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ABSTRACT
During the past twenty-one years, over seventy-�ve papers
and nine Ph.D. theses have been published on pointer analy-
sis. Given the tomes of work on this topic one may wonder,
\Haven't we solved this problem yet?" With input from
many researchers in the �eld, this paper describes issues re-
lated to pointer analysis and remaining open problems.

1. INTRODUCTION
Analyzing programs written in languages with pointers re-

quires knowledge of pointer behavior. Without such knowl-
edge, conservative assumptions regarding pointer accesses
must be made, which can adversely a�ect the precision and
eÆciency of any analysis that requires this information, such
as an optimizing compiler or a program understanding tool.
A pointer analysis attempts to statically determine the

possible runtime values of a pointer. As such an analysis is,
in general, undecidable [51, 49, 70, 42], a large collection of
approximation algorithms have been published that provide
a trade-o� between the eÆciency of the analysis and the
precision of the computed solution. The worst-case time
complexities of these analyses range from almost linear [94]
to doubly exponential [88]. To complicate matters, worst-
case behavior is often not indicative of typical performance.
Given the long history of pointer analysis research, it is

appropriate to take stock of the current �eld and to outline
those problems that remain open. This paper, with valued
input from many pointer analysis researchers, attempts to
serve this role, as well as categorizing existing work.

2. BACKGROUND
A pointer alias analysis attempts to determine when two

pointer expressions refer to the same storage location. A
points-to analysis [27, 22, 2], or similarly, an analysis based
on a \compact representation" [13, 5, 38], attempts to de-
termine what storage locations a pointer can point to. This
information can then be used to determine the aliases in the
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program.1 Alias information is central to determining what
memory locations are modi�ed or referenced.
There are several dimensions that a�ect the cost/precision

trade-o�s of interprocedural pointer analyses. How a pointer
analysis addresses each of these dimensions helps to catego-
rized the analysis. An empirical comparison with a di�er-
ence in more than one dimension can limit the usefulness of
the comparison. Some of the dimensions are
Flow-sensitivity: Is control-ow information of a proce-

dure used during the analysis? By not considering control
ow information, and therefore computing a conservative
summary, ow-insensitive analyses compute one solution for
either the whole program (such as [2, 94, 108, 91]) or for
each method (such as [5, 38, 55]), whereas a ow-sensitive
analysis computes a solution for each program point. Flow-
insensitive analyses thus can be more eÆcient, but less pre-
cise than a ow-sensitive analysis. Flow-insensitive analyses
are either equality-based [94, 108], which treat assignments
as bidirectional and typically use a union-�nd data struc-
ture, or subset-based [2, 5, 38], which treat an assignment as
a unidirectional ow of values.
Context-sensitivity: Is calling context considered when

analyzing a function or can values ow from one call through
the function and return to another caller?
Heap modeling: Are objects named by allocation site,

or is a more sophisticated shape analysis performed?
Aggregate modeling: Are elements of aggregates dis-

tinguished or collapsed into one object?
Whole program: Does an analysis require the whole

program or can a sound solution be obtained by analyzing
only components of a program?
Alias representation: Is an explicit alias representa-

tion [51, 64] or a points-to/compact representation used?

3. GENERAL ISSUES
Before discussing open problems, we �rst address some

more general issues that plague the �eld of pointer analysis.

3.1 Terminology
The pointer analysis community has sometimes done a

disservice to its audience by using di�erent terminology to
refer to the same concepts. For example, context-sensitive/
insensitive analysis are also known as poly/mono-variant
analyses. Uni�cation-based ow-insensitive analyses are also
known as Steensgaard-style analyses and similarly, inclusion-
based ow-insensitive analyses are also known as Andersen-

1The point at which such information is inferred can a�ect
the precision and eÆciency of the analysis [61, 6, 38, 86].
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style analyses. When these analyses are formulated as con-
straint-based analyses, they are referred to as term or equal-
ity-based and inclusion constraints, respectively. This di-
chotomy of terminology can be attributed to work in the
related �eld of type inference [93, 37, 17, 65], which itself is
also known as control-ow analysis and class analysis.2

Pointer analysis, (pointer) alias analysis, and points-to
analysis are often used interchangeably. We prefer to use
pointer analysis as a general term for an analysis that ana-
lyzes pointers and alias (points-to) analysis for analyses that
produce alias (points-to) relations.

