
Apposcopy: Semantics-Based Detection of Android
Malware through Static Analysis∗

Yu Feng
University of Texas at Austin, USA

yufeng@cs.utexas.edu

Saswat Anand
Stanford University, USA

saswat@cs.stanford.edu

Isil Dillig
University of Texas at Austin, USA

isil@cs.utexas.edu
Alex Aiken

Stanford University, USA
aiken@cs.stanford.edu

ABSTRACT
We present Apposcopy, a new semantics-based approach for
identifying a prevalent class of Android malware that steals
private user information. Apposcopy incorporates (i) a high-
level language for specifying signatures that describe seman-
tic characteristics of malware families and (ii) a static anal-
ysis for deciding if a given application matches a malware
signature. The signature matching algorithm of Apposcopy
uses a combination of static taint analysis and a new form of
program representation called Inter-Component Call Graph
to efficiently detect Android applications that have certain
control- and data-flow properties. We have evaluated Ap-
poscopy on a corpus of real-world Android applications and
show that it can effectively and reliably pinpoint malicious
applications that belong to certain malware families.

Categories and Subject Descriptors
D.4.6 [Software Engineering]: Security and Protection

General Terms
Security, Verification

Keywords
Android, Inter-component Call Graph, Taint Analysis

1. INTRODUCTION
As the most popular mobile operating system, the An-

droid platform is a growing target for mobile malware [4].
Today, many of the malicious applications that afflict An-
droid users exploit the private and monetized information

∗This work was sponsored by the Air Force Research Labo-
ratory, under agreement number FA8750-12-2-0020

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FSE ’14, November 16–22, 2014, Hong Kong, China
Copyright 2014 ACM 978-1-4503-3056-5/14/11 ...$15.00.

stored in a user’s smartphone. According to a recent re-
port [3], nearly half of Android malware are multi-functional
Trojans that steal personal data stored on the user’s phone.

In response to the rapid dissemination of Android mal-
ware, there is a real need for tools that can automatically
detect malicious applications that steal private user informa-
tion. Two prevalent approaches for detecting such Android
malware are taint analyzers and signature-based detectors:

Taint analyses, such as [17, 21], are capable of exposing
applications that leak private user information. Unfortu-
nately, since many benign apps also need access to sensitive
data to perform their advertised functionality, not every app
that leaks user information can be classified as malware. For
instance, an email client application will necessarily “leak”
email addresses of the user’s contacts in order to perform its
functionality. Thus, taint analyses cannot automatically dis-
tinguish benign apps from malware, and a security auditor
must invest significant effort in order to determine whether
a given information flow constitutes malicious behavior.

Signature-based malware detectors, including commer-
cial virus scanners, classify a program as malware if it con-
tains a sequence of instructions that is matched by a regu-
lar expression. As shown in a recent study, malware detec-
tors that are based on syntactic low-level signatures can be
easily circumvented using simple program obfuscations [34].
Hence, these malware signatures must be frequently updated
as new variants of the same malware family emerge.

In this paper, we present Apposcopy, a new semantics-
based approach for detecting Android malware that steal
private user information. Drawing insights from the re-
spective advantages of pattern-based malware detectors and
taint analyzers, Apposcopy incorporates (i) a high-level spec-
ification language for describing semantic characteristics of
Android malware families, and (ii) a powerful static analysis
for deciding if a given application matches the signature of a
malware family. The semantic, high-level nature of the sig-
nature specification language allows analysts to specify key
characteristics of malware families without relying on the
occurrence of specific instruction or byte sequences, making
Apposcopy more resistant to low-level code transformations.

The signature-based specification language provided by
Apposcopy allows specifying two types of semantic proper-
ties —control-flow and data-flow—of Android applications.
An example of a control-flow property is that the malware
contains a broadcast receiver which launches a service upon
the completion of some system event. An example of a data
flow property is that the malware reads some private data

of the device and sends it through a designated sink(e.g.,
Internet, SMS message, etc.).

To match the signatures specified in this language, Ap-
poscopy’s static analysis relies on two key ingredients. First,
we construct a new high-level representation of Android
applications called the inter-component callgraph (ICCG),
which is used to decide whether an Android application
matches the control flow properties specified in the signa-
ture. Second, Apposcopy incorporates a static taint anal-
ysis which is used for deciding whether a given application
matches a specified data-flow property.

We have evaluated Apposcopy on a corpus of real-world
Android applications and show that it can effectively and re-
liably pinpoint malicious applications –including obfuscated
ones– that belong to certain malware families. Despite the
theoretical undecidability of the semantic signature match-
ing problem, Apposcopy yields both few false positives and
few false negatives on current Android applications.

2. MOTIVATING EXAMPLE
In this section, we illustrate our approach using a sim-

plified version of the GoldDream malware family. As de-
scribed in Jiang’s security report [27], the key characteristic
of members of this family is that they register a receiver
for certain system events such as SMS messages or outgoing
phone calls. When these events trigger the execution of code
in the receiver, the malware then starts a background ser-
vice for sending private user information, such as the phone’s
unique IMEI number and subscriber id, to a remote server.

2.1 GoldDream Signature in Apposcopy
To detect a sample of GoldDream malware, an analyst

first writes a signature of this malware family in our Datalog-
based language. In this case, the behavior of GoldDream is
captured by the specification in Figure 2. Here, lines 1-2
introduce a new user-defined predicate GDEvent(x) which
describes the events that the GoldDream malware listens for.
In this case, GDEvent(x) evaluates to true when x is either
SMS_RECEIVED or NEW_OUTGOING_CALL but to false otherwise.

Using this predicate, lines 3-7 describe the signature of
the GoldDream malware family. In this case, the signature
uses three kinds of predicates provided by Apposcopy:

Component type predicates, such as receiver(r) and
service(s), specify that r and s are BroadcastReceiver

and Service components in the Android framework.
Control-flow predicates: An example of a control flow

predicate is icc, which describes inter-component communi-
cation in Android. In our example, icc(SYSTEM, r, e, _)

expresses that the Android system invokes component r

when system event e happens, and icc*(r, s) means that
component r transitively invokes component s.

Data-flow predicates, such as flow(x, so, y, si), ex-
press that the application contains a flow from source so in
component x to a sink si in component y. Hence, lines 6-7
state that component s sends the device and subscriber id
of the phone over the Internet.

Therefore, according to the signature(simplified version)
in Figure 2, an application A belongs to the GoldDream mal-
ware family if (i) A contains a broadcast receiver that lis-
tens for system events SMS_RECEIVED or NEW_OUTGOING_CALL
(lines 3, 4), and (ii) this broadcast receiver starts a service
which then leaks the device id and subscriber id over the
Internet (lines 5-7).

1. GDEvent(SMS_RECEIVED).
2. GDEvent(NEW_OUTGOING_CALL).
3. GoldDream :- receiver(r),
4. icc(SYSTEM, r, e, _), GDEvent(e),
5. service(s), icc*(r, s),
6. flow(s, DeviceId, s, Internet),
7. flow(s, SubscriberId, s, Internet).

Figure 2: GoldDream signature (simplified)

2.2 GoldDream Malware Detection
Given an Android application A and malware signature

S, Apposcopy performs static analysis to decide if app A
matches signature S. Apposcopy’s static analysis has two
important ingredients: (i) construction of the ICCG, which
determines the truth values of control-flow predicates used
in the signature, and (ii) static taint analysis, which is used
to decide the truth values of data-flow predicates.

Figure 1 shows a partial ICCG for an instance of the Gold-
Dream malware family. Nodes in the ICCG correspond to
components, and node labels denote component names. The
shapes of the nodes indicate component types: Rectangles
denote broadcast receivers, ellipses indicate activities, and
polygons are services. An ICCG edge from one node A to
another node B means that component A starts component
B, for example, by calling the startActivity method of the
Android SDK. The edges in the ICCG may also be labeled
with additional information, such as system events.

