
An Efficient Implementation of SELF,
a Dynamically-Typed Object-Oriented Language

Based on Prototypes*

Craig Chambers, David Ungar, and
Elgin Lee

Center for Integrated Systems, Stanford University
sel@@self.stanford.edu

Abstract 1. Introduction
We have developed and implemented techniques that
double the performance of dynamically-typed object-
oriented languages. Our SELF implementation runs
twice as fast as the fastest Smalltalk implementation,
&spite SELF’s lack of classes and explicit variables.

To compensate for the absence of classes, our system
uses implementation-level maps to transparently group
objects cloned from the same prototype, providing data
type information and eliminating the apparent space
overhead for prototype-based systems. To compensate
for dynamic typing, userdefined conml structures, and
the lack of explicit variables, our system dynamically
compiles multiple versions of a source method, each
customized according to its receiver’s map. Within each
version the type of the receiver is fixed, and thus the
compiler can statically bind and inline all messages sent
to self. Message splitting and type prediction extract
and preserve even more static type information,
allowing the compiler to inline many other messages.
Inlining dramatically improves performance and
eliminates the need to hard-wire low-level methods
such as +, ==, and if True : .

SELF yUS87] is a dynamically-typed object-oriented
language inspired by the Smalltalk-80** language
[GR83]. Like Smalltalk, SELF has no type declarations,
allowing programmers to rapidly build and modify
systems without interfenznce from out-of-date type
declarations. Also, SELF provides blocks (lexically-
scoped function objects akin to closures [Ste76, SS76])
so that SELF programmers may define their own
control structures; even the standard control structures
for iteration and boolean selection are constructed out
of blocks. However, unlike Smalltalk and most other
object-oriented languages, SELF has no classes.***
Instead it is based on the prototype object model, in
which each object defines its own object-specific
behavior, and inherits shared behavior from its parent
objects. Also unlike Smalltalk, SELF accesses state
solely by sending messages; there is no special syntax
for accessing a variable or changing its value. These two
features, combined with SELF’s multiple inheritance
rules, help keep programs concise, malleable, and
reusable.

Despite inlining and other optimizations, our system
still supports interactive programming environments.
The system traverses internal dependency lists to
invalidate all compiled methods affected by a program-
ming change. The debugger reconstructs inlined stack
frames from compiler-generated debugging information,
making inlining invisible to the SELF programmer.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
0 1989 ACM 08979L333-7/89/0010/0049 $1.50

In a straightforward implementation, SELF’s prototype-
based model would consume much more storage space

other dynamically-typed object-oriented
programming languages, and its reliance on message

* ‘Ibis work has been generously supported by a National
Science Foundation Presidential Young Investigator Grant #
CCR-865’7631, and by IBM, Texas Instruments, NCR, Tandem
Computers, Apple Computer, and Sun Microsystems.
*If Smalltalk- is a trademark of ParcPlace Systems, Inc.
Hereafter when we write “Smalltalk” we will. be referring to the
Sma.lltalk-80 system or language.
*** To illustrate how unusual this is, note that some well-
respected authorities have gone so far as to require that “object-
oriented” languages provide classes meg87]. Other prototype
models are discussed in por86, Lie86, LTP86, Ste87].

October 1-6, 1989 OOPSLA ‘89 Proceedings 49

passing to access state would exact an even higher
penalty in execution time. We have developed and
implemented techniques that eliminate the space and
time costs of these features. In addition, we have
implemented other optimizations that enable SELF to
nm twice as fast as the fastest Smalltalk system. These
same techniques could improve implementations of
class-based object-oriented languages such as Smalltalk,
Flavors Fzoo86], CLOS [Bob88], C++ [Str86],
TreIlis/Owl [Sch86], and Eiffel [Mey86].

This paper describes our implementation for SELF,
which has been running for over a year. First we review
SELF’s object and execution model in section 2. Then
we describe SELF’S object storage system in section 3,
introducing mups and segregation and presenting object
formats. Section 4 explains our byte-coded
representation for source code. Section 5 reviews the
compiler techniques, originally published in fCU89].
Section 6 explains how these optimizations can coexist
with an exploratory programming environment that
supports incremental recompilation and source-level
debugging. Section 7 compares the performance of SELF
to the fastest available Smalltalk system and an
optimizing C compiler. It also proposes a new
petiOltllliUCe metric, MlMS, for object-oriented
language implementations. We conclude with a
discussion of open issues and future work.

2. Overview of SELF

SELF was initially designed by the second author and
Randall B. Smith at Xerox PARC. The subsequent
design evolution and implementation were undertaken
beginning in mid-1987 by the authors at Stanford
University.

SELF objects consist of named slots, each of which
contains a reference to some other object. Some slots
may be designated as parent slots (by appending
asterisks to their names). Objects may also have SELF
source code associated with them, in which case the
object is called a method (similar to a procedure). To
make a new object in SELF, an existing object (called
the prototype) is simply cloned (shallow-copied).

When a message is sent to an object (called the receiver
of the message), the object is searched for a slot with
the same name as the message. If a matching slot is not
found, then the contents of the object’s parent slots are
searched recursively, using SELF’s multiple inheritance
rules to disambiguate any duplicate matching slots.

general traits

point traits

parent’
mint

t 1.

x print. ‘, ’ print. y print

cartesian point traits T

a

Six SELF objects. The bottom objects are two-dimensional

Ialar point traits

point objects, the left one using cartesian coordinates and

the right one using polar coordinates. The t represents
the assignment primitive operation, which is invoked to
modify the contents of corresponding data slots. The carte-
Sian point traits object is the immediate parent object
shared by all Cartesian point objects, and defines four meth-
ods for interpreting Cartesian points in terms of polar coor-
dinates; the polar point traits object does the same for po-
lar point objects. The point traits object is a shared ances-
tor of all point objects, and defines general methods for
printing and adding points, regardless of coordinate sys-
tem. This object inherits from the top object, which defines
even more general behavior, such as how to copy objects.

Once a matching slot is found, its contents is evuluuted
and the result is returned as the result of the message
send.

An object without code evaluates to itself (and so the
slot holding it acts like a variable). An object with
code (a method) is a prototype activation record. When
evaluated, the method object clones itself, iills in its
self slot with the receiver of the message, fills in its
argument slots (if any) with the arguments of the
message, and executes its code. The self slot is a parent
slot so that the cloned activation record inherits from
the receiver of the message send.

For instance, in the point example shown above, sending
the x message to the cartesian point object finds the x
slot immediately. The contents of the slot is the integer
3, which evaluates to itself (it has no associated code),
producing 3 as the result of the x message. If x were

50 OOPSLA ‘89 Proceedings October l-6, 1989

sent to the polar point object, however, x wouldn’t be
found immediately. The object’s parents would be
searched, finding the x slot defined in the polar point
traits object. That x slot contains a method that
computes the x coordinate from the rho and theta
coordinates. The method would get cloned and executed,
producing the floating point result 1.2 5.

If the print message were sent to a point object, the
print slot defined in the point traits object would be
found. The method contained in the slot prints out the
point object in Cartesian coordinates. If the point were
represented using Cartesian coordinates, the x and y
messages would access the corresponding data slots of
the point object. But the print method works fine
even for points represented using polar coordinates: the
x and y messages would find the conversion methods
defined in the polar point traits object to compute the
correct x and y values.

SELF supports assignments to data slots by associating
an assignment slot with each assignable data slot. The
assignment slot contains the assignment primitive
object. When the assignment primitive is evaluated as
the result of a message send, it stores its argument into
the associated data slot. A data slot with no
corresponding assignment slot is called a constant or
read-only slot, since a running program cannot change
its value. For example, most parent slots are constant
slots. However, our object model allows a parent slot
to be assignable just like any other slot, simply by
defining its corresponding assignment slot. Such an
assignable parent slot permits an object’s inheritance to
change on-the-fly, perhaps as a result of a change in the
object’s state. For example, a collection object may
wish to provide different behavior depending on
whether the collection is empty or not. This dynamic
inheritance is one of SELF’s linguistic innovations, and
has proven to be a useful addition to the set of object-
oriented programming techniques.

SELF allows programmers to define their own control
structures using blocks. A block contains a method in a
slot named value; this method is special in that when
it is invoked (by sending value to the block), the
method runs as a child of its lexically enclosing
activation record (either a “normal” method activation
or another block method activation). The self slot is not
rebound when invoking a block method, but instead is
inherited from the IexicaIly enclosing method. Block
methods may be terminated with a non-local return

expression, which retums a value not to the caller of
the block method, but to the caller of the lexically-
enclosing non-block method, much like a return
statement in C.

Two other kinds of objects appear in SELF: object arrays
and byte arrays. Arrays contain only a single parent slot
pointing to the parent object for that kind of array, but
contain a variable number of element objects. As their
names suggest, object arrays contain elements that are
arbitrary objects, while byte arrays contain only integer
objects in the range 0 to 255, but in a more compact
form. Primitive operations support fetching and storing
elements of arrays as well as determining the size of an
array and cloning a new array of a particular size.