3.2 Metrics
How does one measure the precision of a pointer analysis?

A popular metric, which we de�ne as the direct metric, is
to record the average number of objects aliased to pointer
expressions appearing in the program [52]. Although this
could be a direct indication of the precision of an analysis,
there are several aws with this metric [20].

� Because an analysis models an unbounded number of
dynamic objects (due to recursive locals and dynamic
allocation), the number of objects aliased to a pointer
expression can be greatly skewed depending on the
model chosen [80]. For example, an analysis that mod-
els the heap as one object will report a (low) average
of one object (the whole heap!) for all heap-directed
pointers, incorrectly suggesting a precise analysis.

� Pointer information is usually the input to other client
analyses, and as such the precision of a pointer analysis
can depend on how it a�ects the client. For example,
it may take only one extra alias to create a dependence
that prevents code motion in a time-critical loop. In
contrast, adding additional aliases to a pointer derefer-
ence that already is fully dependence constrained will
have no e�ect for a dependence-based client.

� Even with a consistent modeling scheme, a particular
value is not meaningful in isolation because the pro-
gram may contain pointers that can point to di�erent
objects at runtime, such as the SPEC95 program go,
which contains a function with a pointer parameter
that can be aliased to 100 distinct global arrays [39].

There are three alternative categories of metrics, two static
and one dynamic. The �rst metric compares the static
precision to worst-case assumptions, be it using the direct
method [51] or the results of dependence-based queries [31].
This metric will be particularly useful in evaluating analyses
for strongly-typed languages such as Java, where worst-case
assumptions are not as bad as in C. The second alternative
static metric is to implement a pointer analysis client and
report its precision [90, 63, 3, 30, 20, 86, 95, 55, 57, 40, 60,
31, 77]. The advantage of this metric is that it more clearly
ascertains the e�ectiveness of a pointer analysis for a partic-
ular client analysis. The limitation is that it only measures
one client, and again, the importance of the static measure
of the client may be questioned.

2Type inference attempts to ascertain the runtime types of
pointer values, whereas points-to analysis uses a �ner level
of granularity and tries to determine the (named) objects
held in a pointer. The type inference literature, although
certainly worth exploring, is beyond the scope of this paper.

The third approach dynamically measures how pointer in-
formation a�ects a runtime property, such as program per-
formance [14, 105, 20, 30, 12, 31], dynamic points-to rela-
tions [20, 62], or a dynamic characterization of the client
analysis [20, 30, 12, 31]. Such metrics are limited to a single
execution of the program, and thus, represent a lower bound
on their static counterparts. Because all metrics have their
strengths and weaknesses a combination should be used [20].

3.3 Reproducible Results
In most sciences a result is not accepted until it can be

independently veri�ed. Unfortunately, this practice is not
well accepted in pointer analysis. Furthermore, when one
does undertake such a veri�cation, it is diÆcult to publish
such results, unless it disputes common wisdom, such as [80].
Susan Horwitz echoes this sentiment: \Improvements pro-

posed by researchers seem promising, but seldom are claims
independently veri�ed, and often promising leads are aban-
doned. It seems that duplicating others' results is consid-
ered very important in the physical sciences, but gets short
shrift in computer science. Should we/can we change that
attitude?"
Even if publishability issues are left aside, it can be diÆ-

cult to reproduce a result because of di�erent intermediate
representations, benchmark suites, or benchmark versions.
For example, some intermediate representations decompose
all assignments into canonical forms to limit the number of
pointer dereferences in a statement with the goal of sim-
plifying the exposition and implementation of the analysis.
However, this can increase the number of program variables
and pointer dereference expressions, making comparisons to
results that do not perform this simpli�cation meaningless.
However, some progress has been made on this topic be-

cause many researchers share the benchmarks used in their
studies and in some cases make their implementations pub-
licly available [4, 69, 15].