Going back to the specification from Section 2.1, the ICCG
shown in Figure 1 matches the sub-query

receiver(r), icc(SYSTEM, r, e,), GDEvent(e),
service(s), icc ∗ (r, s)

because (i) there exists a node in the ICCG representing
a receiver component (namely, zjReceiver), (ii) there is
an edge from the node representing the Android system
to zjReceiver labeled with SMS_RECEIVED, (iii) zjReceiver
has an outgoing edge to a service component called zjService.

Next, to decide data-flow queries, Apposcopy performs
taint analysis tracking flows from sources to sinks. Here,
sources represent sensitive data, such as the phone’s device
id, and sinks represent operations that may leak data, such
as sending text messages. For our example application, the
taint analysis yields the following result:
com.sjgo.client.zjService:

$getSimSerialNumber -> !INTERNET
$getDeviceId -> !INTERNET
$getSubscriberId -> !INTERNET
$getDeviceId -> !sendTextMessage
$getSubscriberId -> !sendTextMessage

cxboy.android.game.fiveInk.FiveLink:
$ID -> !INTERNET
$MODEL -> !INTERNET

net.youmi.android.AdActivity:
$getDeviceId -> !WebView
$ExternalStorage -> !WebView

Here, Apposcopy has identified source-sink flows in three
components, zjService, FiveLink, and AdActivity. For
example, the first three lines under zjService indicate that
it sends the phone’s serial number, device id, and subscriber
id over the Internet. Recall that the GoldDream malware
signature includes the data-flow query:
flow(s, DeviceId, s, Internet),
flow(s, SubscriberId, s, Internet)

where s is a service. Since the taint analysis reveals that
zjService leaks the device and subscriber id to the Internet,
this query evaluates to true, and Apposcopy concludes this
application is GoldDream malware. Observe that, although

Figure 1: Partial ICCG for an instance of the GoldDream malware family

Table 1: A partial list of ICC-related APIs.

Activity

startActivity(Intent)
startActivityForResult(Intent,int)
startActivityIfNeeded(Intent,int)
startNextMatchingActivity(Intent)

Service
startService(Intent)
bindService(Intent)

BroadcastReceiver
sendBroadcast(Intent)
sendBroadcast(Intent,String)
sendOrderedBroadcast(Intent,String)

there are other source-sink flows in this example (such as
from DeviceId to WebView in AdActivity), these other flows
do not necessarily correspond to malicious behavior.

3. MALWARE SPEC LANGUAGE
This section describes Apposcopy’s malware signature lan-

guage, which is a Datalog program augmented with built-
in predicates. For each malware family, the user defines a
unique predicate that serves as the signature for this mal-
ware family. The user may also define additional helper
predicates used in the signature. In what follows, we first
give some background on Datalog, and then describe the the
syntax and semantics of Apposcopy’s built-in predicates.

3.1 Datalog Preliminaries
A Datalog program consists of a set of rules and a set of

facts. Facts simply declare predicates that evaluate to true.
For example, parent("Bill", "Mary") states that Bill is a
parent of Mary. Each Datalog rule is a Horn clause defining a
predicate as a conjunction of other predicates. For example,
the rule:

ancestor(x, y) :- parent(x, z), ancestor(z, y).

says that ancestor(x, y) is true if both parent(x, z) and
ancestor(z, y) are true. In addition to variables, predi-
cates can also contain constants, which are surrounded by
double quotes, or “don’t cares”, denoted by underscores.

Datalog predicates naturally represent relations. Specifi-
cally, if tuple (x, y, z) is in relation A, this means the predi-
cate A(x, y, z) is true. In what follows, we write the type of
a relation R ⊆ X × Y × . . . as (s1 : X, s2 : Y, . . .), where s1,
s2, . . . are descriptive texts for the corresponding domains.

3.2 Apposcopy’s Built-in Predicates
We now describe the syntax and semantics of the four

classes of built-in predicates provided by Apposcopy.

3.2.1 Component Type Predicates
Component type predicates in Apposcopy represent the

different kinds of components provided by the Android frame-

Table 2: A partial list of life-cycle APIs.

Activity
onCreate(Bundle), onRestart(),
onStart(), onResume(),
onPause(), onStop(), onDestroy()

Service
onCreate(), onBind(Intent),
onStartCommand(Intent, int, int),
onDestroy()

BroadcastReceiver onReceive(Context, Intent)

work. An Android application consists of four kinds of com-
ponents, Activity, Service, BroadcastReceiver, and Content-
Provider. Activity components form the basis of the user
interface, and each window of the application is typically
controlled by an activity. Service components run in the
background and remain active even if windows are switched.
BroadcastReceiver components react asynchronously to mes-
sages from other applications. Finally, ContentProvider com-
ponents store data relevant to the application, usually in a
database, and allow sharing data across applications.

Corresponding to each of these Android components, Ap-
poscopy provides pre-defined predicates called service(C),
activity(C), receiver(C), and contentprovider(C) which
represent the type of component C. For example, activity(C)
is true if C is an Activity. Each of these four predicates cor-
respond to relations of type (comp : C) where domain C is
the set of all components in the application.

3.2.2 Predicate icc

A key idea behind inter-component communication (ICC)
in Android is that of Intents, which are messages passed
between components. Intents are used to start Activities;
start, stop, and bind Services; and broadcast information to
Broadcast Receivers. Table 1 shows a list of Android APIs
that are used in ICC. We refer to those methods, all of which
take Intent objects as arguments, as ICC methods. We use
the term ICC site to represent a statement that invokes one
of the ICC methods listed in Table 1. When component a

initiates ICC with component b, the Android system will
eventually call life-cycle methods associated with compo-
nent b. The life-cycle methods are shown in Table 2.

While an Intent object passed to ICC methods can contain
many different types of information, Apposcopy’s signature
language takes into account only two kinds: action and data.
Action is a string that represents the type of action that the
receiving component needs to perform, and data specifies the
type of data that the component needs to operate on. For
example, a component for editing images will receive intents
with corresponding action EDIT and data type image/*.

Apposcopy’s icc predicate represents inter-component com-
munication in Android and corresponds to a relation of type
(source : C, target : C, action : A, data : D) where domain

1. public class MainAct extends Activity {
2. protected void onCreate(Bundle b) {
3. foo();
4. bar();
5. }
6. void foo() {
7. Intent i = new Intent();
8. i.setAction(android.intent.action.SEND);
9. i.setType("text/plain");
10. startActivity(i);
11. }
12. void bar() {
13. Intent n = new Intent();
14. n.setClass(MsgAct.class);
15. startActivity(n);
16. }
17. }
18. public class MsgAct extends Activity { ... }

Figure 3: ICC example.

<activity android:name="MsgAct">
<intent-filter
<action name="android.intent.action.SEND" />
<data mimeType="text/plain" />

</intent-filter>
</activity>

Figure 4: A snippet of AndroidManifest.xml

C is the set of all components in the application, and A
and D are the sets of all Action and Data values defined by
the Android system. Since not all intents are required to
have action and data values, domains A and D also include
a special element ⊥, which indicates no value. Intuitively,
if predicate icc(p,q,a,d) is true, this means that compo-
nent p passes an intent to q through invocation of an ICC
method, and a and d represent the action and data strings
of the intent. To formally state the semantics of the icc

predicate, we first define targets of ICC sites:

Definition 3.1. The target of an ICC site, m(i,. . .), is
the set of components that will receive the intent stored in
variable i in some execution of the application.