The SELF language described here is both simple and
powerful, but resists efficient implementation. SELF’S
prototype object model, in which each object can have
unique format and behavior, poses serious challenges for
the economical storage of objects. SELF’s exclusion of
type declarations and commitment to message passing
for all computation-even for control structures and
variable accesses4efeats existing compiler technology.
The remainder of this paper describes our responses to
these challenges.

3. The Object Storage System
The object storage system (also referred to as the
memory system) must represent the objects of the SELF
user’s world, including references between objects. It
crates new objects and reclaims the resources consumed
by inaccessible objects. An ideal memory system would
squeeze as many objects into as little memory as
possible, for high performance at low cost. An earlier
version of our SELF memory system was documented in
[Lee88].

Much of our memory system design exploits
technology proven in existing high-performance
SmaIltalk systems. For minimal overhead in the
common case, our SELF system represents object
references using direct tagged pointers, rather than
indirectly through an object table. Allocation and
garbage collection in our SELF system uses Generation
Scavenging with demographic feedback-mediated
tenuring [Ung86, UJ88], augmented with a traditional
mark-and-sweep collector to reclaim tenured garbage.
The following two subsections describe our new
techniques for efficient object storage systems; the third
subsection describes our object formats in detail.

October 1-6, 1989 OOPSLA ‘89 Proceedings 51

3.1. Maps

A naive implementation of SELF’s prototype object
model would waste space. If SELF were based on
classes, the class objects would contain the format
(names and locations of the instance variables),
methods, and superclass information for all their
instances; the instances would contain only the values
of their instance variables and a pointer to the shared
class object. Since SELF uses the prototype model, each
object must define its own format, behavior, and
inheritance, and presumably an implementation would
have to represent both the class-like format, method,
and inheritance information and the instance-like state
information in every SELF object.

Luckily, we can regain the storage efficiency of classes
even in SELF’s prototype object model. Few SELF
objects have totally unique format and behavior.
Almost all objects are created by cloning some other
object and then modifying the values of the assignable
slots. Wholesale changes in the format or inheritance of
an object, such as those induced by the programmer, can
only be accomplished by invoking special primitives.
We say that a prototype and the objects cloned from it,
identical in every way except for the values of their
assignable slots, form a clone family.

We have invented maps as an implementation technique
to efficiently represent members of a clone family. In
our SELF object storage system, objects are represented
by the values of their assignable slots, if any, and a
pointer to the object’s map; the map is shared by all
members of the same clone family. For each slot in the
object, the map contains the name of the slot, whether
the slot is a parent slot, and either the offset within the
object of the slot’s contents (if it’s an assignable slot)
or the slot’s contents itself (if it’s a constant slot, such
as a non-assignable parent slot). If the object has code
(i.e., is a method), the map stores a pointer to a SELF
byte code object representing the source code of the
method (byte code objects are described in section 4).

Maps are immutable so that they may he freely shared
by objects in the same clone family. However, when the
user changes the format of an object or the value of one
of an object’s constant slots, the map no longer applies
to the object. In this case, a new map is created for the
changed object, starting a new clone family. The old
map still applies to any other members of the originaI
clone family.

Without Maps

Cartesian point traits

two cartesian points

With Maps

ia cartesian point traits map

cartesian point traits

two cartesian points ii
cartesian point map

An example of the representations for two Cartesian
points and their parent. Without maps, each slot would
require at least two words: one for its name and another
for its contents. This means that each point would CCCU-

py at least 10 words. With maps, each point object only
needs to store the contents of its assignable slots, plus
one more word to point to the map. All constant slots and
all format information are factored out into the map.
Maps reduce the 10 words per point to 3 words. Since
the cartesian point traits object has no assignable slots,
all of its data are kept in its map.

From the implementation point of view, maps look
much like classes, and achieve the same sorts of space
savings for shared data But maps are totally
transparent at the SELF language level, simplifying the
language and increasing expressive power by allowing
objects to change their formats at will. In addition, the
map of an object conveys its static properties to the
SELF compiler, Section 5 explains how the compiler can
exploit this information to optimize SELF code.

52 OOPSLA ‘89 Proceedings October l-6, 1989

3.2. Segregation

A common operation of the memory system is to scan
all object references for those that meet some criterion:

.

.

.

To

The scavenger scans all objects for references to
objects in from-space.
The reflective object modification and programming
primitives have to redirect all references to an
object if its size changes and it has to be moved.
The browser may want to scan all objects for those
that contain a reference to a particular object that
interests the SELF user.

support these and other functions, our SELF
implementation has been designed for rapid scanning of
object references.

Since the elements of byte arrays are represented using
packed bytes rather than tagged words, byte array
elements may masquerade as object references.
Smalltalk systems typically handle this problem by
scanning the heap object-by-object rather than word-by-
word. For each object, the system checks to see whether
the object contains object references or only bytes. Only
if the object contains object references does the system
scan the object for matching references, iterating up to
the length of the object. Then the scanner proceeds to
the next object. This procedure avoids the problems
caused by scanning byte arrays, but slows down the scan
with the overhead to parse object headers and compute
object lengths.

In our SELF system, we avoid the problems associated
with scanning byte arrays without degrading the object
reference scamring speed by segregating the byte arrays
from the other SELF objects. Each Generation
Scavenging memory space is divided into two areas, one
for byte arrays and one for objects with references. To
scan all object references, only the object reference ama
of each space needs to be scanned. This optimization
speeds scans in two ways: byte array objects are never
scanned, and object headers are never parsed.

To avoid slowing the tight scanning loop with an
explicit end-of-space check, the word after the end of
the space is temporarily replaced with a sentinel
reference that matches the scanning criterion. The
scanner checks for the end of the space only on a
matching reference, instead of on every word. Early
measurements on 68020-based Sun-3/50’s showed that

f . ,.. ,. ,... / ,. . . ., ,.-:. :.:.:.:.:.:.:. :.:.:. :.:.:.:.:y:.:. :.:.:.: :.:.:.:.:.:i .,.......; _.,.,................... 3 :.:.:.:.: ._.........._...._............,......,.,...,.,.......... ~~~~~~~~~~~~~~~~~,,~~~~~: .““““““““““” “.“‘.‘.‘.‘.‘.’ ~~...~~~..~.~,............~.....~.........~.......... . . ‘.‘...‘:‘:‘:‘.‘.‘.:...:.~.:.: ._.,.....,.....,...j,._.................. .._..:.,...,.,.,...,,,,,.,.,.,.,,,,,.,.,.,.,., ..~..............._................~...~.~.~,.,.,., _.....,.,.,,,.,.,.,,,,,.,.,.,.,,,,,.,.,.,,,., ‘.‘.‘,L’.‘. ‘.‘A.‘. 0. ...A ,,.,,_ ::::::::::::::::.:.:.:.x+:+:.:.: .,...,A.... ‘.:,~:.~:.~:.:.~~:.:.:.:.~~~~~~~~~:.~ ‘.,““.‘.‘.‘.‘.‘.‘...,.,.,.,.,.,.,...,.,.,.,.,.,.,.,.,.,.,,,,,,,,,,.,,,~,~,~,~~~,~,~,~,~,~,~,~,~,~,~, : ,:,:,:,:,:
‘.‘.‘.‘.‘.‘.‘.‘. “““.‘.‘.‘.:.:.:.:.:.:.:.:.:.:.:.~.:.,.....,............. :.;.:.:.:.:.:..:.:.:.:.:.: ,....i.,..,._..,,~_~.~.~.~,~.~,~,~.~.~,~, ijiijjjjljjiijiiiiii~~~~~~~:~ . . “‘j”..‘..... .,.,.,.,...,.,.,.,.,.,.,...,.,.,.,.,.,.,.,...,...,.....,.,......,.~...,.,...,.,.,.,.,.,.,.,.,.,.,.,.,.,.,...,.,. ,.,.,.,.,._.. .,.,,,

I:_:; ,...:.:.:.:. :.;.:.I....,
j’i:j’j:i’i:j:j:j:j:::::::::: &j ect reference area grows upward ; ~~~ii~~i’ij~~ :.:.:.:.:.:.:.:((.:.:.:.:.:
~ contains all object references but :#:::::::::::::::::::::::::::

fj~~$##$$$ no confusing byte arrays
i..‘.,.‘.‘.:,:.:.::::::::::::: ::::::::::::.:.:.: .,.,.,.,.,._. ~.....~.~...~....1_~.........~

.~:~:~.:.:.:.:.:.:.:.:,:.:.:
,_,.(.,.,.,, i:+ ._.. >:.:.: . . . ~~~:.: .,.v., .,,,.,

:::::::::::::::::::::::::::: .,.,.,.,. >A.? .A..... < .:.:,:+:.) :_> :.:+:+:. > :.:.:.:. >::>>>>:::.:.:.:.:.:_.................................... ~,~~:,~ ,.,‘,‘,.,‘~~,:(‘f:‘:‘:::::
. ,.. _. ,.. ,....,_.. ;:)I::::::::::::.:.:.:.:.:.:.:

“‘.‘.‘...‘.‘.‘.‘I.‘.‘...‘.:.:.:.:......,.... A.... .._L.......... :.:.:.:.:.:.:.:.:.:.:.:.:.:.~::::::::::::::::::::::::::::::::~:::~:::~::: :::::::::::,:,:,:,:,:.:,:,:,:,:,:,:,:., : :::: : :: ::
.,.,.,.,...,.,.,.,.,.,.,...,

:,
.“““““.‘(.....,...... ..~......._....._.............._.~................. _, .,.(.,.,.(.(.(.,., .,.,...,.,.,... ..,., .,.,.,.,...,.,. ,.,.,.,.,.,., ,.,.,., . . .: :: ::: ::: ::: :::::::::::::::::::::::::::::‘:‘:’:’:’:’:’:’:’:::::::.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.~.:.: :.:.:.:.:.:.:.~:.:.:.:.:.:.:.‘.:.:.~:.:.~.~:.’.:::: :: : : :: : : :.,, .,.,...,.....,.,.,.,...,., ,,,,,, ,,_

A SELF Memory Space

our SELF system scanned memory at the rate of
approximately 3 megabytes per second. Measurements
of the fastest Smalltalk- implementation on the same
machine indicated a scanning speed for non-segregated
memory spaces of only 1.6 megabytes per second.