4. OPEN QUESTIONS
This section discusses open questions in pointer analysis.

4.1 Scalability
Equality-based ow-insensitive analyses [94] can analyze

million-line programs quickly. Although recent work [15, 55,
59] has improved the precision of equality-based analyses, it
is still not clear if the precision is suÆcient. Meanwhile,
signi�cant work [23, 97, 76, 24, 72, 34] has increased the
eÆciency of the more precise subset-based ow-insensitive
analyses. Studies [12, 40] suggest that subset-based analyses
may provide suÆcient precision for some clients. Thus, the
convergence of these two e�orts may result in a reasonably
precise analysis that can be e�ective on very large programs.
However, even the precision of subset-based analyses may
not be suÆcient for all clients. Clearly, more studies need
to be conducted in this area.
Tom Reps asserts, \Various clients of pointer-analysis al-

gorithms can produce poor results due to inherent impre-
cisions in the pointer-analysis phase. However, there are
some interesting precision/eÆciency trade-o�s: for instance,
it can be the case that a more precise pointer analysis runs
more quickly than a less precise one. Moreover, even when
a more precise pointer analysis is less eÆcient per se, in the
context of the processing carried out by the client(s) of the
analysis, the overall cost may decrease [90]. Thus, is it pos-
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sible to understand what should go into a pointer analysis
according to the needs of the client of the analysis? Present
studies of `scalable' analyses have not had much to say about
more precise approaches: is there a `scalable' analysis that
provides context-sensitivity? ow sensitivity? some degree
of these properties?"
Amer Diwan adds, \It is easy to make a pointer analy-

sis that is very fast and scales to large programs. But are
the results worth anything? While more people have done
work in the area [14, 30, 20, 40, 41], we still need a better
understanding of what pointer analysis one should use."

4.2 Improving Precision
How can we improve the precision of an analysis without

sacri�cing scalability? Bill Landi and Manuvir Das provide
some interesting ideas for loosening the soundness/safety
constraint on pointer analysis. Bill Landi writes, \One anal-
ysis that sparks interest is the detection of bugs in an R&D
setting with, for example, a use-before-de�ne (UBD) analy-
sis on 20+ million LOC applications. The only way I have
been able to address this situation is to reconsider the notion
of safety. Clearly, if an analysis is to be used in program op-
timization, the roots of such analyses, safety is an essential
concept. However, this does not mean that it is essential for
all applications of analyses. My experience with unsafe anal-
yses have led to some surprising observations. First, when
I removed from my context- and ow-sensitive alias anal-
ysis algorithm [51, 48] a step that was essential to ensure
safety, but did not seem to me to be necessary in almost all
cases, a much faster analysis was possible. In one case run-
time went from several days to several minutes. Further, in
all the tests I did using this new calculation for computing
MOD (about 20 programs), I only found one case of a miss-
ing modi�cation. Second, when UBD results are reported
to a user as potential bugs, both false-positives and false-
negatives can be tolerated if they are within reason. If my
analysis can �nd 90%, or even 25%, of the users bugs this is a
vast improvement over using nothing. If there are too many
false-positives, users will reject the analysis as they must
spend too much time pursuing false leads. However, I was
told the users actually liked the false-positives in my anal-
ysis because they claimed when my analysis got confused
it was a good indication that the code was poorly written
and likely to have other problems. This came as a complete
surprise. While additional study is needed to claim these
observations to be valid in a broader sense, they lead me to
conclude that the notation of safety should be reconsidered
for many applications of static analysis."
Manuvir Das adds, \Pro�le-directed optimizations do not