Definition 3.2. We write m1 ; m2 iff method m1 di-
rectly calls m2 in some execution of the program. We define
;? to be the reflexive transitive closure of ;.

In other words, m1 ;? m2 if m1 transitively calls m2. We
now define the semantics of the icc predicate as follows:

Definition 3.3. The predicate icc(p,q,a,d) is true iff
(i) m1 is a life-cycle method defined in component p, (ii)
m1 ;? m2, (iii) m2 contains an ICC site whose target is
component q, and (iv) the action and data values of the in-
tent are a and d, respectively.

Example 1. Consider the code in Figure 3, which defines
two activities, MainAct and MsgAct. The onCreate life-cycle
method of MainAct calls foo which initiates ICC at line 10
by calling startActivity with intent i. The action associ-
ated with intent i is SEND and the data type is text/plain.
According to the manifest in Figure 4, MsgAct declares an
intent filter for SEND actions on data type text/plain, mean-
ing that msgAct is a target of the ICC site at line 10. Hence,
predicate icc(MainAct, MsgAct, SEND, text/plain) is true.

We now define the predicate icc*(p, q), which is true if
component p can transitively launch component q:

Definition 3.4. Let icc_direct(p,q) be a binary predi-
cate which is true iff icc(p, q, _, _) is true. The predicate
icc* is the reflexive transitive closure of icc_direct.

Table 3: A non-exhaustive list of Android methods
that are candidates of abuse

Operation & Description
<BroadcastReceiver: void abortBroadcast()>
Block current broadcaster.
<Runtime: Process exec(java.lang.String)>
Execute a command.
<System: void loadLibrary(java.lang.String)>
Perform native call.
<PackageManager: List getInstalledPackages()>
Get all application packages.
<DexClassLoader: void <init>(...,ClassLoader)>
Load classes from .jar and .apk files.

Our malware signature language includes the predicate
icc* because it allows writing signatures that are resilient to
high-level control flow obfuscation. In particular, if the sig-
nature contains the predicate icc*(p, q), adding or delet-
ing dummy components for the purposes of detection evasion
will not affect the truth value of this predicate.

3.2.3 Predicate calls

Apposcopy provides another control-flow predicate, called
calls, representing a relation of type (comp : C, callee :
M) where domains C and M represent the set of all com-
ponents and methods in the program respectively. Intu-
itively, calls(c,m) is true if method m is called by compo-
nent c. More precisely, calls(c, m) is true iff n is a life-cycle
method defined in component c and n ;? m.

The calls predicate is useful for defining malware signa-
tures because it can be used to check if a component calls
Android API methods that can be abused by malware. Ta-
ble 3.2.4 lists a few of such dangerous methods.

3.2.4 Predicate flows

Apposcopy provides a data-flow predicate flows used for
querying whether an app leaks sensitive data. More specifi-
cally, taint flow is defined in terms of sources and sinks.

Definition 3.5. A source (resp. sink) is a labeled (i.e.,
annotated) program variable that is either a method param-
eter or method return value. The corresponding method is
referred to as the source method (resp. sink method).

An example of a source is the return value of method
getDeviceId, which yields the phone’s unique device id. An
example of a sink is the third parameter of sendTextMessage,
which corresponds to the text to be sent through SMS.
Source and sink annotations are discussed in Section 4.3.1,
and Table 3.2.4 shows a partial list of source and sink meth-
ods.

The flow predicate represents a relation of type (srcComp :
C, src : SRC, sinkComp : C, sink : SINK) where domain C
is the set of components, and SRC and SINK are the sets of
all sources and sinks in the program. To define the semantics
of the flow predicate, we first define taint flow :

Definition 3.6. A taint flow (so, si) represents that a
source labeled so can flow to a sink labeled si through a series
of assignments or matching loads and stores.

Definition 3.7. The predicate flow(p,so,q,si) is true
iff (i) m and n are the source and sink methods corresponding
to source so and sink si, (ii) calls(p, m) and calls(q,n)

are both true, and (iii) there exists a taint flow (so,si).

Example 2. Consider the code in Figure 5, where the
return value of getDeviceId is a source labeled $getDeviceId,

Table 4: Examples of APIs with source and sink annotations
Sources Sinks
<TelephonyManager: String getDeviceId()> <SmsManager: void sendTextMessage(...)>

<TelephonyManager: String getSimSerialNumber()> <SmsManager: void sendMultiparTextMessage(...)>

<TelephoneyManager: String getSubscriberId()> <SmsManager: void sendDataMessage(...)>

<TelephoneyManager: String getVoiceMailNumber()> <DataOutputStream: write(...)>

<TelephoneyManager: String getSimOperator()> <DatagramSocket: void send(...)>

<Location: double getLatitude()> <AbstractHttpClient: HttpResponse execute(...)>

<Location: double getLongitude()> <Ndef: void writeNdefMessage(...)>

public class ListDevice extends Activity {
protected void onCreate(Bundle bd) {

1. Device n,m;
2. ...
3. String x = "deviceId=";
4. String y = TelephonyManager.getDeviceId();
5. String z = x.concat(y);
6. m.f = z;
7. n = m;
8. String v = n.f;
9. smsManager.sendTextMessage("3452",null,v,null,null);

}
} Figure 5: Example illustrating data flow

and the third parameter of sendTextMessage is a sink labeled
!sendTextMessage. This application exhibits a taint flow from
$getDeviceId to !sendTextMessage because variable y holding
the return value of getDeviceId can flow to variable v due
to the chain of assignments, loads, and stores performed in
lines 5-8. Hence, the following predicate evaluates to true:

flow(ListDevice,$getDeviceId,ListDevice,!sendTextMessage)

4. STATIC ANALYSES
This section describes Apposcopy’s static analyses for de-

ciding whether an application matches a malware signature.
The main idea is to compute an over-approximation of the
icc, calls, and flow relations.

4.1 Pointer Analysis & Callgraph Contruction
In order to build the inter-component callgraph and track

information flow, Apposcopy starts by performing a pointer
analysis, which computes the set of abstract heap objects
that each variable may point to. In the remainder of the
paper, we use the notation v ↪→ o to denote that variable
v may point to an abstract heap object represented by o in
some execution of the program.

Since the precision of the underlying pointer analysis is
critical for detecting malware with few false alarms, we use
a field- and context-sensitive Andersen-style pointer analy-
sis [7]. For context-sensitivity, we use a hybrid approach that
combines call-site sensitivity [30] and object-sensitivity [31].
In particular, our approach is similar to the technique de-
scribed in [28] and uses call-site sensitivity for static method
calls and object-sensitivity for virtual method calls.

Another key ingredient of our malware detection algo-
rithm is callgraph construction, which is used for resolving
the targets of virtual method calls. Since callgraph precision
has significant impact on the precision of the ICCG, Ap-
poscopy computes the callgraph on-the-fly, simultaneously
refining the targets of virtual method calls and points-to sets
until a fixed point is reached. The set of edges in the result-
ing callgraph represent the relation ; from Definition 3.2.
An edge in the callgraph from method m1 to method m2

corresponds to m1 ; m2. Similarly, m1 ;? m2 represents
that there exists a path in the callgraph from m1 to m2.

Table 5: API for setting Intent attributes

Target

setComponent(ComponentName),
setClassName(Context, String),
setClassName(String, String),
setClass(Context, Class)

Action setAction(String)

Data type
setType(String), setData(URI),
setDataAndType(URI,String)

4.2 Inter-component Control-flow Analysis
We now describe the construction of the inter-component

call graph (ICCG), which is used for deciding ICC queries.

Definition 4.1. An ICCG for a program P is a graph
(N,E) such that nodes N are the set of components in P ,
and edges E define a relation E ⊆ (N×A×D×N) where A
and D are the domain of all actions and data types defined
by the Android system augmented with the element ⊥.