For some kinds of scans, such as finding all objects that
refer to a particular object, the scanner needs to find the
objects that contain a matching reference, rather than
the reference itself. Our system can perform these types
of searches nearly as fast as a normal scan. We use a
special tag for the first header word of every object
(called the murk word) to identify the beginning of the
object. The scanner proceeds normally, searching for
matching references. Once a reference is found, the
object containing the reference can be found by simply
scanning backwards to the object’s mark word, and then
converting the mark’s address into an object reference.

3.3. Object Formats

A SELF memory space is organized as a linear array of
aligned 32-bit words. Each word contains a low-order 2-
bit tag field, used to interpret the remaining 30 bits of
information. A reference to an integer or floating point
number encodes the number directly in the reference
itself. Converting between a tagged integer immediate
and its corresponding hardware representation requires
only a shift instruction. Adding, subtracting, and
comparing tagged integers require no conversion at all.

October 1-6, 1989 OOPSLA ‘89 Proceedings 53

31

30-bit signed integer

2 0
I

00

integer immediate (or virtual machine address)

31 2 0

I
I

top 30 bits of word-aligned address 01

reference to SELF heap object

I
I

30 bits of IEEE floating point number I 10

floating point immediate (or v. m. address)

31 2 0
I

scavenging fields and hash field . 11

mark header word (begins SELF heap object)

References to other SELF objects and references to map
objects embed the address of the object in the reference
(remember that there is no object table). The remaining
tag format is used to mark the Crst header word of each
object, as required by the scanning scheme discussed in
the previous subsection. Pointers to virtual machine
functions and other objects not in the SELF heap are
represented using raw machine addresses; since their
addresses are at least 16-bit half-word aligned the
scavenger will interpret them as immediates and won’t
try to relocate them.

object w/ slots object array byte array

Each object begins with two header words. The first
word is the mark word, marking the beginning of the
object. The mark contains several bitfields used by the
scavenger and an immutable bitfield used by the SELF
hash primitive. The second word is a tagged reference
to the object’s map. A SELF object with assignable
slots contains additional words to represent their

contents. An array object contains its length (tagged as
a SELF integer to prevent interactions with scavenging
and scanning) and its elements (either 32-bit tagged
object references or 8-bit untagged bytes, padded out to
the nearest 32-bit boundary).

The representation of a map is similar. Map objects
begin with mark and map words. AU map objects share
the same map, called the “map map.” The map map is
its own map. All maps in new-space are linked together
by their third words; after a scavenge the system
traverses this list to finalize inaccessible maps. The
fourth word of a map contains the virtual machine
address of an array of function pointers;* these
functions perform format-dependent operations on
objects or their maps.

For maps of objects with slots, the fifth word specifies
the size of the object in words. The sixth word
indicates the number of slots in the object. The next
two words contain a change dependency link for the
map, described in section 6.1. These four words are
tagged as integers. If the map is for a method, the ninth
word references the byte code object representing the
method’s source code.

map for
a data object

fTii%J

El

I dwqgpcy I

.

I dot

description I

map for
a method

map for
an array

1 byte code]

1 des%$on /
I I

:
.

/ de.s%$ion 1

* This function pointer array is exactly the virtual function array
generated by the C++ compiler.

54 OOPSLA ‘89 Proceedings October i-6, 1989

Finally, the map includes a five-word description for
each of the object’s slots. The first word points to the
SELF string object representing the name of the slot;
the next word describes both the type of the slot
(either constant data slot, assignable data slot, or
assignment slot) and whether the slot is a parent slot.*
The thid word of a slot description contains either the
contents of the slot (if it’s a constant slot), the offset
within the object of the contents of the slot (if it’s au
assignable data slot), or the index of the corresponding
data slot (if it’s an assignment slot). The last two
words of each slot contain a change dependency link for
that slot, described in section 6.1.

constant slot
description

data slot
description

assignment slot
description

slot contents 1 slot offset 1 Idata slot index1

From the above object formats, we can determine that
the total space cost to represent a clone family of n
objects (each with s slots, (I of which are assignable) is
(2 + a)n + 5s + 8 words. For the simple Cartesian point
example, s is 5 (x, x: , y. y:, and parent) and u is 2
(x and y), leading to a total space cost to represent all
point objects of 4n + 33 words. Published accounts of
Smalltalk- systems [DS84, Ung86] indicate that these
systems use at least two extra words per object: one for
its class pointer and another for either its address or its
hash code and flags. Therefore, maps allow objects in a
prototype-based system like SELF to be represented just
as space-efficiently as objects in a class-based system
like Smalltalk.

* In SELF parents are prioritized; the priority of a parent slot is
stored in the second word of the slot description.

slot contenfs

liil

3 i

slot contents 4 i
. :

map i

slot contents 7.5 i

B
slot contents -24 :

. . . c

. . .

map map

. . .

. . .

4

5

. . .

‘parent

const. parent slo

cart. point traits

. . .

‘X’

data slot

2

. . *

3 3
Y

data slot

3

. . .

‘x:’

assignment slot

1

. . .

‘y:’

assignment slot

2

. . .

mark

map

scav’ing link

function array

object length

slot count

map
f;rdew

slot name

slot type

slot contents

slot
;; dew

R”

slot name

slot type

slot offset

slot

hfe
de ndency

slot name

slot type

slot offset

slot
j?; dew

r

slot name

slot type

data slot index

slot
;; dew

r

s/of name

slot type

dafa slot index

slot
de ndency
/inRe

The representation of two carte&n point objects. The
objects on the left are the point “instances,” containing
the values of the x and y assignable data slots. The
right object is the shared map for all Cartesian points,
containing the value of the constant parent slot and the
offsets of the assignable x and y slots.

October I-6, 1989 OOPSLA ‘89 Proceedings 55

4. The Parser

To minimize parsing overhead, textual SELF programs
are parsed once when entered into the system, generating
SELF-level byte code objects, much like Smalltalk
CompiledMethod instances. Each method object
represents its source code by storing a reference to the
pre-parsed byte code object in the method’s map; all
cloned invocations of the method thus share the same
byte code object. A byte code object contains a byte
array holding the byte codes for the source, and an
object array holding the message names and object
literals used in the source. Each byte code in the byte
array represents a single byte-sized virtual machine
instruction, and is divided into two parts: a 3-bit
opcode and a 5-bit object array index. The opcodes am
specified as if for execution by a stack-oriented
interpreter, in actuality, our SELF compiler
dynamically translates byte code objects into native
machine instructions just prior to execution The only
opcodes used to represent SELF programs are the
following:

SELF
push aelf onto the execution stack

LITERAL cvaiue index>
push a literal value onto the execution stack

SEND <message name index>
send a message, popping the receiver and arguments off
the execution stack and pushing the result

SELF SEND <message name index>
send a message to self, popping the arguments off the
execution stack and pushing the result

SUPER SEND <message name index>
send a message to self, delegated to all parents,
popping the arguments off the execution stack and
pushing the result

DELEGATEE <parent name index>
delegate the next message send to the named parent

NON-LOCAL RETURN
execute a non-local return from the lexically-enclosing
method activation

INDEX-EXTENSION <index extension>
extend the next index by prepending the index
extension

The index for the opcodes is an index into the
accompanying object array. The 5-bit offset allows the
ftrst 32 message names and literals to be referred to
directly; indices larger than 32 are constructed using
extra INDEX-EXTENSION instmctions.

In SELF source code, primitive operations are invoked
with the same syntax used to send a message, except
that the message name begins with an underscore (“-“).

method object
(prototype activation record)

SELF SEND #I0 (x)

SEND #l (prin?)

LITERAL #2 (: ‘)

SEND #l (print)

SELF SEND #3 (y)

SEND #l {print)

The representation of the point print method. The top ob-
ject is the prototype activation record, containing place-
holders for the local slots of the method (in this case, just
the self slot) plus a reference to the byte code object rep-
resenting the source code (actually stored in the method’s
map). The byte code object contains a byte array for the
byte codes themselves, and a separate object array for the
constants and message names used in the source code.

