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Abstract 1. Introduction 
We have developed and implemented techniques that 
double the performance of dynamically-typed object- 
oriented languages. Our SELF implementation runs 
twice as fast as the fastest Smalltalk implementation, 
&spite SELF’s lack of classes and explicit variables. 

To compensate for the absence of classes, our system 
uses implementation-level maps to transparently group 
objects cloned from the same prototype, providing data 
type information and eliminating the apparent space 
overhead for prototype-based systems. To compensate 
for dynamic typing, userdefined conml structures, and 
the lack of explicit variables, our system dynamically 
compiles multiple versions of a source method, each 
customized according to its receiver’s map. Within each 
version the type of the receiver is fixed, and thus the 
compiler can statically bind and inline all messages sent 
to self. Message splitting and type prediction extract 
and preserve even more static type information, 
allowing the compiler to inline many other messages. 
Inlining dramatically improves performance and 
eliminates the need to hard-wire low-level methods 
such as +, ==, and if True : . 

SELF yUS87] is a dynamically-typed object-oriented 
language inspired by the Smalltalk-80** language 
[GR83]. Like Smalltalk, SELF has no type declarations, 
allowing programmers to rapidly build and modify 
systems without interfenznce from out-of-date type 
declarations. Also, SELF provides blocks (lexically- 
scoped function objects akin to closures [Ste76, SS76]) 
so that SELF programmers may define their own 
control structures; even the standard control structures 
for iteration and boolean selection are constructed out 
of blocks. However, unlike Smalltalk and most other 
object-oriented languages, SELF has no classes.*** 
Instead it is based on the prototype object model, in 
which each object defines its own object-specific 
behavior, and inherits shared behavior from its parent 
objects. Also unlike Smalltalk, SELF accesses state 
solely by sending messages; there is no special syntax 
for accessing a variable or changing its value. These two 
features, combined with SELF’s multiple inheritance 
rules, help keep programs concise, malleable, and 
reusable. 

Despite inlining and other optimizations, our system 
still supports interactive programming environments. 
The system traverses internal dependency lists to 
invalidate all compiled methods affected by a program- 
ming change. The debugger reconstructs inlined stack 
frames from compiler-generated debugging information, 
making inlining invisible to the SELF programmer. 
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In a straightforward implementation, SELF’s prototype- 
based model would consume much more storage space 

other dynamically-typed object-oriented 
programming languages, and its reliance on message 
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CCR-865’7631, and by IBM, Texas Instruments, NCR, Tandem 
Computers, Apple Computer, and Sun Microsystems. 
*If Smalltalk- is a trademark of ParcPlace Systems, Inc. 
Hereafter when we write “Smalltalk” we will. be referring to the 
Sma.lltalk-80 system or language. 
*** To illustrate how unusual this is, note that some well- 
respected authorities have gone so far as to require that “object- 
oriented” languages provide classes meg87]. Other prototype 
models are discussed in por86, Lie86, LTP86, Ste87]. 
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passing to access state would exact an even higher 
penalty in execution time. We have developed and 
implemented techniques that eliminate the space and 
time costs of these features. In addition, we have 
implemented other optimizations that enable SELF to 
nm twice as fast as the fastest Smalltalk system. These 
same techniques could improve implementations of 
class-based object-oriented languages such as Smalltalk, 
Flavors Fzoo86], CLOS [Bob88], C++ [Str86], 
TreIlis/Owl [Sch86], and Eiffel [Mey86]. 

This paper describes our implementation for SELF, 
which has been running for over a year. First we review 
SELF’s object and execution model in section 2. Then 
we describe SELF’S object storage system in section 3, 
introducing mups and segregation and presenting object 
formats. Section 4 explains our byte-coded 
representation for source code. Section 5 reviews the 
compiler techniques, originally published in fCU89]. 
Section 6 explains how these optimizations can coexist 
with an exploratory programming environment that 
supports incremental recompilation and source-level 
debugging. Section 7 compares the performance of SELF 
to the fastest available Smalltalk system and an 
optimizing C compiler. It also proposes a new 
petiOltllliUCe metric, MlMS, for object-oriented 
language implementations. We conclude with a 
discussion of open issues and future work. 

2. Overview of SELF 

SELF was initially designed by the second author and 
Randall B. Smith at Xerox PARC. The subsequent 
design evolution and implementation were undertaken 
beginning in mid-1987 by the authors at Stanford 
University. 

SELF objects consist of named slots, each of which 
contains a reference to some other object. Some slots 
may be designated as parent slots (by appending 
asterisks to their names). Objects may also have SELF 
source code associated with them, in which case the 
object is called a method (similar to a procedure). To 
make a new object in SELF, an existing object (called 
the prototype) is simply cloned (shallow-copied). 

When a message is sent to an object (called the receiver 
of the message), the object is searched for a slot with 
the same name as the message. If a matching slot is not 
found, then the contents of the object’s parent slots are 
searched recursively, using SELF’s multiple inheritance 
rules to disambiguate any duplicate matching slots. 

general traits 

point traits 

parent’ 
mint 

t 1. 

x print. ‘, ’ print. y print 

cartesian point traits T 

a 

Six SELF objects. The bottom objects are two-dimensional 

Ialar point traits 

point objects, the left one using cartesian coordinates and 

the right one using polar coordinates. The t represents 
the assignment primitive operation, which is invoked to 
modify the contents of corresponding data slots. The carte- 
Sian point traits object is the immediate parent object 
shared by all Cartesian point objects, and defines four meth- 
ods for interpreting Cartesian points in terms of polar coor- 
dinates; the polar point traits object does the same for po- 
lar point objects. The point traits object is a shared ances- 
tor of all point objects, and defines general methods for 
printing and adding points, regardless of coordinate sys- 
tem. This object inherits from the top object, which defines 
even more general behavior, such as how to copy objects. 