In other words, ICCG is a directed graph where nodes are
components in an application, and edges are labeled with
actions and data types. The special element ⊥ indicates
that the intent defining the ICC does not have action or
data type information associated with it. Given a callgraph
and the results of the pointer analysis, Apposcopy constructs
the ICCG by performing two key steps that we explain next.

4.2.1 Data Flow Analysis for Intents
The first step of ICCG construction is a data flow analysis

to track the information stored in Intent objects. Specifi-
cally, we track three kinds of information about intents:

• Target: In the Android framework, a component can
specify the target of an Intent (and, hence, the ICC)
by calling the methods shown in the first row of Ta-
ble 5. Such intents whose targets have been explicitly
specified are called explicit intents.

• Action: A component can specify the action that the
ICC target needs to perform by calling the methods
shown in the second row of Table 5.

• Data type: An application can specify the data type
that the recipient component needs to operate on by
calling the methods shown in the last row of Table 5.

When a component does not specify the target of an intent
explicitly, the Android system resolves the recipient com-
ponents of the ICC based on intent filters declared in the
manifest file. An intent filter specifies the kinds of actions
that a component will respond to. For instance, consider the
AndroidManifest.xml file from Figure 4. Here, MsgAct de-
clares that it responds to intents whose corresponding action
and data type are SEND and text/plain respectively.

In order to build the ICCG, Apposcopy first performs a
forward interprocedural dataflow analysis, called the intent
analysis, which overapproximates the target, action, and

must alias(y, x)

Γ ` newval(y, x, s) : [yt 7→ {s}]
may alias(y, x), ¬must alias(y, x)

Γ ` newval(y, x, s) : [yt 7→ (Γ(y) ∪ {s})]
¬may alias(y, x)

Γ ` newval(y, x, s) : [yt 7→ Γ(y)]

Γ ` newval(xi, x, s) : Γi (xi ∈ dom(Γ))

Γ ` x.setComponent(s) :
⋃

i Γi

Figure 6: Transfer function for setComponent

data type associated with each intent object. Specifically,
for each variable i of type Intent, our analysis tracks three
variables it, ia, and id whose domains are sets of compo-
nents, actions, and data types respectively. We initialize
the dataflow value for each variable to be {⊥} and define
the join operator as set union.

Table 5 shows the set of Android API methods for setting
attributes of Intent objects. Since other methods do not
change attributes of intents, the transfer function for any
statement not included in Table 5 is the identity function.

Figure 6 shows the transfer function for setComponent in
the form of inference rules. Since transformers for the other
statements from Table 5 are very similar, we only focus on
setComponent as a representative. In Figure 6, environment
Γ denotes data flow facts for targets of intent variables as a
mapping from each variable to its corresponding dataflow
value. Now, consider the statement x.setComponent(s)

where x is a variable of type Intent and s is a string speci-
fying the target component. If another variable y is an alias
of x, then the target of y will also be affected by this state-
ment. Hence, our transfer function must update the data
flow values of all variables that are aliases of x. Now, there
are three cases to consider. If x and y are guaranteed to
be aliases, as in the first rule of Figure 6, then we can kill
its old value and update its new value to {s} (i.e., a strong
update). In the second rule, if y may alias x, then y’s tar-
get could either remain unchanged or become s; hence, we
only perform a weak update. Finally, if y and x do not
alias, then y’s target definitely remains unchanged and its
existing dataflow values are preserved. The may alias and
must alias relations used in Figure 6 are defined according
to Figure 7. In the definition of the must alias relation, γ(o)
represents the set of concrete memory locations represented
by abstract memory location o.

Based on the results of this data flow analysis, we can now
determine whether an intent is explicit or implicit. Specif-
ically, if Γ(xt) does not contain ⊥, the target of the in-
tent must have been explicitly specified. Hence, we write
explicit(x) if ⊥ 6∈ Γ(xt). Otherwise, x may be an implicit
intent, denoted implicit(x).

Example 3. Consider again the code from Figure 3. Here,
for Intent i declared at line 7, we have Γ(it) = {⊥}, Γ(ia) =
{action.SEND}, Γ(id) = {text/plain} For the intent n at
line 13, our analysis computes Γ(nt) = {MsgAct}, Γ(na) =
{⊥}, Γ(nd) = {⊥}. Since ⊥ 6∈ Γ(nt), we conclude explicit(n).
On the other hand, i is identified to be implicit.

4.2.2 ICCG Construction
We now describe ICCG construction using the results of

the intent analysis. In what follows, we write icc site(m, i)
to denote that method m contains an ICC site with intent
i, and we write P ;? m to indicate that component P has

x ↪→ o, y ↪→ o

may alias(x, y)

x ↪→ o,¬∃o′.x ↪→ o′

y ↪→ o,¬∃o′.y ↪→ o′

|γ(o)| = 1

must alias(x, y) must alias(x, x)

Figure 7: May and must aliasing relations

icc site(m, i), explicit(i), P ;? m
Q ∈ Γ(it), A ∈ Γ(ia), D ∈ Γ(id)

(P,Q,A,D) ∈ E (Explicit)

icc site(m, i), implicit(i), P ;? m
A ∈ Γ(ia), D ∈ Γ(id)
intent filter(Q,A,D)

(P,Q,A,D) ∈ E (Implicit)

Figure 8: ICCG construction rules

a life-cycle method m′ and m′ ;? m Finally, the predicate
intent filter(P,A,D) means that component P declares an
intent filter with action A and data type D. This informa-
tion is extracted from the application’s manifest file.

Figure 8 shows the ICCG construction rules. The first rule
(Explicit) considers ICC sites in method m where intent i
has its target component explicitly specified (i.e., Q ∈ Γ(it)
and Q 6= ⊥). In this case, if method m is reachable from
component P , we add an edge from component P to Q in
the ICCG. Furthermore, if A ∈ Γ(ia) and D ∈ Γ(id), the
edge from P to Q has action label A and data type label D.

The second rule in Figure 8 applies to ICC sites where
intent i may be implicit. If A ∈ Γ(ia) and D ∈ Γ(id),
we need to determine all components Q that declare intent
filters with action A and data type D. Hence, we add an
edge from component P to Q if intent filter(Q,A,D) is true.

Example 4. Consider again the code from Figure 3 and
the data-flow facts Γ computed in Example 3. Using the Im-
plicit rule for the ICC site in method foo with intent i, we
infer the edge (MainAct, MsgAct, action.SEND, text/plain).
Using the Explicit rule for ICC site in method bar with in-
tent n, we add the edge (MainAct, MsgAct,⊥,⊥).

4.3 Taint Analysis
We now describe Apposcopy’s taint analysis for answering

data-flow queries. We first discuss how we annotate sources
and sinks and then describe our taint propagation rules.

4.3.1 Annotations
Apposcopy provides three types of annotations called source,

sink, and transfer annotations. Source annotations are used
to mark Android framework methods that read sensitive
data, and sink annotations indicate methods that leak data
outside of the device. In contrast, transfer annotations are
used for describing taint flow through Android SDK meth-
ods. In our approach, transfer annotations are necessary
because Apposcopy analyzes the source code of Android ap-
plications, but not the underlying implementation of the
Android platform. Hence, we have manually written an-
notations for Android SDK methods that propagate taint
between parameters and return values.