Every call of a primitive operation may optionally pass
in a block to be invoked if the primitive fails by
appending IfFail: to the message name. If invoked,
the block is passed an error code identifying the nature
of the failure (e.g. overflow, divide by zero, or
incorrect argument type). The normal SEND byte codes
are used to represent all primitive operation
invocations, simplifying the byte codes and facilitating
extensions to the set of available primitive operations.
By contrast, SmalltaIk-80 primitives are invoked by
number rather than name, and may only be called at the
beginning of a method. The rest of the method is
executed if the primitive fails, without any indication
of why the primitive failed.

The byte codes needed to express SELF programs fall
into only three classes: base values (LITERAL and
SELF), message sends, and non-local return. This small
number results from both the simplicity and elegance of
the SELF language and the lack of elaborate space-saving
encodings. Smalltalk- defines a much larger set of
byte codes [GR83], tuned to minimize space and

56 OOPSLA ‘89 Proceedings October 1-6, 1989

maximize interpretation speed, and includes byte codes
to fetch and store local, instance, class, pool, and
global variables and shortcut byte codes for common-
case operations such as loading constants like nil,
true. and 0.

Smalltalk- systems also use special control flow
byte codes to implement common boolean messages Iike
ifTrue:ifFalse: and whilelrue:; the Smalltalk
parser translates the message sends into conditional and
unconditional branch byte codes, open-coding the
argument blocks. Similarly, the == message is
automatically translated into the identity comparison
primitive operation byte code. A similar optimization is
included for messages like + and <, which the parser
translates into special byte codes. When executed, these
byte codes either directly invoke the corresponding
integer primitive operation (if the receiver is an
integer), or perform the message send (if the receiver
isn’t an integer).

Although this special processing for common messages
may significantly improve the performance of existing
Smalltalk systems, especially interpreted ones, they
violate the extensible and flexible spirit of Smalltalk:

l The source code for the
relegated to documentation,
hard-wired source code are
hY definitions of
whileTrue:, and == for
are ignored.

hard-wired methods is
and all changes to the
ignored by the system.

ifTrue:ifFalse:,
other types of objects

l The receiver of an ifTrue:ifFalse: message
must evaluate to either the true or the false object
at run-time and the arguments must be block
literals at parse-time; the receiver and argument to
whileTrue: must be block literals at parse-time,
and the receiver block must evaluate to either the
true or the false object at run-time.

l Perhaps the worst aspect of these parser
“optimizations” is that they tempt programmers to
select inappropriate control structures like
whileTrue: instead of to : do : to obtain the
performance of the hard-wired message.

In effect, these hard-wired messages have become the
non-object-oriented built-in operators of Smalltalk.
Our SELF system incorporates none of these tricks.
Instead our compilation techniques achieve better
performance without compromising the language’s
conceptual simplicity and elegance, preserving the
message passing model for all messages.

5. The Compiler

The SELF compiler is a significant part of our efficient
implementation [CU89]. It is similar to the Deutsch-
Schiffman translator described in [DS84] (and
implemented in the PamPlace Smalltalk- system) in
that it supports dynamic translation of byte-coded
methods into machine code transparently on demand at
run-time, and it uses an inline caching technique to
reduce the cost of non-polymorphic message sends.
However, although the Deutsch-Schiffman system is the
fastest Smalltalk system (as of July 1989), it still runs
about 10 times slower than optimized C. By combining
traditional optimizing compiler technology, techniques
from high-performance Smalltalk systems, and some
critical new techniques we developed, our SELF
compiler has already achieved a level of performance
more than twice as fast as the Deutsch-Schiffman
system, and only 4 to 5 times slower than optimized C.
We hope that our second-generation system under
construction (and described in section 7) will achieve
even better levels of performance.

The main obstacle to generating efficient code from
Smalltalk programs, as many people have noted before
[Atk86, JGZ88, BMW86], is that very little static type
information is available in the Smalltalk source. Only
literal constants have a known class at compile-time;
without detailed analysis, no other types are known.
Type infemncing is difficult for Smalltalk programs,
especially when the compiler is using the inferred types
to improve performance [Suz81, BI82, Cur89]. Even if
the Smalltalk programmer were willing to sacrifice
many of the benefits of his exploratory programming
environment and annotate his programs with static tyPe
declarations, designing an adequate type system for
Smalltalk would be hard [Atk86, JGZ88]; the more
flexible the type system, the smaller the performance
improvement possible and the smaller the reward for
including type declarations in the first place.

SELF programs are even hauler to compile efficiently
than Smalltalk programs. All the problems of missing
static type information that Smalltalk compilers face
are also faced by our SELF compiler. In addition, all
variables in SELF are accessed by sending messages,
rather than being explicitly identified as variables in the
source code and byte codes. And since there am no
classes in SELF, some of the class-based techniques used

October 1-6, 1989 OOPSLA ‘89 Proceedings 57

to optimize Smalltalk programs, such as inline caching,
type inferencing, and static type checking, cannot he
directly used in our SELF system.

Rather than compromising the flexibility of SELF
programs with a static type system, or compromising
the execution speed of programs by interpreting
dynamic type information, we have developed
compilation techniques that automatically derive much
of the type information statically specified in other
type systems. By combining this extra information with
a few general-purpose techniques from optimizing
compilers for traditional languages like Fortran and C,
our compiler achieves good performance without
sacrificing any of the comforts of an interactive,
exploratory programming environment: fast turnaround
for programming changes, complete source-level
debugging, and a simple, elegant programming language
unfettered by static type declarations. The next few
subsections summarize our new compilation techniques;
a more detailed discussion may be found in [CU89].

5.1. Customized Compilation

The Deutsch-Schiffman Smalltalk- system compiles a
single machine code method for a given source code
method. Since many classes may inherit the same
method the SmalltaUc-80 compiler cannot know the
exact class of the receiver. Our SELF compiler, on the
other hand, compiles a different machine code method
for each type of receiver that runs a given source
method. The advantage of this approach is that our SELF
compiler can know the type of the receiver of the
message at compile-time, and can generate much better
code for each of the specific versions of a method than it
could for a single general-puxpose compiled method.
We call this technique of dynamic translation of
multiple specially-compiled methods for a single
source-code method customized compilation.

Consider the min : method defined for all objects:

min: arg = (
< arg ifTrue: [self] False: [arg]).

This method could be invoked on integers, floating
point numbers, strings, or any other objects that can be
compared using <. Like other dynamic compilation

systems, our SELF system waits until the min: method
is first invoked before compiling any code for this
method. Other systems would compile this method once
for all receiver and argument types, which would
require generating the code for a full message dispatch
to select the right < comparison routine. Since our SELF
compiler generates a separate compiled version for each
receiver type, it can customize the version to that
specific receiver type, and use the new-found type
information to optimize the < message.

Let’s trace the operations of our SELF compiler to
evaluate the expression i min: j, where i contains an
integer at nm-time. Assuming this is the first time
min : has been sent to an integer, our compiler will
generate code for a version of min: that is customized
for integer receivers. The compiler first builds the
following internal flow graph (expensive operations axe
in bold face):*

I I send <
L

I
1

, 4

1 push [self] 1

create-closure

send ifTrue:False:

Many of the expensive operations can be eliminated by
inlining messages sent to receivers of known type, as
described next.

* To simplify the discussion. message sends that access local
slots within the executing activation record (e.g. arguments) are
assumedto bereplaced with localregisteraccesses immediately.

58 OOPSLA ‘89 Proceedings October l-6, 1989

5.2. Message Inlining

Our compiler uses sources of type information, such as
the types of source-code literals and the type of self
gleaned from customized compilation, to perform
compile-time message lookup and message inlining. If
the type of the receiver of a message is known at
compile-time, the compiler can perform the message
lookup at compile-time rather than wait until run-time.
If this lookup is successful, which it will be in the
absence of dynamic inheritance and programming errors,
our compiler will do one of the following:

l If the slot contains a method, the compiler will
inline the body of the method at the call site, if the
method is short enough and nonrecursive.

l If the slot contains a block value method, the
compiler will inline the body of the block value
method at the call site, if it is short enough. If
after inlining there are no remaining uses of the
block object, the compiler will eliminate the code
to create the block at run-time.

l If the slot is a constant data slot, the compiler
will replace the message send with the value of the
slot (a constant known at compile-time).

. If the slot is an assignable data slot, the compiler
will replace the message send with code to fetch
the contents of the slot (e.g. a load instruction).

l If the slot is an assignment slot, the compiler will
replace the message send with code to update the
contents of the slot (e.g. a store instruction).

After inlining all messages sent to receivers of lolown
type, the compiler will have inlined all messages that
in an equivalent Smalltalk program would have been
variable refe=nces or assignments, thus eliminating the
overhead in SELF of using message passing to access
variables. In addition, many more messages have been
inlined that in a Smalltalk system would have remained
full message sends.

For example, in the version of min: customized for
integers, the compiler can statically look up the
definition of < defined for integers:

< arg = (

IntLTPrim: arg IfFail: [...I).

This method simply calls the integer less-than
primitive with a failure block (omitted here for
brevity). The compiler inlines this < method to get to
the flow graph pictured at the top of the next column.

