metalanguageapproach described in this work, in Section 3; and it uses sets of constraintsinstead of substitutions, reducing some of the technical problems just men-tioned.



1095 Glossaryabstraction function: Usually a function from values or sets of values toabstract values such as EVEN, ODD. See adjoined pair.accumulating semantics: A semantics that models the set of values thata standard semantics (or instrumented semantics) may produce. Thefunctionality of commands might be P(Sto)!P(Sto), and the pro-gram description might be Pla ! P(Sto), where Pla is the domainof program points (or places).adjoined pair: A pair of functions (�:D!E ,:E!D) that satis�es �(d)veif and only if dv(e). The �rst component is often called an abstrac-tion function (or a lower adjoint) and the second component is calleda concretization function (or an upper adjoint).backward: Used for an analysis where the program is analysed in theopposite direction of the ow of control, an example being livenessanalysis (see glossary). In Section 3 this is formalized by interpreting! as  where D E means E!D.collecting semantics: Has been used to mean sticky semantics as well aslifted (or accumulating) semantics, so some confusion as to its exactmeaning has arisen in the literature.concretization function: Usually a function from abstract values suchas EVEN, ODD to sets of concrete values. See adjoined pair.context: A description of how a computed value will be used in the re-mainder of the computation. Used in backwards analysis of functionalprograms.correctness: Given a relation of theoretical or implementational impor-tance, correctness amounts to showing that the properties obtainedby abstract interpretation always have this relation to the standardsemantics.core semantics: See factored semantics.duality principle: The principle of lattice theory saying that by changingthe partial order from v to w one should also change least �xedpoints to greatest �xed points and least upper bounds to greatestlower bounds and that then the same information results.factored semantics: The division of a denotational semantics into twoparts: a core, assigning terms to every language construct, but withsome details left unspeci�ed; and an interpretation, giving the mean-ings of the omitted parts. Often used to compare the correctness of



110 one abstract interpretation with respect to another abstract interpre-tation.�rst-order: Used for an analysis where the properties directly describeactual values. An example is detection of signs where the property`+' describes the values 1, 2, 3, etc.forward: Used for an analysis where the program is analysed in the samedirection as the ow of control. In Section 3 this is formalized byinterpreting ! as !.independent attribute method: Used for an analysis where the com-ponents of a tuple are described individually, ignoring relationshipsamong components. In Section 3 this is formalized by interpreting �as �.induced property transformer: An analysis that is obtained from astandard semantics or another analysis in a certain way that is guar-anteed to produce an optimal analysis over a given selection of prop-erties.instrumented semantics: A version of the standard semantics wheremore operational detail is included. In general an instrumented se-mantics constrains the implementation of a language as de�ned byits standard semantics.interpretation: See factored semantics.lax functor: A modi�cation of the categorical notion of functor in thatcertain equalities are replaced by inequalities.lifted semantics: Another term for the accumulating semantics.live variable: A variable whose variable may be used later in the currentcomputation.logical relation: A relation constructed by induction on a type structurein a certain `natural' way.minimal function graph: An interpretation that associates to each user-de�ned function in a program a subset of S��S that indicates thoseargument/result pairs which are actually involved in computing out-puts for a given input to a program.relational method: Used for an analysis where the interrelations amongcomponents of a tuple are described, e.g. X + Y < 110. In Section 3this is formalized by interpreting � as 
 (tensor product).representation transformation: A function that maps values or prop-erties to properties, e.g. an abstraction function.



111safety: Essentially the same as correctness, but emphasizing that the re-sults of an analysis may be used for program transformation withoutchanging semantics. Often used when the correctness of one abstractinterpretation is established with respect to another abstract inter-pretation.second-order: Used for an analysis where the properties do not directlydescribe actual values but rather some aspects of their use. An ex-ample is liveness where the property live does not describe any valuebut rather that the value might be used in the future computations.standard semantics: A semantics where as few implementation consid-erations as possible are incorporated. The functionality of commandsmight be Sto!Sto.static semantics: Has been used to mean sticky lifted semantics but thisusage conicts with the distinction between static and dynamic se-mantics.sticky semantics: Used for a semantics which binds program points tovarious information (\sticky" in the sense of ypaper). In a stickysemantics a command might be of functionality Sto!Pla!P(Sto),where Pla is the domain of program points (or places).strict function: f : V1 � . . .Vn ! W is strict in its ith argument iff(v1; . . . ; vi�1;?; vi+1; . . . ; vn) = ? for all vi 2 Vi.tensor product: An operation 
 on algebraic lattices that may be usedto formalize the notion of relational method . When formulated in thecategorical framework, as is natural when recursive types are to beconsidered, the concept of lax functor is necessary.
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