Example 5. Figure 9 shows representative examples of
source, sink, and transfer annotations. All three kinds of
specifications are written using the @Flow annotation, and
sources and sinks are indicated by the special prefixes $ and !

respectively. In Figure 9, the annotation at line 2 is a source
annotation, indicating that getDeviceId’s return value is a
taint source. The sink annotation at line 8 indicates that

1. //Source annotation in android.telephony.TelephonyManager
2. @Flow(from="$getDeviceId",to="@return")
3. String getDeviceId(){ ... }

7. //Sink annotation in android.telephony.SmsManager
8. @Flow(from="text",to="!sendTextMessage")
9. void sendTextMessage(...,String text,...){ ... }

10. //Transfer annotation in java.lang.String
11. @Flow(from="this",to="@return")
12. @Flow(from="s",to="@return")
13. String concat(String s){ ... }

Figure 9: Source, Sink and Transfer annotations.

sendTextMessage is a sink for its formal parameter text.
Lines 11-12 correspond to transfer annotations for the An-
droid library method concat which is not analyzed by Ap-
poscopy. According to line 11, if the this parameter of
concat is tainted, then its return value is also tainted. Sim-
ilarly, the annotation at line 12 states that if parameter s of
concat is tainted, then so is the return value.

We emphasize that the source, sink, and transfer anno-
tations are not written by individual users of Apposcopy,
which already comes with a set of built-in annotations that
we have written. Apposcopy uses the same pre-defined an-
notations for analyzing every Android application.

4.3.2 Static Taint Analysis
We describe Apposcopy’s taint analysis using the infer-

ence rules shown in Figure 10, which define two predicates
tainted(o, l) and flow(so, si). The predicate tainted repre-
sents a relation (O : AbstractObj, L : SourceLabel) where
domain O is the set of all abstract heap objects and L is the
set of all source labels, such as $getDeviceId. If tainted(o, l)
is true, this means that any concrete heap objected repre-
sented by o may be tainted with l. The predicate flow(so, si)
represents a relation of type (L : SourceLabel, L : SinkLabel).
If flow(so, si) is true, this means that source so may reach
sink si. Hence, the flow predicate is a static over-approximation
of the taint flow relation introduced in Definition 3.6.

All of the rules in Figure 10 use the notation mi to denote
the i’th parameter of method m. For uniformity of presen-
tation, we represent the this pointer as m0 and the return
value as mn+1 where n is the number of arguments of m.

The first rule labeled Source in Figure 10 describes taint
introduction. In this rule, we use the notation src(mi, l) to
denote that the i’th parameter of m is annotated with source
label l as described in Section 4.3.1. Hence, if variable mi

may point to heap object o and mi is annotated as source l,
then heap object o also becomes tainted with label l.

The second rule called Transfer performs taint propaga-
tion. Here, the predicate transfer(mi,mj) corresponds to
the transfer annotations from Section 4.3.1 and indicates
there is a flow from the i’th to the j’th parameter of An-
droid SDK method m. According to this rule, if (i) mi can
flow to mj , (ii) mi and mj may point to heap objects o1 and
o2 respectively, and (iii) o1 is tainted with label l, then o2
also becomes tainted with label l.

The third rule labeled Sink defines the flow predicate using
the tainted predicate. Here, the notation sink(mi, si) means
that the i’th parameter of mi is passed to some sink labeled
si. Hence, according to this rule, if mi is passed to sink si,
and mi may point to a heap object o that is tainted with
label so, then there may be a flow from source so to sink si.

The taint analysis of Apposcopy consists of applying the
rules from Figure 10 until a fixed-point is reached. Observe

src(mi, l), mi ↪→ o

tainted(o, l)
(Source)

tainted(o1, l), mi ↪→ o1, mj ↪→ o2
transfer(mi,mj)

tainted(o2, l)
(Transfer)

tainted(o, so),mi ↪→ o, sink(mi, si)

flow(so, si)
(Sink)

Figure 10: Rules describing the taint analysis.

that the rules from Figure 10 do not describe transformers
for individual instructions such as stores because we use the
points-to facts computed by a whole-program pointer anal-
ysis. That is, if any variable v in the program may flow to
mi through a chain of heap reads and writes, we will have
mi ↪→ ov where ov is the location pointed to by v. 1

Example 6. Consider the code in Figure 5 and annota-
tions in Figure 9. Say x, y, z point to heap objects o1, o2, o3
respectively. Since src(getDeviceIdreturn, $getDeviceId) and
y ↪→ o2, the Source rule infers tainted(o2, $getDeviceId).
transfer(concat1, concatreturn)denotes a transfer annotation
at line 5 where concat1 ↪→ o2, concatreturn ↪→ o3; thus, the
Transfer rule infers tainted(o3, $getDeviceId). Finally, con-
sider the call to method sendTextMessage which has a sink an-
notation sink(sendTextMessage3, !getDeviceId). Since the ar-
gument v and z are aliases, we have sendTextMessage3 ↪→ o3.
Hence, we deduce flow($getDeviceId, !sendTextMessage).

5. IMPLEMENTATION & EVALUATION
Our implementation consists of about 30,000 lines of Java

and uses several publicly-available software such as Soot [35]
and bddbddb [36]. Soot is used to convert Android’s .apk
files to Jimple, a higher-level intermediate representation.
A pre-processing step processes Jimple instructions to ex-
tract various types of program facts, and our static analyses
are specified as Datalog programs. The bddbddb system
takes as input the Datalog specification of a static analysis
and extracted program facts and outputs the results of the
analysis. Apposcopy’s static analyses use manually-written
models of the Android framework; currently, we have models
for about 1,100 classes that are relevant for our analyses.

To evaluate the effectiveness and accuracy of Apposcopy,
we performed four sets of experiments, including evaluation
on (i) known malware, (ii) Google Play apps, (iii) obfuscated
malware. In addition, (iv) we also compare Apposcopy with
another research tool called Kirin for Android malware de-
tection. The remainder of this section describes the details
and results of our evaluations.

5.1 Evaluation on Known Malware
In our first experiment, we evaluate the effectiveness of

Apposcopy on 1027 malware instances from the Android
Malware Genome project [1], which contains real malware
collected from various sources, including Chinese and Rus-
sian third-party app markets. All of these malicious appli-
cations belong to known malware families, such as Droid-
KungFu, Geinimi, and GoldDream. To perform this ex-
periment, we manually wrote specifications for the malware
families included in the Android Malware Genome Project.
For this purpose, we first read the relevant reports where
available and inspected a small number (1-5) of instances

1For simplicity of presentation, we assume every variable is
a pointer to a heap object.

Table 6: Examples of Apposcopy’s signatures.
Malware family Signature
ADRD ADRD :- receiver(r), icc(SYSTEM, r, BOOT_COMPLETED, _),receiver(s), service(t),icc*(r,s), icc*(s,t), icc*(t,s),

flow(t, DeviceId, t, ENC), flow(t, SubscriberId, t, ENC), flow(t, ENC, t, Internet).

BeanBot BeanBot :- receiver(r), service(s), service(t), service(q), icc(SYSTEM, r, PHONE_STATE, _),
calls(r, abortBroadcast), icc*(r, s), icc*(s, t), icc*(s, q), flow(s, DeviceId, s, Internet),
flow(s, Line1Number, s, Internet), flow(s, SimSerialNumber, s, Internet).

CoinPirate CoinPirate :- receiver(r), receiver(t), icc(SYSTEM, r, SMS_SENT, _), icc(SYSTEM, r, SMS_RECEIVED, _), service(s),
calls(r, abortBroadcast), calls(s, sendTextMessage), icc*(r, s), icc*(s, t), flow(s, DeviceId, s, Internet),
flow(s, SubscriberId, s, Internet), flow(s, Model, s, Internet), flow(s, SDK, s, Internet).

for each malware family. Table 6 shows signatures that we
wrote for some of these malware families.