I push self ~~ I

1 push arg 1

1 create-closure 1

create-closure

send ifTrue:False:

The overhead for sending the < message has been
eliminated, but calling a procedure to compare integers
is still expensive. The next section explains how our
compiler open-codes common primitive built-in
operations to further increase performance.

5.3. Primitive Inlining

Primitive inlining can be viewed as a simpler form of

message inlining. Calls to primitive operations are
normally implemented using a simple procedure call to
an external function in the virtual machine. However,
like most other high-performance systems, including
some Smalltalk systems [DS84, JGZ88], our SELF
compiler replaces calls of certain common primitives,
such as integer arithmetic, comparisons, and array
accesses, with their hard-wired definitions. This
significantly improves perfomumce since some of these
primitives can be implemented in two or three machine
instructions if the overhead of the procedure call is
removed. If the arguments to a side-effect-free
primitive, such as an arithmetic or comparison
primitive, are known at compile-time, the compiler
actually calls the primitive at compile-time, replacing
the call to the primitive with the result of the
primitive; this is SELF’s form of constant folding.

October 1-6, 1989 OOPSLA ‘89 Proceedings 59

In our ongoing min: example, the compiler inlines the
1ntLTPrim:IfFai.l: - call (the definition of the

integer less-than primitive, but not the integer less-
than method, is hard-wired into the compiler) to get
the flow graph:

push [self]
I

create-closure
I

push [argl
I

&Elziz&

The first compare-and-branch sequence verifies that the
argument to the _ 1ntLTPrim:IfFail: cd is also
an integer (the receiver is already known to be an
integer courtesy of customization); if not, the failure
block is created and invoked. If the argument is an
integer, then the two integers are compared, and either
the true object or the false object is returned as the
result of the < message.

The next message considered by our compiler is the
ifTrue:False: message. If arg is an integer--the
common case-the receiver of ifTrue: False: Will

be either true or false; otherwise it will be the result
of the value message (unknown at compile-time).
Normally, tbis would prevent inlining of the
ifTrue:False: message, since the type of its
receiver cannot be uniquely determined. However, by
compiling multiple versions of the ifTrue:False:
message, one version for each statically-known receiver
type, our SELF compiler can handle and optimize each
case separately. This technique is explained next.

5.4. Message Splitting

When type information is lost because the 5ow of
control merges (such as happens just prior to the
ifTrue:False: message in the min: example), our
SELF compiler may elect to split the message following
the merge into separate messages at the end of each of
the preceding branches; the merge is postponed until
after the split message. The compiler knows the type of
the receiver for some of the copies of the message, and
can perform compile-time message lookup and message
inlining to radically improve performance for these
versions. The proper semantics of the original unsplit
message is preserved by compiling a real message send
along those branches with unknown receiver types.
Message splitting can be thought of as an extension to
customized compilation, by customizing individual
messages along particular control flow paths, with
similar improvements in run-time performance.

For the min: example, the SELF compiler will split
the ifTrue:False: message into three separate
versions:

and #3, arg

bzero

I cmp self,arg I

create-closure /$$I create-closure create-closure C

60 OOPSLA ‘89 Proceedings October 1-6, 1989

Now the compiler can inline the definition of
ifTrue:False: forthe trueobject:

ifTrue: trueBlk False: falseBlk = (
trueBlk value).

and for the false object:

ifTrue: trueBlk False: falseBlk = (
falseBlk value) .

to get to the following flow graph:

1 push ; self] 1 1 push iself] 1

push [. . .]
I

create-closure
I

send value
I

push [self]
I

create-closure IIcreate-closure

1 Push ,L=-gl 1 1 push /arg] 1 1 push :arg] 1

I create-closure I I createclosure II create-closure 1

i[self] valuei [arg] value i send ifTrue: ~~~~1

The two value messages can be inlined, replaced by the
bodies of the blocks. Since none of the receiver and
arguments of the inlined ifTrue: False: messages

need to be created at run-time any more, the compiler
eliminates them from the control flow graph,
producing the following flow graph:

1 push .[. . . I 1

1 send value1
I

1

1 push Lselfl 1

I create-closure
I I

I 1

1 push [argl 1

I create-closure I

Let’s assume that the failure block for integer
comparisons is too complex to inline away. The
compiler won’t inline the value message, and so the
value message’s result type is unknown at compile-
time. Thus the receiver type of the ifTrue:False:
message is unknown, and a simple SELF compiler
wouldn’t be able to inline this message away either.
However, the next subsection describes how our
compiler uses la-~own patterns of usage to predict that
the receiver of the ifTrue:False: message Will be a
boolean and optimizes the message accordingly.

October 1-6, 1989 OOPSLA ‘89 Proceedings 61

5.5. Type Prediction

When the type of the receiver of a message is unknown
at compile-time, the SELF compiler uses static type
prediction to generate better code for some common
situations. Certain messages are known to the compiler
to be likely to be sent to receivers of certain types: +
and < are likely to be sent to integers, and
ifTrue:False: is likely to be sent to either true or
false. The compiler generates a run-time test based on
the expected type or value of the receiver, followed by
a conditional branch to one of two sections of code;
along the “success” branch, the type (or value) of the
receiver is known (at compile-time), along the
“failure” branch, the type is unknown. The compiler
then uses the message splitting techniques to split the
predicted message, compiling a copy of the message
along each branch. Because the compiler now knows the
type of the receiver of the split message along the
“success” branch, it can inline that version of the
message away, significantly improving performance for
common operations like integer arithmetic and boolean
testing. A real message send is executed in the case that
the prediction fails, preserving the original message’s
semantics for all possible receivers.

This type prediction scheme requires little additional
implementation work, since message splitting and
inlining is already implemented. It is also much better

hard-wiring the ifTrue:ifFalse:,
whileTrue:, ==, +, and < messages into the parser
and compiler as SmaLltalk- systems do, since it
achieves the same sorts of performance improvements
but preserves the message passing semantics of the
language and aLlows the programmer to modify the
definitions of all SELF methods, including those that
are optimized through type prediction.

Let’s apply type prediction to the remaining
ifTrue:False: message in the min: example. The
compiler fust inserts run-time tests for the true object

and the false object, followed by several copies of the
ifTrue:False: message (we’ll just look at the
remaining unoptimized branch):

create-closure
I

send value

In the left branch, the receiver of ifTrue:False: is
known to be the value true; for the middle branch, the
receiver is known to be the value false. As before, the
Compiler idineS these IWO ifTrue:False: messages,
plus the corresponding value messages, and eliminates
the closure creations to get to the final flow graph for
the entire method, picture at the top of the next page.

62 OOPSLA ‘89 Proceedings October 1-6, 1989

__TJ 1 create-pure 1

\ 1 send value 1

create-closure create-closure

create-closure create-closure
I I

\I r I
send ifTrue:

False:

In the common case of taking the minimum of two
integers, our compiler executes only two simple
compare-and-branch sequences, for fast execution. A
simihr savings will be seen if the user calls min : on
two floating point numbers or two strings, since our
compiler customizes and optimizes special versions for
each of these receiver types. But even in the case of
taking the minimum of two values of different types,
such as an integer and a floating point number, our
compilation techniques preserve the message passing
semantics of the original source code, and execute the
source code faithfully.

6. Supporting the
Programming Environment

Our SELF system supports a high-productivity
programming environment. This environment requires
both rapid turn-around time for programming changes
and complete source-level debugging at the byte code
level. These features must coexist with our optimizing
compiler techniques, including message inhning. The
next two subsections describe the compiler-maintained
change dependency links that support incremental
recompilation of compiled code affected by
programming changes, and the compiler-generated
debugging information that allows the debugger to
reconstruct inlined stack frames at debug-time. This
information is appended to each compiled method object
iu the compiled code cache.

a compiled method a scope description

I header

native
machine

code

scavenging info k $i~$$gg$?
:!:::::::;:;:i:v

depy;lzncy
.y$;::::::::: ::M:i:;:;::.’

&$#L:’ a ,,yte code mapp,ng
$$$>
:::::.: p .+::g ..,.:::::::z:::: .:::::::::::::::::: ,.~.::::::::::::::::::::::

..,~!~~~~Sl~ii(iiiiiiii .A.,..... .A........ .,I.......,... .‘.‘.‘.‘.‘f:.:.:.:.:......,:,:.:,:,: . ..A.. ..A.. . :.:.:.: .,.,.,.,.,.,.,.,.,...,.,.,.,.,.,, :i:i:~.~:1:~:i:b~::~~:~~:~:~:~ .,. ,.,.,.,.,., _.....,.,.,., . “‘!‘:‘:‘:.:::::::~:::::::::::: . ‘....:.::::~.~:~:~::~:

slot locations

A compiled method contains more than just instruc-
tions. It includes a list of the offsets within the in-
structions of embedded object references, used by the
scavenger to modify the compiled code if a refer-
enced object is moved. The compiled method includes
dependency links to support selective invalidation. It
also includes descriptions of the inlined method
scopes, which are used to fiid the values of local
slots of the method and to display source-level call
stacks, and a bidirectional mapping between source-
level byte codes and actual program counter values.