need sound pointer information. Recent work [62] shows
how dynamic points-to data can be used to perform opti-
mization with checks to ensure safety, with the usual trade-
o�s. More interestingly, error detection doesn't have to be
sound at all! Consider a tool that examines some code paths
and reports errors along those paths. Such tools do not �nd
pointer analysis useful because it makes analysis too con-
servative. Here, we can use pro�le pointer data to let the
tools know about only the pointer values that actually arise
during test executions. It leads to incomplete coverage, but
that's ok since the tool is not meant to �nd every error."
Another way to improve precision without sacri�cing scal-

ability is to limit the program scope where high-precision is
required [79]. Susan Horwitz writes, \A potentially impor-

tant area of research would address determining where ac-
curacy is vital (e.g., certain regions of code, certain pointer
variables) and �nding ways to improve results just for those
critical regions. Another idea is to �nd special cases where
certain techniques work well (even if they don't work in gen-
eral). An example is recent work [85] on techniques for sym-
bolic bounds analysis for divide-and-conquer programs."
Bjarne Steensgaard observes, \There are also opportu-

nities for �nding as-yet undiscovered opportunities for im-
provements by simply looking at existing programming pat-
terns. For example, Manuvir Das looked at several large
C programs and found that passing the address of a vari-
able as a function parameter was a large contributor to the
loss of precision for ow-insensitive, context-insensitive al-
gorithms. He found a way to add `one level ow' to an oth-
erwise uni�cation-based algorithm to achieve results compa-
rable with ow-sensitive, context-insensitive algorithms."

4.3 Designing an Analysis for a Client’s Needs
One approach to determining appropriate precision and

scalability is to consider the client problem's needs.
Barbara Ryder expands on this topic: \Pointer analyses

should be designed to be appropriate in cost and precision
for speci�c groups of client problems. What is practical and
acceptably precise for one usage, may be impractical and too
approximate for another. There is no one class of problems
(e.g., all C programs over 1 million lines of code) that should
decide the eÆcacy of a pointer analysis. We do not need a
di�erent pointer analysis per client problem, but rather we
should look for classes of client problems with similar needs,
and design analyses for these classes, checking performance
in the context of these usages. We can all write an un-
bounded number of papers that compare di�erent pointer
analysis approximations in the abstract. However, this does
not accomplish the key goal, which is to design and engi-
neer pointer analyses that are useful for solving real software
problems for realistic programs."
Manuel F�ahndrich discusses client problems: \I think there

are two distinct uses of pointer analysis, 1) optimizations,
and 2) error detection/program understanding. These two
uses have vastly di�erent requirements on pointer analy-
sis. For optimizations, there seems to be some upper bound
on how much precision is useful because taking advantage
of more precision usually translates into specializing more
code, which needs to be bounded. In my opinion, the spec-
trum of analyses mostly covers the needs for optimizations.
For error detection and program understanding, the picture
is di�erent. For these applications, there seems to be a
lower bound on precision, below which, pointer information
is pretty useless. Gearing pointer analysis towards error de-
tection requires more work on precision and scaling issues."
Manuvir Das discusses correctness in the context of de-

bugging tools: \All of the ow-insensitive pointer algorithms
can be used to produce ow-insensitive versions of reaching
de�nitions, which, assuming the analysis is context-sensitive,
can be used in correctness and debugging tools. In fact, I
believe that correctness (the elimination of certain kinds of
errors, not the extreme step of veri�cation) is the `killer app'
for pointer analysis. Although the hardware companies have
made compiler optimizers look bad, there is nothing they
can do about ensuring code correctness, which will matter
more and more."
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4.4 Flow-Sensitivity
Empirical studies [38, 40, 41] suggest that for context-