Table 7 presents the results of this experiment. The first
column indicates the malware family, and the second col-
umn shows the number of analyzed instances of that mal-
ware family. The next two columns show the number of false
negatives (FN) and false positives (FP) respectively. In this
context, a false negative arises if an application A belongs
to a certain malware family F but Apposcopy cannot detect
that A is an instance of F . Conversely, a false positive arises
if an application A does not belong to malware family F but
Apposcopy erroneously reports that it does. The final col-
umn of Table 7 reports Apposcopy’s overall accuracy, which
is calculated as the number of correctly classified instances
divided by the total number of samples.

As shown in the last row of Table 7, the overall accuracy
of Apposcopy over all malware instances that we analyzed
is 90.0%. That is, it can correctly classify approximately 9
out of 10 malware instances accurately.

However, looking at the results more closely, we see that
Apposcopy performs quite poorly on the BaseBridge mal-
ware family. Specifically, among the 121 samples that we
analyzed, Apposcopy only classifies 46 of these applications
as instances of BaseBridge. Upon further inspection of this
family, we found that many of the BaseBridge instances dy-
namically load the code that performs malicious function-
ality. Such behavior can inherently not be detected using
static analysis and causes Apposcopy to yield many false
negatives. Observe that, if we exclude BaseBridge from our
samples, the overall accuracy of Apposcopy rises to 96.9%.

For the other malware families for which Apposcopy yields
false negatives, there are several contributing factors. First,
since we have written the specifications by inspecting only a
small number of samples, our signatures may not adequately
capture the essential characteristics of all instances of that
family. Second, the malware family may have some key fea-
ture that is not expressible in our malware specification lan-
guage. For example, if a given malware performs malicious
functionality without leaking sensitive data, Apposcopy will
be unable to detect it. A third contributing factor for false
negatives is due to missing models. Specifically, while our
static analysis is sound, we do not analyze the underlying
code of the Android system, but instead rely on method stubs
that capture the relevant behavior of the Android SDK. If
these applications call SDK methods for which we have not
provided stubs, Apposcopy may yield false negatives.

Based on the data from Table 7, we observe that Ap-
poscopy reports very few false positives. Among the 1027
malware samples, Apposcopy reports two instances of the
Geinimi family as instances of both Geinimi as well as the
DroidKungFu family. This corresponds to an overall false
positive ratio of less than 0.2%, indicating that Apposcopy’s
static analysis is precise enough to accurately answer control-
and data-flow queries about Android applications.

Table 7: Evaluation of Apposcopy on malware from
the Android Malware Genome project.
Malware Family #Samples FN FP Accuracy
DroidKungFu 444 15 0 96.6%
AnserverBot 184 2 0 98.9%
BaseBridge 121 75 0 38.0%
Geinimi 68 2 2 97.1%
DroidDreamLight 46 0 0 100.0%
GoldDream 46 1 0 97.8%
Pjapps 43 7 0 83.7%
ADRD 22 0 0 100.0%
jSMSHider 16 0 0 100.0%
DroidDream 14 1 0 92.9%
Bgserv 9 0 0 100.0%
BeanBot 8 0 0 100.0%
GingerMaster 4 0 0 100.0%
CoinPirate 1 0 0 100.0%
DroidCoupon 1 0 0 100.0%

Total 1027 103 2 90.0%

Finally, we remark that Apposcopy’s analysis time on
these malicious applications is moderate, with an average
of 275 seconds per analyzed application containing 18,200
lines of Dalvik bytecode on average.

5.2 Evaluation on Google Play Apps
In a second experiment, we evaluate Apposcopy on thou-

sands of apps from Google Play. Since these applications are
available through the official Android market rather than
less reliable third-party app markets, we would expect a
large majority of these applications to be benign. Hence,
by running Apposcopy on Google Play apps, we can assess
whether our high-level signatures adequately differentiate
benign applications from real malware.

In our experiment, among the 11,215 apps analyzed by
Apposcopy, only 16 of them were reported as malware. Specif-
ically, Apposcopy reported two applications to be instances
of DroidDreamLight, one to be an instance of DroidDream
and another one to be an instance of Pjapps. The remaining
12 applications were categorized as DroidKungFu. To de-
cide whether these 16 apps are indeed malware, we uploaded
them to VirusTotal [5] for analyzing suspicious applications.
VirusTotal is a service that runs multiple anti-virus tools on
the uploaded application and shows their aggregate results.
Based on the results provided by VirusTotal, the majority
of anti-virus tools agree with Apposcopy’s classification for
13 of the 16 reported malware. For the remaining three
applications, the majority of the tools classify them as ma-
licious adware while Apposcopy classifies them as instances
of DroidKungFu. This experiment confirms our claim that
Apposcopy does not generate a lot of false alarms and that
our malware signatures can distinguish benign applications
from real malware.

Similar to the experiments from Section 5.1, Apposcopy
takes an average of 346 seconds to analyze a Google Play
application with 26,786 lines of Dalvik bytecode on average.

5.3 Evaluation on Obfuscated Apps
To substantiate our claim that Apposcopy is resilient to

code transformations, we compare the detection rate of Ap-
poscopy with other anti-virus tools on obfuscated versions of
known malware. For this experiment, we obfuscated exist-
ing malware using the ProGuard tool [2], which is commonly
used by malware writers to evade detection. In addition,
since the databases of some of the anti-virus tools include
signatures of malware samples obfuscated by ProGuard, we
also applied three additional obfuscations that are not per-
formed by ProGuard: First, our obfuscator changes the
names of components, classes, methods, and fields. Second,
all invocations to methods of android.* classes are redi-
rected through proxy methods. Third, our obfuscator also
performs string encryption, including encryption of compo-
nent names as well as action and data type values of intents.

Table 8 shows the results of our third experiment on ob-
fuscated malware. Each row in this table corresponds to an
application that is an instance of a known malware family
(and whose unobfuscated version can be identified as mal-
ware by all tools considered in our evaluation). Each column
in the table corresponds to a leading anti-virus tool, namely,
AVG, Symantec, ESET, Dr. Web, Kaspersky, Trend Micro,
and McAfee. A check (3) indicates that the tool is able to
detect the obfuscated version of the program as malware,
and a cross (7) means that the tool is unable to classify
the obfuscated version as malicious. As Table 8 shows, Ap-
poscopy is resistant to these obfuscations for all malware
that we considered. In contrast, none of the other tools can
successfully classify all of the obfuscated apps as malware.

5.4 Comparison with Kirin
In addition to comparing Apposcopy with commercial anti-

virus tools, we also compared Apposcopy against Kirin [19],
which is the only publicly available research tool for An-
droid malware detection. As explained in Section 6, Kirin is
a signature-based malware detector that classifies an app as
malware if it uses a dangerous combination of permissions
specified by the malware signature. On the set of malicious
apps considered in Section 5.1, Kirin reports only 532 apps
out of 1,027 malicious apps to be malware. This corresponds
to a false negative rate of 48% , which is quite high compared
to the 10% false negative rate of Apposcopy. On the other
hand, for the set of applications taken from Google Play and
considered in Section 5.2, Kirin reports 8% of these apps to
be malware, while Apposcopy classifies only 0.14% of these
apps as malicious. We manually inspected 20 out of the
886 apps classified as malware by the Kirin tool and also
compared with the results of VirusTotal. Our evaluation re-
vealed that the overwhelming majority of the apps classified
as malware by Kirin are false positives. Hence, our experi-
ments demonstrate that Apposcopy outperforms Kirin both
in terms of false positives as well as false negatives.