October 1-6, 1989 OOPSLA ‘89 Proceedings 63

6.1. Support for Incremental Recompilation

A high-productivity programming environment requires
that programming changes take effect within a fraction
of a second. This is accomplished in our SELF system by
selectively invalidating only those compiled methods
that m, affected by the programming change,
recompiling them from new definitions when next
needed. The compiler maintains two-way change
dependency links between each cached compiled method
and the slots that the compiled method depends on. The
information used to compile code-object formats and
the contents of non-assignable slots-is precisely the
information stored in maps. Therefore we can confine
our dependency links to maps. These links are formed in
four ways:

9 When a method is being compiled, the system
creates a dependency link between the map slot
description containing the method and the compiled
code in case the definition of the method changes or
its slot is removed.

l When the compiler inlines a message, the system
creates a dependency link between the matching slot
description (either a method slot, a data slot, or an
assignment slot) and the compiled code in case the
definition of the inlined method changes or its slot
is removed.

l When the compiler searches a parent object during
the course of a compile-time lookup, the system
creates a dependency link between the slot
description containing the parent and the compiled
code in case the parent pointer changes and alters
the result of the lookup.

l When the compiler searches an object
unsuccessfully for a matching slot during compile-
time lookup, the system creates a dependency link
between the map of the object searched and the
compiled code in case a matching slot is added to
the object later.

These rules ensure that no out-of-date compiled meth-
ods survive programming changes, while limiting invali-
dations to those methods actually affected by a change.

A dependency link is represented by a circular list that
connects a slot description or map to all dependent
compiled methods. When the system changes the
contents of a constant slot or removes a slot, it
traverses the corresponding dependency list and
invalidates all compiled code objects on the list. When
the system adds a slot, it similarly traverses the map’s
dependency list and invalidates linked compiled code
objects. Links must be removed from their lists when a
method is invalidated or a map is garbage-collected;
lists are doubly-linked to speed these removals.

compiled code for integer min:

(dependency lists=

root

+-mr

inteaer I
trait; T-t

I I I

I ’ (map dependency) XG#~

(map dependency)

iffrue:False: I=+
(map dependency) I

incase min:
is changed

in case parent
than e affects
min: ookup f

in case 4 is
is changed

in case min:
is added

in case parent
change affects
< or min: lookups

in case < or min:
is added

in case
ifTrue:False:
is changed

in case
ifTrue:False:
is changed

The dependency lists for the compiled min: method custom-
ized for integers. The gray line represents eight separate
circularly-linked dependency lists. Each list connects a slot
description to its dependent compiled code objects. If any
of the map information linked to the compiled code chang-
es, the compiled code for min: (and for any other compiled
methods that depend on the same changed information) will
be thrown away and recompiled when next needed.

Selective invalidation is complicated by methods that
are executing when a programming change requires that
they be invalidated. The methods cannot really be
flushed, because they are still executing, and some co&
must exist. But neither can they remain untouched, since
they have been optimized based on information that is
no longer correct. One solution, which has not been
implemented yet, would be to recompile executing
methods immediately and to rebuild the execution stack
for the new compiled methods. We do not know yet if
this procedure would be fast enough to keep
programming turn-around time short..

64 OOPSLA ‘89 Proceedings October 1-6, 1989

6.2. Support for Source-Level Debugging

A good programming environment must include a
source-level debugger The SELF debugger presents the
program execution state in terms of the programmer’s
execution model: the state of the byte code interpreter,
with no optimizations. This requires that the debugger
be able to examine the state of the compiled, optimized
SELF program, and construct a view of that state (the
virtuaE state) in terms of the byte-coded execution
model. Examining the execution state is complicated by
having methods in the virtual call stack actually be
inlined within other methods in the compiled method
call stack, and by allocating the slots of virtual
methods to registers and/or stack locations in the
compiled methods. To allow the debugger to
reconstruct the virtual call stack from the physical
optimized call stack, the SELF compiler appends
debugging information to each compiled method For
each scope compiled (the initial method, and any
methods or block methods inlined within it), the
compiler outputs information describing that scope’s
place in the virtual call chain within the compiled
method’s physical stack frame. For each argument and
local slot in the scope, the compiler outputs either the
value of the slot (if it’s a constant known at compile-
time, as many slots are) or the register or stack location
allocated to hold the value of the slot at run-time.

Our SELF compiler also outputs debugging information
to support computing and setting breakpoints. This
information takes the form of a bidirectional mapping
between program counter addresses and byte code
instructions within a particular scope. One complexity
with this mapping is that it is not one-to-one: several
byte codes may map to the same program counter
address (as messages get inhned and optimized away),
and several program counter addresses may map to the
same byte code (as messages get split and compiled in
more than one place). To determine the current state of
the program in byte code tenus at any program counter
address, the debugger first finds the Iarest program
counter address in the mapping that is less than or equal
to the current program counter, and then selects the
latest byte code mapped to that address; this algorithm
returns the last byte code that has been started but not
completed for any program counter address, The

min: I I selt: rl
arg: f-2

The debugging information for the min: method. Each
scope description points to its calling scope description
(black arrows); a block scope also points to its lexically-
enclosing scope description (gray arrows). For each slot
within a scope, the debugging information identifies ei-
ther the slot’s compile-time value or its run-time location.
For the min: example, only the initial arguments have nm-
time locations (registers rl and r2 in this case); all other
slot contents are known statically at compile-time.

execution stack displayer uses this mapping information
to find the bottommost virtual stack frame for each
physical stack frame to display the call stack whenever
the program is halted.

We have not implemented the breakpointing facilities in
our debugger yet; the current “debugger” displays the
virtual execution stack and immediately continues
execution whenever the -DumpSelfStack primitive is
called. However, our mapping system is designed to
support computing and setting breakpoints in
anticipation of breakpointing and process control
primitives. To set a breakpoint at a particular source-
level byte code, the debugger would find all those
program counter addresses associated with the byte code
and set breakpoints there. In cases where several byte
codes map to the same program counter address, single
stepping from one byte code to the next wouldn’t
actually cause any instructions to be executed, the
debugger would pretend to execute instructions to
preserve the illusion of byte-coded execution.

October 1-6, 1989 OOPSLA ‘89 Proceedings 65

7. Performance Comparison

SELF is implemented in 33,000 lines of C++ code and
1,000 lines of assembler, and runs on both the Sun-3 (a
68020-based machine) and the Sun-4 (a SPARC-based
machine). We have written almost 9,000 lines of SELF
code, including a hierarchy of collection objects, a
recursive descent parser for SELF, and a prototype
graphical user interface.

We compare the performance of our first-generation
SELF implementation with a fast Smalltalk
implementation and the standard Sun optimizing C
compiler on a &m-4/260 workstation. The fastest
Smalltalk system currently available (excluding

graphics performance) is the ParcPlacc V2.4 p2
Smalltalk- virtual machine, rated at about 4
Dorados* [pP88]; this system includes the Deutsch-
Schiffman techniques described earlier. We compare
transliterations from C into Smalltalk and SELF of the
Stanford integer benchmarks men881 and the Richards
operating system simulation benchmadr [Deu88], as
well as the following smail benchmarks, adapted from
Smalltalk- systems FTcC!83]:

sumToTe& = (1 sumTo: 10000).
sumTo : arg = (

I total <- 0 I
to: arg Do: I I :index I

total: total + index.

1.
total).

recurseTest = (14 recurse).
recurse = (

= 0 ifFalse: [

(- 1) recurse. (- 1) recurse.

3 1.

We also rewrote most of the Stanford integer
benchmarks in a more SELFish programming style,
using the first argument of a C function as tbe receiver
of the corresponding SELF method. Measurements for
the rewritten benchmarks are presented in columns
labeled SELF’; times in parentheses mark those
benchmarks that were not rewritten.

* A “Dorado” is a measure of the performance of Smalltalk
implementations. One Dorado is defined as the performance of
an early Smalltalk implementation in microcode on the 7011s
Xerox Dorado [Deu83]; until recently it was the fastest
available Smalltalk implementation.

The following table presents the actual running times
of the benchmarks on the specified platform. All times
are in milliseconds of CPU time, except for the
Smalltalk times, which are in milliseconds of real time;
the real time measurements for the SELF system and the
compiled C program are practically identical to the
CPU time numbers, so comparisons in measured
performance between the ParcPlace SmaRtalk system
and the other two systems are valid.

Raw Running Times

Smalltalk SELF SELF’
(real ms) (cpu ms) (cpu ms) (cpu m$

perm 1559 660 420 120
towers 2130 900

z-F%
859 520 i% E

1490 970

F$ 16510 5290 (“Z$ 1
160
770

1239 110
bubble 2970 1% 1230 170
tree 1760 1750 1480 820

richards 7740 2760 (2760) 730

sumToTe& 25 18 (‘8) 4

recurreTest 169 52 (52) 32

The entries in the following table are the ratios of the
running times of the benchmarks for the given pair of
systems. From our point of view, bigger numbers am
better in the first two columns, while smaller numbers
am better in the last two columns. The most
meaningful rows of the table am probably the rows for
the median of the Stanford integer benchmarks and the
row for the Richards benchmark.