insensitive analyses, a ow-sensitive analysis does not of-
fer much precision improvement over a subset-based ow-
insensitive analysis. Manuvir Das provides some intuition:
\Flow-sensitivity is all about strong update. A spurious
ow of pointer values produced by a ow-insensitive context-
insensitive analysis occurs because such an analysis lacks
strong update through two kinds of assignments: explicit
assignments and parameter passing. As long as the analysis
is context-sensitive, it e�ectively treats parameter passing as
strong updates and only loses on the explicit assignments.
At least for C programs, most explicit assignments updates
of pointers deal with traversing data structures, for which
pointer analysis is no good anyway. Although I don't be-
lieve a ow-sensitive pointer analysis is of any use above
a ow-insensitive context-sensitive pointer analysis, a path-
sensitive pointer analysis can be very useful in error detec-
tion tools. Because computing path-sensitive pointer infor-
mation would be extremely expensive, we need to investigate
ways to obtain this information."

4.5 Context-Sensitivity
Because a context-sensitive analysis can be exponential in

the worst case, the eÆciency of such analyses has been ad-
dressed [22, 105, 104]. However, another question is whether
context-sensitivity improves precision. So far the results
have been mixed: context-sensitivity did not improve pre-
cision for a common ow-sensitive analysis [80] and a sim-
ilar result has been shown for subset-based ow-insensitive
analysis [26] and an extension of the equality-based ow-
insensitive analysis [16]. However, context-sensitivity has
been shown to be bene�cial for simpler equality-based ow-
insensitive analysis [26]. This latter result seems to validate
the recent activity in partially context-sensitive equality-
based analysis [55, 24, 72, 16]. Other work [56, 58] attempts
to recover additional context in client analyses.
The papers above used the direct precision metric, which

has the limitations described in Section 3.2. Although these
studies are extremely valuable, their generality should be
con�rmed in di�erent environments, selecting di�erent point-
er analysis dimensions, using di�erent programs.
Manuvir Das adds his opinion about whether context-

sensitivity is useful: \The answer is de�nitely a yes, even
though recent studies [26, 16] suggest otherwise. First, a
more general use of pointer analysis is to develop tools that
track the ow of values or information in programs. Here,
context-sensitivity is crucial to avoid spurious ow of val-
ues. Second, if the client optimization or error detection
is willing to be context-sensitive or to specialize copies of
procedures, context-sensitive pointer analysis can produce
much more precise information. Unfortunately, there is no
hard evidence of this, but we're working on it."
Erik Ruf writes, \One of the big issues/sources of confu-

sion in most points-to analysis lies in the idea of comput-
ing a points-to solution and then using it for some purpose.
Usually, a �xed context-sensitivity strategy (and a corre-
sponding �xed naming strategy) is used, which may or may
not correspond to what's appropriate for the client. For
example, the traditional approach of performing a context-
sensitive ow with respect to callees a�ecting callers, but
not with respect to callers a�ecting callees (as occurs when
no cloning is performed) can yield bad code (or, in software

engineering applications, a worst-case view for the user). On
the other hand, eagerly building clones inside a stand-alone
pointer analysis is undesirable because of the potential ex-
ponential work, much of which may not be useful. Even
highly parameterized standalone analyses pay costs for rep-
resenting contexts not experienced by the client, yet cannot
take full advantage of client-level semantic information to
improve points-to information within specialized contexts."
Erik Ruf continues, \I advocate an approach where pointer

analysis is integrated with the client analysis. Allowing
the client's generation and consumption of information to
drive the pointer analysis has the potential to improve both
precision and performance. A simple example of this ap-
proach is the incorporation of client analysis information
into procedure-level pointer/alias summaries [81]. Client-
driven pointer analyses may also be able to selectively apply
more aggressive approaches to obtaining precision, such as
those of [68]."