6. RELATED WORK
Taint analysis. Both dynamic and static taint anal-

yses have been proposed for tracking information-flow in
mobile applications. For example, TaintDroid [17] and Vet-
Droid [37] are dynamic taint analyses that track information
flow by instrumenting the Dalvik VM, and examples of static
taint analyses include [20, 21, 23, 16]. While Apposcopy
employs static taint analysis as one of its components, we
observe that not every application that leaks sensitive data

is malicious — in fact, many benign apps transmit sensi-
tive data for performing their required functionality. Thus,
taint analyses on their own are not sufficient for automat-
ically differentiating malicious apps from benign apps, and
we propose to combine taint analysis with high-level mal-
ware signatures to effectively identify malicious code.

Signature-based malware detection. Many techniques
for identifying existing malware are signature-based, mean-
ing that they look for patterns identifying a certain malware
family. In its simplest form, these patterns are sequences
of bytes or instructions [25]. Since such syntactic patterns
can be defeated by semantics-preserving transformations,
previous work has considered semantics-aware malware de-
tection [13]. Similar to [13], Apposcopy detects malware
based on their semantic rather than syntactic characteris-
tics. However, our signatures are much higher-level com-
pared to the templatized instruction sequences used in [13]
and allow directly specifying control- and data-flow proper-
ties of Android applications. Furthermore, the underlying
signature matching techniques are also very different.

A popular signature-based malware detection technique
for Android is the Kirin tool [19]. The malware signatures
in Kirin specify dangerous combinations of Android permis-
sions, and Kirin decides if an application matches a signa-
ture by analyzing its manifest file. As demonstrated in our
experimental evaluation, Kirin yields many more false posi-
tives and false negatives compared to Apposcopy.

Another related approach is the behavioral detection tech-
nique described in [9]. In that approach, one specifies com-
mon malware behavior using temporal logic formulas. How-
ever, a key difference between Apposcopy and behavioral
detection is that our techniques are purely static, while [9]
requires monitoring behavior of the application at run-time.

The DroidRanger tool [40] uses permission-based behav-
ioral footprint to detect instances of known malware fam-
ilies. Behavioral footprints include characteristic malware
features, such as listening to certain system events, calling
suspicious APIs, and containing hard-coded strings. While
these behavioral footprints can be viewed as high-level mal-
ware signatures, they differ from those of Apposcopy in sev-
eral ways: Behavioral footprints neither refer to information
flow properties of an application nor do they express control
flow dependencies between different components. Further-
more, behavioral footprints include hard-coded string val-
ues, which are easy to obfuscate by malware writers.

Zero-day malware detection. A known limitation of
signature-based approaches, including Apposcopy, is that
they can only detect instances of known malware families.
In contrast, zero-day malware detectors try to uncover un-
known malware families. For example, RiskRanker [24] per-
forms several risk analyses to rank Android applications as
high-, medium-, or low-risk. These risk analyses include
techniques to identify suspicious code that exploits platform-
level vulnerabilities or sends private data without being trig-
gered by user events. In addition to identifying instances
of known malware, DroidRanger [40] also tries to uncover
zero-day malware by performing heuristic-based filtering to
identify certain “inherently suspicious” behaviors.

Many recent malware detectors, such as [8, 22, 10, 33, 6],
use machine learning to detect zero-day malware. For ex-
ample, Drebin [8] performs light-weight static analysis to ex-
tract features, such as permissions and API calls, and trains

Table 8: Comparison between Apposcopy and other tools on obfuscated malware.
Family AVG Symantec ESET Dr. Web Kaspersky Trend Micro McAfee Apposcopy
DroidKungFu 7 7 3 7 3 7 7 3
Geinimi 7 7 7 7 7 7 7 3
DroidDreamLight 7 7 7 7 7 7 7 3
GoldDream 7 7 7 7 7 3 7 3
DroidDream 3 3 3 3 3 3 3 3
BeanBot 7 7 7 7 7 7 7 3
GingerMaster 7 7 3 3 3 3 3 3
Pjapps 7 7 7 7 7 7 7 3
Bgserv 3 7 7 7 3 7 7 3
CoinPirate 7 7 7 7 3 7 7 3
jSMSHider 3 3 3 3 3 3 3 3
AnserverBot 3 7 3 3 3 3 3 3
DroidCoupon 7 7 3 3 3 7 7 3
ADRD 7 7 7 7 7 7 7 3

Success rate 28.6% 14.3% 42.9% 35.7% 57.1% 35.7% 28.6% 100.0%

an SVM to find a hyperplane separating benign apps from
malware. The DroidAPIMiner tool [6] also considers API
features and uses machine learning to automatically classify
an application as malicious or benign. While learning-based
approaches are powerful for detecting unknown malware,
their precision relies on representative training sets.

We believe all of these zero-day malware detection tech-
niques are complementary to Apposcopy: While Apposcopy
can identify instances of known malware families with few
false alarms, zero-day malware detectors can help uncover
new malware families, albeit at the cost of more false posi-
tives or more involvement from a security auditor.

Static analysis for malware detection. Static anal-
ysis and model checking have been used to detect security
vulnerabilities for a long time. In the context of mobile
malware, the SAAF tool [26] uses program slicing to iden-
tify suspicious method arguments, such as certain URLs or
phone numbers. The work described in [18] performs vari-
ous static analyses, including taint analysis, to better under-
stand smartphone application security in over 1,000 popular
Android apps. One of the interesting conclusions from this
study is that, while many apps misuse privacy-sensitive in-
formation, few of these apps can be classified as malware.

The Pegasus system [11] focuses on malware that can be
identified by the order in which certain permissions and APIs
are used. The user writes specifications of expected app be-
havior using temporal logic formulas, and Pegasus model
checks these specifications against an abstraction called the
permission event graph (PEG). Pegasus differs from our ap-
proach in that (i) it targets a different class of malware, and
(ii) PEG abstracts the relationship between the Android sys-
tem and the application, while ICCG abstracts the relation-
ship between different components in the application.

Some recent papers address the detection of re-packaged
apps which often inject adware or malicious features into
legitimate apps [39, 38, 15, 14]. While some repackaged
apps may contain malware, these techniques mainly focus
on clone rather than malware detection.

Analysis of ICC. ComDroid [12] analyzes ICC of An-
droid apps to expose security vulnerabilities, such as intent
spoofing or unauthorized intent receipt. CHEX [29] per-
forms static analysis to identify app entry points and uses
this information to detect component hijacking vulnerabil-
ities. In contrast to Apposcopy, ComDroid and CHEX are
meant to be used by developers to identify security vulner-
abilities in their own applications.

Epicc [32] also addresses ICC in Android and proposes a
static analysis for inferring ICC specifications. These specifi-
cations include ICC entry and exit points, information about
the action, data and category components of intents used for
ICC, as well as Intent key/value types. While our ICCG en-
codes similar information to the specifications inferred by
Epicc, we show that the ICCG is a useful abstraction for
specifying and identifying Android malware.

7. LIMITATIONS
Like any signature-based solution, Apposcopy is not invin-

cible; it is very hard to design any signature-based scheme
that cannot be defeated by a suitably designed automatic
obfuscator. In particular, similar to any static analysis based
system, Apposcopy may be defeated by obfuscation tech-
niques such as dynamic code loading and use of reflection
in combination with obfuscation of method or class names.
However, such attempts to escape detection are likely to be
deemed suspicious and may invite further scrutiny.

Second, since Apposcopy performs deep static analysis
to uncover semantic properties of an app, it may be un-
fit for scenarios that require instant detection of malware.
However, smartphone apps are generally distributed through
centralized app stores, which enables deployment of Ap-
poscopy to scan apps as they are submitted to the app store.

8. CONCLUSION AND FUTURE WORK
We presented Apposcopy, a static analysis approach for

detecting malware in the mobile apps ecosystem. Malware
that belong to one family share a common set of charac-
teristic behaviors, which an auditor can encode through Ap-
poscopy’s Datalog-based malware specification language. Ap-
poscopy performs deep static analysis to extract data-flow
and control-flow properties of Android applications and uses
these results to identify whether a given application belongs
to a known malware family. Our experiments indicate that
Apposcopy can detect malware with high accuracy and that
its signatures are resilient to various program obfuscations.