Relative Performance of SELF

Smalltalk/ SmalHalW Smalltalk/ SELF/ SELF’/
SELF SELF’ C C C

perm
$:i

3.7 13.0
2;

3.5
towers 3.8 11.2

Fgy . 1.8 5:;

puule i:
1.5 ES 3 6.1)

quick 1:s
I 1
;::,

21:4
11.3 :!

I

bubble 1.8 2.4 17.5 9:s
%?
7.2

tree
::x ::;

2.1
min

1%
z
5:s

:.t
median

E X:; 21:4
5:1

max 9.8 7.2

richads 2.8 (2.8) 10.6 3.8 (3.8)

sumToTest 1.4 (1.4) 6.2 4.5 (4.5)

recurseTest 3.2 (3.2) 5.3 1.6 (1.6)

Our SELF implementation outperforms the Smalltalk
implementation on every benchmark; in many cases
SELF runs more than twice as fast as Smalltalk. Not
surprisingly, an optimizing C compiler does better than
the SELF compiler. Some of the difference in

66 OOPSLA ‘89 Proceedings October I-6, 1989

performance results from significantly poorer
implementation in the SELF compiler of standard
compiler techniques such as register allocation and
peephole optimization. Some of the difference may be
attributed to the robust semantics of primitive
operations in SELF: arithmetic operations always check
for overflow, array accesses always check for indices
out of bounds, method calls always check for stack
overflow. The rest of the difference is probably caused
by the lack of type information, especially for
arguments and assignable data slots. We are remedying
these deficiencies to a large extent in the second-
generation SELF system described in the next section.

The above table shows that the performance of object-
oriented systems is improving dramatically. As a new
metric for comparing the performance of these systems,
we propose the millions of messages per second
(MiMS) measure, analogous to the millions of
instructions per second (MIPS) measure for processors.
This number measures the performance of an object-
oriented system in executing messages. To compute the
MiMS rating of a system for a specific benchmark on a
particular hardware platform, divide the number of
messages the benchmark sends by its total running time.
We define message sends as those invocations whose
semantics include a dispatch; for SELF, this includes
references to slots in the receiver (“instance variable”
accesses), since the same reference could invoke a
method, but excludes references to slots local to a
method invocation (“local variable” accesses), since
these could never do anything other than access data. We
computed the MiMS rating of our first-generation
SELF system for the Richards benchmark on the
SPARC-based Sun-4/260 to be 3.3 MiMS, or a message
executed every 300ns [Lee88].

The efhciency of an object-oriented system is inversely
proportionaI to the number of instructions executed per
message sent. The cycle time on the Sun-4/260 is 6Ons
[Nam88], giving our SELF system a cost per message of
about 5 cycles. Since the SPARC has been clocked at 1.6
cycles per instruction [Nam88] (accounting for cache
misses and multicycle instructions), this would give
our SELF system an efficiency rating of around 3
instructions per message sent. We are not aware of any
other implementations of dynamically-typed object-
oriented languages that approach this level of efficiency.

Other researchers have attempted to speed Smalltalk
systems by adding type declarations to Smalltalk

programs. Atkinson’s Hurricane compiler compiles a
subset of Smalltalk annotated with type declarations
[Atk86]. He reports a performance improvement of a
factor of 2 for his Hurricane compiler over the Deutsch-
Schiffman system on a 68020-based Sun-3; our initial
SELF system already achieves the same performance
improvement over the Deutsch-S&i&an system
without type declarations. Johnson’s TS Typed
Smalltalk system type-checks and compiles Smalltalk-
80 programs fully annotated with type declarations
[JGZ88]. He reports a performance improvement of a
factor of between 5 and 10 over the Tektronix
Smalltal.k-80 interpreter on a 68020-based Tektronix
4405. For a benchmark almost identical to our
sumToTest benchmark, he reports an execution time
of 62ms, which we executed in 18ms on a machine 3 to
4 times faster than his machine. This makes his system’s
performance roughly comparable to our system’s
performance, even though his system relies on type
declarations while ours does not. These results suggest
that our compilation techniques do a good job of
extracting as much type information as is available to
these other systems through programmer-supplied type
declarations.

8. Future Work

SELF has not reached its fmal state. Although we have
established the feasibility and rewards of the
implementation techniques described in this paper, much
work remains.

8.1. The Second-Generation SELF System

We are in the process of reimplementing our entire
SELF system to clean up our code, simplify our design,
and include better compilation algorithms. As of this
writing (July 1989), we have completely rewritten the
object storage system and unified the run-time/compile-
time message lookup system. We have implemented the
core of the second-generation compiler, and it is now
compiles and executes about half of our SELF code.

The new compiler performs type flow analysis to
determine the types of many local slots at compile-
time. It also includes a significantly more powetil
message splitting system. The initial message splitter
described in this paper only splits a message based on
the type of the result of the previous message; the
second-generation message splitting system can use any
type information constructed during type flow analysis,

October I-6, 1989 OOPSLA ‘89 Proceedings 67

especially the types of local slots. The message splitter
may elect to split messages even when the message is
not immediately after a merge point, splitting all
messages that intervene between the merge that lost the
type information and the message that needs the type
information.

Our goal for the combined type analyzer and extended
message splitter is to ahow the compiler to split off
entire sections of the control flow graph, especially
loop bodies, that manipulate the most common data
types. Along these common-case sections, the types of
most variables will be known at compile-time, leading
to maximally-inlined code with few run-time type
checks; in the other sections, less type information is
available to the compiler, and more full message sends
are generated. Under normal conditions the optimized
code will be executed, and the method will run fast,
possibly just as fast as for a C program. However, in
exceptional situations, such as when an overflow
actually occurs, the flow of control will transfer to a
less optimized section of the method that preserves the
message passing semantics.

Our second-generation compiler also performs data
flow analysis, common subexpression elimination, code
motion, global register allocation, and instruction
scheduling. We hope that the addition of these
optimizations will allow our new SELF compiler to
compete with high-quality production optimizing
compilers.

8.2. Open Issues

Method arguments are one of the largest sources of
“unknown” type information in the current compiler.
We want to extend our second-generation system to
customize methods by the types of their arguments in
addition to the receiver type. This extension would
provide the compiler with static type information about
arguments so it could generate faster code. These
benefits have to be balanced against the costs of
verifying the types of arguments in the prologue of the
method at run-time.

The compile-time lookup strategy works nicely as long
as all the parents that get searched am constant parents;
if any am assignable, then the compile-time lookup

fails, and the message cannot be inlined. Our second
generation system provides limited support for
dynamically-inherited methods by adding the types of
any assignable parents traversed in the run-time lookup
to the customization information about the method; the
method prologue tests the values of the assignable
parents in addition to the type of the receiver. We plan
to investigate techniques to optimize dynamically-
inherited methods.

The message inliner needs to make better decisions about
when to inline a method, and when not to. The inliner
should use information about the call site, such as
whether it’s in a loop or in a failure block, to help
decide whether to inhne the send, without wasting too
much extra compile time and compiled code space. It
should also do a better job of deciding if a method is
short enough to inline reasonably; counting the byte
codes with a fixed cut-off value as it does now is not a
very good algorithm. Finally, our implementation of
type prediction hard-wires both the message names and
the predicted type; a mom dynamic implementation that
used dynamic profile information or analysis of the
SELF inheritance hierarchy might produce better, more
adapting results.

The current implementation of the compiler, though
speedy by traditional batch optimizing compiler
standards, is not yet fast enough for our interactive
programming environment. The compiler takes over
seven seconds to compile and optimize the Stanford
integer benchmarks (almost 900 lines of SELF code),
and almost three seconds to compile and optimize the
Richards benchmark (over 400 lines of SELF code). We
plan to experiment with strategies in which the
compiler executes quickly with little optimization
whenever the user is waiting for the compiler, queuing
up background jobs to recompile unoptimized methods
with full optimization later.

Work remains in making sure that our techniques are
practical for larger systems than we have tested. To
fully understand the contributions of our work, we
need to analyze the relative performance gains and the
associated space and time costs of our techniques. This
analysis will be performed as part of the first author’s
forthcoming dissertation,

68 OOPSLA ‘89 Proceedings October 1-6, 1989

9. Conclusions

Many researchers have attempted to boost the
performance of dynamically-typed object-oriented
languages. The designers of Smalltalk- hard-wired
the definitions of user-level arithmetic and control
methods into the compiler, preventing the users from
changing or overriding them. Other researchers added
type declarations to Smalltalk, thereby hindering reuse
and modification of code. We devised dynamic
customized compilation, static type prediction, type
flow analysis, message splitting, and message inlining to
automatically extract and preserve static type
information. Our measurements suggest that our system
runs just as fast as Smalltalk systems with type
declarations and at least twice as fast as those with
hard-wired methods. Researchers seeking to improve
performance should improve their compilers instead of
compromising their languages.

SELF’s novel features do not cost the user either
execution time or storage space. Our virtual machine
supports the prototype object model just as space- and
time-efficiently as similar class-based systems; maps
act as implementation-level classes and thus reclaim the
efficiency of classes for the implementation without
inflicting class-based semantics on the SELF user.
SELF’s use of messages to access variables has
absolutely no effect on the fmal performance of SELF
programs, since these message sends are the first to get
inlined away. Once an implementation reaches this level
of sophistication and performance, the information
provided by classes and explicit variables becomes
redundant and unnecessary. Prototype-based languages
can run just as fast as class-based languages.