4.6 Heap Modeling
Shape analysis algorithms [53, 43, 9, 19, 36, 35, 18, 74, 28,

29, 87, 88, 89, 103, 21, 54] have demonstrated high precision,
over schemes that name objects based on allocation site (as
in [47, 44, 83, 43, 9]), but their scalability to even medium
programs is uncertain. Mooly Sagiv summarizes the current
state of the �eld: \Although I believe we are making good
progress, in all honesty, we should say that we are not there
yet."
Tom Reps observes, \We have certainly not come to the

end of the line in research on shape analysis. There are all
sorts of interesting issues here, ranging from a better un-
derstanding of how to identify the important ingredients of
an analysis (the `instrumentation predicates') to eÆciency
questions. The approach is also yielding insights into prob-
lems that are not what you would ordinarily think of as
pointer problems or shape-analysis problems; however, `shape'
serves as a kind of metaphor for many kinds of properties
of system and/or memory con�gurations that can arise as a
computation evolves."
Manuvir Das adds, \One suggestion is to develop shape

analyses that work well on the common case, but may lose
precision in the general case. Another suggestion is to com-
bine a cheap global pointer analysis with a local shape anal-
ysis. This approach relies on the fact that heap traversal
code is local, and pointer analysis can be used to ensure
that non-local code is not modifying the heap structure be-
ing traversed."
A similar approach was expressed by Laurie Hendren's

group in analyzing C [22]. This approach �rst distinguishes
stack and heap-directed pointers and then performs a sim-
ple shape analysis [28, 29] on just the heap-directed pointers.
An alternative line of research attempts to compensate for
the loss of precision experienced by the allocation site nam-
ing scheme in the presence of user-de�ned memory allocation
routines [13, 1, 34].

4.7 Modeling Aggregates
A key implementation detail is whether aggregate com-

ponents are distinguished or summarized into one object.
C/C++'s weak typing makes this diÆcult to address cor-
rectly. Thus, most published work does not distinguish ag-
gregates. However, this diÆculty does not exist in a strongly-
type language like Java, and therefore, components should
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be distinguished in such languages [77]. Most recent work
has chosen to distinguish components [105, 71, 84, 106, 60,
33, 34, 31, 77]. Unfortunately, few researchers [106, 86, 60,
77] have studied the impact of this decision.
Rakesh Ghiya states, \We need to focus more energy on

improving the basis information for pointer analysis (es-
pecially malloc-site identi�cation in the presence of user-
de�ned memory management, and handling of �elds), as
opposed to solely focusing on incremental improvements in
the propagation techniques."

4.8 Demand-Driven/Incremental Analyses
Because the eÆciency of pointer analysis is often a con-

cern, it would seem that a demand-driven or incremental ap-
proach would be useful. To date, only limited progress has
been made on incremental analysis [107, 98] and all demand-
driven analyses are ow-insensitive [73, 75, 15, 33, 24, 72,
16]. It remains an open question as to whether the precise
ow-sensitive analyses, such as those that use context-sens-
itivity or perform shape analysis, can be performed in a
demand-driven manner.

4.9 Java and Object-Oriented Languages
There has been little work done in the area of pointer

analysis for object-oriented programs. Some have modi�ed
pointer analyses to handle dynamic dispatch in C++ [67, 8,
66], while others have developed new modular algorithms [11,
10]. Others have focused on Java [102, 25, 96, 60, 77]. In
Java all references are heap-directed, and thus, distinguish-
ing the heap is even more important than it is in C. This
may raise the importance of simpler shape analysis tech-
niques [28, 29].
Jong-Deok Choi raises another issue: \Must-alias analysis

is very important for Java because must alias information
can help avoid re-accessing the same memory location. Also,
we have found that must alias information can reduce the
overhead for deterministic replay on SMP systems. How-
ever, not much work has been done for must-alias analysis."
Bjarne Steensgaard looks to the future: \I believe pointer

analyses will continue to adapt to changes in both their in-
put (programming languages and programming styles) and
their output (tools and other analyses). It is fairly obvious
that many of the pointer analysis algorithms that worked
reasonably well on programs written in the C style of lan-
guages perform poorly on programs written in the Java style
of languages. New algorithms will be created to deal with
the speci�c issues and take advantage of the opportunities
created by changes in programming paradigms, program-
ming languages, and programming styles."
Although C will remain an important domain for pointer

analysis in the context of program understanding tools, mostly
because of legacy code, it is important to look at new lan-
guages, such as Java. In addition to o�ering new features
over C, the eÆcacy of the techniques developed for C need
to be revalidated in these languages.