There are several opportunities for future work. We will
develop techniques to improve the efficiency and precision
of Apposcopy’s static analyses. We also plan to develop
techniques to automatically de-obfuscate apps to enhance
Apposcopy’s resilience to some types of obfuscations (see
Section 7). Finally, we plan to develop techniques to auto-
matically learn malware signatures from a set of apps labeled
with their corresponding malware family (or as benign).

9. REFERENCES
[1] Android malware genome project.

http://www.malgenomeproject.org/.
[2] ProGuard. http://proguard.sourceforge.net/.
[3] Q2 IT evolution threat report.

http://www.securelist.com/en/analysis/

204792299/IT_Threat_Evolution_Q2_2013.
[4] US homeland security report.

http://info.publicintelligence.net/

DHS-FBI-AndroidThreats.pdf.
[5] VirusTotal. https://www.virustotal.com/en/.
[6] Y. Aafer, W. Du, and H. Yin. DroidAPIMiner:

Mining API-level features for robust malware
detection in Android. In SecureComm, 2013.

[7] L. O. Andersen. Program analysis and specialization
for the C programming language. PhD thesis,
University of Cophenhagen, 1994.

[8] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon,
K. Rieck, and C. Siemens. Drebin: Effective and
explainable detection of android malware in your
pocket. 2014.

[9] A. Bose, X. Hu, K. G. Shin, and T. Park. Behavioral
detection of malware on mobile handsets. In MobiSys,
pages 225–238, 2008.

[10] S. Chakradeo, B. Reaves, P. Traynor, and W. Enck.
Mast: triage for market-scale mobile malware analysis.
In WISEC, pages 13–24, 2013.

[11] K. Z. Chen, N. M. Johnson, V. D’Silva, S. Dai,
K. MacNamara, T. Magrino, E. X. Wu, M. Rinard,
and D. X. Song. Contextual policy enforcement in
Android applications with permission event graphs. In
NDSS, 2013.

[12] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner.
Analyzing inter-application communication in
Android. In MobiSys, pages 239–252, 2011.

[13] M. Christodorescu, S. Jha, S. A. Seshia, D. X. Song,
and R. E. Bryant. Semantics-aware malware detection.
In Security and Privacy, pages 32–46, 2005.

[14] J. Crussell, C. Gibler, and H. Chen. Attack of the
clones: Detecting cloned applications on Android
markets. In ESORICS, pages 37–54. 2012.

[15] J. Crussell, C. Gibler, and H. Chen. Scalable
semantics-based detection of similar Android
applications. In ESORICS, 2013.

[16] M. Egele, C. Kruegel, E. Kirda, and G. Vigna. Pios:
Detecting privacy leaks in ios applications. In NDSS,
2011.

[17] W. Enck, P. Gilbert, B. gon Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. Sheth. TaintDroid: An
information-flow tracking system for realtime privacy
monitoring on smartphones. In OSDI, pages 393–407,
2010.

[18] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri.
A study of android application security. In USENIX
Security Symposium, 2011.

[19] W. Enck, M. Ongtang, and P. D. McDaniel. On
lightweight mobile phone application certification. In
ACM Conference on Computer and Communications
Security, pages 235–245, 2009.

[20] C. Fritz, S. Arzt, S. Rasthofer, E. Bodden, A. Bartel,
J. Klein, Y. le Traon, D. Octeau, and P. McDaniel.

Highly precise taint analysis for android application.
Technical report, EC SPRIDE Technical Report, 2013.

[21] A. P. Fuchs, A. Chaudhuri, and J. S. Foster.
SCanDroid: Automated Security Certification of
Android Applications. Technical Report CS-TR-4991,
Department of Computer Science, University of
Maryland, College Park, November 2009.

[22] H. Gascon, F. Yamaguchi, D. Arp, and K. Rieck.
Structural detection of android malware using
embedded call graphs. In AISec, pages 45–54, 2013.

[23] C. Gibler, J. Crussell, J. Erickson, and H. Chen.
AndroidLeaks: Automatically detecting potential
privacy leaks in Android applications on a large scale.
In TRUST, pages 291–307, 2012.

[24] M. C. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang.
RiskRanker: scalable and accurate zero-day Android
malware detection. In MobiSys, pages 281–294, 2012.

[25] K. Griffin, S. Schneider, X. Hu, and T. cker Chiueh.
Automatic generation of string signatures for malware
detection. In RAID, pages 101–120, 2009.

[26] J. Hoffmann, M. Ussath, T. Holz, and
M. Spreitzenbarth. Slicing droids: program slicing for
smali code. In SAC, pages 1844–1851, 2013.

[27] X. Jiang. Security alert: New Android malware –
GoldDream – found in alternative app markets. http:
//www.csc.ncsu.edu/faculty/jiang/GoldDream/,
2011.

[28] G. Kastrinis and Y. Smaragdakis. Hybrid
context-sensitivity for points-to analysis. In PLDI,
pages 423–434, 2013.

[29] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang. Chex:
statically vetting android apps for component
hijacking vulnerabilities. In ACM Conference on
Computer and Communications Security, pages
229–240, 2012.

[30] M. Might, Y. Smaragdakis, and D. V. Horn. Resolving
and exploiting the k-cfa paradox: illuminating
functional vs. object-oriented program analysis. In
PLDI, pages 305–315, 2010.

[31] A. Milanova, A. Rountev, and B. G. Ryder.
Parameterized object sensitivity for points-to analysis
for Java. TOSEM, 14(1):1–41, 2005.

[32] D. Octeau, P. McDaniel, S. Jha, A. Bartel, ,
E. Bodden, J. Klein, and Y. L. Traon. Effective
inter-component communication mapping in Android
with Epicc: An essential step towards holistic security
analysis. In USENIX Security Symposium, 2013.

[33] H. Peng, C. S. Gates, B. P. Sarma, N. Li, Y. Qi,
R. Potharaju, C. Nita-Rotaru, and I. Molloy. Using
probabilistic generative models for ranking risks of
android apps. In ACM Conference on Computer and
Communications Security, pages 241–252, 2012.

[34] V. Rastogi, Y. Chen, and X. Jiang. DroidChameleon:
evaluating Android anti-malware against
transformation attacks. In ASIACCS, pages 329–334.
ACM, 2013.

[35] R. Vallée-Rai, P. Co, E. Gagnon, L. J. Hendren,
P. Lam, and V. Sundaresan. Soot - a Java bytecode
optimization framework. In CASCON, page 13, 1999.

[36] J. Whaley, D. Avots, M. Carbin, and M. S. Lam.
Using datalog with binary decision diagrams for
program analysis. In APLAS, pages 97–118, 2005.

[37] Y. Zhang, M. Yang, B. Xu, Z. Yang, G. Gu, P. Ning,
X. S. Wang, and B. Zang. Vetting undesirable
behaviors in android apps with permission use
analysis. In ACM Conference on Computer and
Communications Security, pages 611–622, 2013.

[38] W. Zhou, Y. Zhou, M. C. Grace, X. Jiang, and S. Zou.
Fast, scalable detection of “piggybacked” mobile
applications. In CODASPY, pages 185–196, 2013.

[39] W. Zhou, Y. Zhou, X. Jiang, and P. Ning. Detecting
repackaged smartphone applications in third-party
Android marketplaces. In CODASPY, pages 317–326,
2012.

[40] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang. Hey, you,
get off of my market: Detecting malicious apps in
official and alternative android markets. In NDSS,
2012.