Our implementation introduces new techniques to
support the programming environment. The segregation
of object references from byte arrays speeds scavenging
and scanning operations. Dependency lists reduce the
response time for programming changes. Detailed
debugging information maps the execution state into the
user’s source-level execution model, transparently
“undoing” the effects of method inlining and other
optimizations.

Our techniques are not restricted to SELF; they apply to
other dynarnicaIly-typed object-oriented languages like
Smalltalk, Flavors, and CLOS. Many of our techniques
could even be applied to statically-typed object-oriented
languages like Ct+ and Trellis/Owl. For example,

customization and automatic inlining could be used to
eliminate many C-t-+ virtual function calls, encouraging
broader use of object-oriented features and programming
styles by reducing their cost. Compiler-generated
debugging information could be used by the C++
debugger to hide the inlining from the user, just as our
compiler generates debugging information to
reconstruct the SELF virtual call stack.

SELF is practical: our implementation of SELF is twice
as fast as any other dynamically-typed purely object-
oriented language documented in the literature. The
SELF compiler achieves this level of efficiency by
combining traditional optimizing compiler technology
like procedure inhning and global register allocation,
specialized techniques developed for high-speed
Smalltalk systems like dynamic translation and inline
caching, and new techniques like customization, message
splitting, and type prediction to bridge the gap between
them. The resulting synergy of old and new results in
good performance.

Acknowledgments

We owe much to Randy Smith, one of the original
designers of SELF. We also would like to thank Peter
Deutsch for many instructive discussions and seminal
ideas for the design and implementation of SELF. Bay-
Wei Chang implemented our graphical SELF object
browser and contributed to discussions on the future of
the SELF language and implementation.

References
[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D.

Ullman. Compilers: Principles, Techniques, and
Tools. Addison-Wesley, Reading, MA, 1986.

[Atk86] Robert G. Atkinson. Hurricane: An Opti-
mizing Compiler for Smalltalk. In OOPSLA ‘86 Con-
ference Proceedings, pp. 151-158, Portland, OR,
1986. Published as SZGPLAN Notices Zl(Il), Novem-
ber, 1986.

pMW86] Mark B. Ballard, David Maier, and Allen
Wirfs-Brock. QUICKTALK A Smalltalk- Dialect
for Defining Primitive Methods. In OOPSLA ‘86 Con-
ference Proceedings, pp. 140-150, Portland, OR,
1986. Published as SZGPLAN Notices 2I(lI), Novem-
ber, 1986,

[Bob881 D. G. Bobrow et al. Common Lisp Object
System Specification. In SIGPLAN Notices 23(Special
Issue), September, 1988.

October 1-6, 1989 OOPSLA ‘89 Proceedings 69

[BI82] A. H. Borning and D. H. H. Ingalls. A
type declaration and inference system for Smalltalk.
In Conference Record of the Ninth Annual Sympo-
sium on Foundations of Computer Science, pp. 133-
139,1982.

[Bor86] A. H. Boming. Classes Versus Prototypes
in Object-Oriented Languages. In Proceedings of the
ACMIEEE Fall Joint Computer Conference, pp. 36-
40, Dallas, TX, 1986.

[Cur891 Pave1 Curtis. Type inferencing in Small-
talk. Personal communication, March, 1989.

[~@‘I Craig Chambers and David Ungar. Customi-
zation: Optimizing Compiler Technology for SELF, a
Dynamically-Typed Object-Oriented Programming
Language. In Proceedings of the SIGPLAN ‘89 Confer-
ence on Programming Language Design and Impiemen-
tation, Portland, OR, June, 1989. Published as SIGP-
LAN Notices 24(7), July, 1989.

peu83] L. Peter Deutsch. The Dorado Smalltalk-
Implementation. Hardware Architecture’s Impact on
Software Architecture. In &1x83], pp. 113-126.

Peu88] L. Peter Deutsch. Richards benchmark. Per-
sonal communication, October, 1988.

peu89] L. Peter Deutsch. Expanded byte codes for
primitives. Personal communication, June, 1989.

K’S841 L. Peter Deutsch and Allan M. Schiffman.
Efficient Implementation of the Smalltalk- Sys-
tem. In Proceedings of the 11 th Annual ACM Sympo-
sium on the Principles of Programming Languages, pp.
297-302, Salt Lake City, UT, 1984.

[GR83] Adele Goldberg and David Robson. Small-
talk-80: The Language and Its Implementation. Addi-
son-Wesley, Reading, MA, 1983.

men881 John Hennessy. Stanford integer bench-
marks. Personal communication, June, 1988.

[JGZ88] Ralph E. Johnson, Justin 0. Graver, and
Lawrence W. Zurawski. TS: An Optimizing Compiler
for Smalltalk. In OOPSLA ‘88 Conference Proceed-
ings, pp. 18-26, San Diego, CA, 1988. Published as
SZGPL.AN Notices 23(11), November, 1988.

cKra831 Glenn Krasner, editor. Smalltalk-80: Bits of
History, Words of Advice. Addison-Wesley, Reading,
MA, 1983.

ILee881 Elgin Lee. Object Storage and Inheritance
for SELF, a Prototype-Based Object-Oriented Pro-
gramming Language. Engineer’s thesis, Stanford Uni-
versity, 1988.

Lie861 Henry Lieberman. Using Prototypical Ob-
jects to Implement Shared Behavior in Object-Orient-
ed Systems. In OOPSLA ‘86 Conference Proceedings,
pp. 214-223, Portland, OR, 1986. Published as SIGP-
LAN Notices 21(1 I), November, 1986.

ILTPW Wilf R. LaLonde, Dave A. Thomas, and
John R. Pugh. An Exemplar Based Smalltalk. In
0OPSL.A ‘86 Conference Proceedings, pp. 322-330,
Portland, OR, 1986. Published as SIGPL.AN Notices
21(11), November, 1986.

[McC83] Kim McCall. The Smalltalk- Bench-
marks. In [Kra83], pp. 153-174.

WyW Bertrand Meyer. Genericity versus Inherit-
ance. In OOPSEA ‘86 Conference Proceedings, pp.
391-405, Portland, OR, 1986. Published as SIGPLMV
Notices 21(11), November, 1986.

[Moo861 David A. Moon. Object-Oriented Program-
ming with Flavors. In OOPSLA ‘86 Conference Pro-
ceedings, pp. 1-16, Portland, OR, 1986. Published as
SIGPLAN Notices 21 (II), November, 1986.

[Nam88] Masood Namjoo et al. CMOS Gate Array
Implementation of the SPARC Architecture. In
COMPCON ‘88 Conference Proceedings, pp. 10-13,
San Francisco, CA, 1988.

[PP88] ParcPlace Newsletter, Winter 1988, Vol.
1, No. 2. ParcPlace Systems, Palo Alto, CA, 1988.

[Sch86] Craig Schaffert et al. An Introduction to
Trellis/Owl. III OOPSLA ‘86 Conference Proceed-
ings, pp. 9-16, Portland, OR, 1986. Published as SIG-
PLAN Notices 21(11), November, 1986.

[Ste76] Guy Lewis Steele Jr. LAMBDA: The Ulti-
mate Declarative. AI Memo 379, MIT Artificial In-
telligence Laboratory, November, 1976.

[Ste87] Lynn Andrea Stein. Delegation Is Inherit-
ance. Iu OOPSLA ‘87 Conference Proceedings, pp.
138-146, Orlando, FL, 1987. Published as SIGPLAN
Notices 22(12), December, 1987.

[SS76] Guy Lewis Steele Jr. and Gerald Jay Suss-
man. LAMBDA: The Ultimate Imperative. AI Memo
353, MIT Amficial Intelligence Laboratory, March,
1976.

[Str86] Bjame Stroustrup. The C++ Programming
Language. Addison-Wesley, Reading, MA, 1986.

[Suz8 11 N. Suzuki. Inferring Types in Smalhalk.
In 8th Annual ACM Symposium on Principles of Pro-
gramming Languages, pp. 187-199,198l.

WwW David Michael Ungar. The Design and
Evaluation of a High-Performance Smalltalk System.
Ph.D. dissertation, the University of California at
Berkeley, February, 1986. Published by the MIT
Press, Cambridge, MA, 1987.

D-JJW David Ungar and Frank Jackson. Tenuring
Policies for Generation-Based Storage Reclamation. In
0OPSL.A ‘88 Conference Proceedings, pp. l-17, San
Diego, CA, 1988. Published as SZGPLAN Notices
23(11), November, 1988.

[US871 David Ungar and Randall B. Smith. SELF:
The Power of Simplicity. In 0OPSL.A ‘87 Conference
Proceedings, pp. 227-241, Orlando, FL, 1987. Pub-
lished as SIGPLAN Notices 22(12), December, 1987.

lYeg871 Peter Wegner. Dimensions of Object-Based
Language Design. In OOPSLA ‘87 Conference Pro-
ceedings, pp. 227-241, Orlando, FL, 1987. Published
as SIGPLAN Notices 22(12), December, 1987.

70 OOPSLA ‘89 Proceedings October 1-6, 1989