4.10 Incomplete Programs
Most pointer analyses require the whole program. How-

ever, Michael Burke notes, \Component programming and
the use of library code are becoming more prevalent. These
trends will continue, making whole program analysis less
useful. We need pointer analyses of components and li-
braries that are parameterized with respect to how they are

con�gured in a full application. Although there has been
some work in this area [79, 78], I haven't seen a full solution
to this problem."
Amer Diwan adds, \There has been relatively little work

understanding how to perform pointer analysis in a really
`real' environment. Components of a real environment in-
clude very large programs, programs that use threads, in-
complete programs | libraries etc., incremental compila-
tion and fast turn-around times, dynamic linking, and ugly
programs. Although there has been some work in these area
(e.g., [15, 34], etc. on very large programs, [84] on threads,
and [79, 78] on incomplete programs) there hasn't been any-
where near enough. In particular, a pointer analysis that
analyzes threads or incomplete programs is still a novelty
and we do not understand how the precision of analyses is
a�ected. Maybe an analysis that is right on the `sweet spot'
in an ideal world situation (whole program, no threads, . . . )
may be the worst one to use in a real world situation. Re-
garding ugly programs, many real world programs (particu-
larly for unsafe languages) have features that are practically
impossible for a pointer analysis to get. For example, con-
sider the C program li that includes a garbage collector.
If a pointer analysis is unfortunate enough to analyze the
garbage collector it will most likely determine that every-
thing aliases everything else. I think that we will need to
learn some lessons from the parallelization community: for
the most part (in my biased opinion) most of the paral-
lelization folks do not believe anymore that fully automatic
parallelization is doable in general, and are resorting to get-
ting feedback from the user or requiring certain kinds of
programming styles. Maybe pointer analysis needs to do
similar things."
Manuel F�ahndrich expands on the idea of programmer in-

volvement: \Modular analysis addresses both the problem of
analyzing incomplete programs and the problem of scaling
an analysis to large programs. Interface declarations that
describe sharing and non-sharing relationships between data
structures (shape descriptions) could be a way towards get-
ting more precise pointer information for error detection and
optimizations at the cost of programmer annotations. I'm
excited by recent progress in the area of type systems [99,
100] and formal logics [46] that provide languages in which
to express such interface declarations."

4.11 Engineering Insights
A signi�cant characteristic of a pointer analysis is both its

time and memory eÆciency. Most conference papers do not
allow suÆcient room to describe an algorithm, an empiri-
cal comparison of its precision and eÆciency, related work,
and implementation details. Unfortunately, this last sec-
tion rarely gets written. However, careful engineering of a
pointer analysis, particularly a ow-sensitive analysis, can
dramatically improve its performance and scalability [82,
104, 109, 110, 39]. If we expect that production systems
will use a new algorithm, we must encourage the implemen-
tors to describe the engineering of their analysis.

5. CONCLUSIONS
In summary, it is clear that many open pointer analysis

problems remain. Because client problems have di�erent
scalability and precision requirements, future work should
identify the client problems they are addressing, such as op-
timizations or program understanding tools. Furthermore,
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the metrics used to evaluate such analysis should be appro-
priate for the client problems.
One possible direction for future research is to require the

programmer to aid the analysis with assertions or additional
type information as discussed in Sections 4.10. An example
of this is the pointer type quali�er restrict introduced in
the recent ANSI standard for C [7]. When such a keyword is
used for a pointer, the programmer asserts that the pointer
will not point to a global or local that is directly accessed
during the scope of the pointer. The net e�ect is that such
pointers no longer require stack-based pointer analysis. Sim-
ilar suggestions have been proposed for C pointers [45, 35]
and for Java collection classes [60].
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