Once a matching slot is found, its contents is evuluuted 
and the result is returned as the result of the message 
send. 

An object without code evaluates to itself (and so the 
slot holding it acts like a variable). An object with 
code (a method) is a prototype activation record. When 
evaluated, the method object clones itself, iills in its 
self slot with the receiver of the message, fills in its 
argument slots (if any) with the arguments of the 
message, and executes its code. The self slot is a parent 
slot so that the cloned activation record inherits from 
the receiver of the message send. 

For instance, in the point example shown above, sending 
the x message to the cartesian point object finds the x 
slot immediately. The contents of the slot is the integer 
3, which evaluates to itself (it has no associated code), 
producing 3 as the result of the x message. If x were 
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sent to the polar point object, however, x wouldn’t be 
found immediately. The object’s parents would be 
searched, finding the x slot defined in the polar point 
traits object. That x slot contains a method that 
computes the x coordinate from the rho and theta 
coordinates. The method would get cloned and executed, 
producing the floating point result 1.2 5. 

If the print message were sent to a point object, the 
print slot defined in the point traits object would be 
found. The method contained in the slot prints out the 
point object in Cartesian coordinates. If the point were 
represented using Cartesian coordinates, the x and y 
messages would access the corresponding data slots of 
the point object. But the print method works fine 
even for points represented using polar coordinates: the 
x and y messages would find the conversion methods 
defined in the polar point traits object to compute the 
correct x and y values. 

SELF supports assignments to data slots by associating 
an assignment slot with each assignable data slot. The 
assignment slot contains the assignment primitive 
object. When the assignment primitive is evaluated as 
the result of a message send, it stores its argument into 
the associated data slot. A data slot with no 
corresponding assignment slot is called a constant or 
read-only slot, since a running program cannot change 
its value. For example, most parent slots are constant 
slots. However, our object model allows a parent slot 
to be assignable just like any other slot, simply by 
defining its corresponding assignment slot. Such an 
assignable parent slot permits an object’s inheritance to 
change on-the-fly, perhaps as a result of a change in the 
object’s state. For example, a collection object may 
wish to provide different behavior depending on 
whether the collection is empty or not. This dynamic 
inheritance is one of SELF’s linguistic innovations, and 
has proven to be a useful addition to the set of object- 
oriented programming techniques. 

SELF allows programmers to define their own control 
structures using blocks. A block contains a method in a 
slot named value; this method is special in that when 
it is invoked (by sending value to the block), the 
method runs as a child of its lexically enclosing 
activation record (either a “normal” method activation 
or another block method activation). The self slot is not 
rebound when invoking a block method, but instead is 
inherited from the IexicaIly enclosing method. Block 
methods may be terminated with a non-local return 

expression, which retums a value not to the caller of 
the block method, but to the caller of the lexically- 
enclosing non-block method, much like a return 
statement in C. 

Two other kinds of objects appear in SELF: object arrays 
and byte arrays. Arrays contain only a single parent slot 
pointing to the parent object for that kind of array, but 
contain a variable number of element objects. As their 
names suggest, object arrays contain elements that are 
arbitrary objects, while byte arrays contain only integer 
objects in the range 0 to 255, but in a more compact 
form. Primitive operations support fetching and storing 
elements of arrays as well as determining the size of an 
array and cloning a new array of a particular size. 

The SELF language described here is both simple and 
powerful, but resists efficient implementation. SELF’S 
prototype object model, in which each object can have 
unique format and behavior, poses serious challenges for 
the economical storage of objects. SELF’s exclusion of 
type declarations and commitment to message passing 
for all computation-even for control structures and 
variable accesses4efeats existing compiler technology. 
The remainder of this paper describes our responses to 
these challenges. 

3. The Object Storage System 
The object storage system (also referred to as the 
memory system) must represent the objects of the SELF 
user’s world, including references between objects. It 
crates new objects and reclaims the resources consumed 
by inaccessible objects. An ideal memory system would 
squeeze as many objects into as little memory as 
possible, for high performance at low cost. An earlier 
version of our SELF memory system was documented in 
[Lee88]. 

Much of our memory system design exploits 
technology proven in existing high-performance 
SmaIltalk systems. For minimal overhead in the 
common case, our SELF system represents object 
references using direct tagged pointers, rather than 
indirectly through an object table. Allocation and 
garbage collection in our SELF system uses Generation 
Scavenging with demographic feedback-mediated 
tenuring [Ung86, UJ88], augmented with a traditional 
mark-and-sweep collector to reclaim tenured garbage. 
The following two subsections describe our new 
techniques for efficient object storage systems; the third 
subsection describes our object formats in detail. 
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3.1. Maps 

A naive implementation of SELF’s prototype object 
model would waste space. If SELF were based on 
classes, the class objects would contain the format 
(names and locations of the instance variables), 
methods, and superclass information for all their 
instances; the instances would contain only the values 
of their instance variables and a pointer to the shared 
class object. Since SELF uses the prototype model, each 
object must define its own format, behavior, and 
inheritance, and presumably an implementation would 
have to represent both the class-like format, method, 
and inheritance information and the instance-like state 
information in every SELF object. 

Luckily, we can regain the storage efficiency of classes 
even in SELF’s prototype object model. Few SELF 
objects have totally unique format and behavior. 
Almost all objects are created by cloning some other 
object and then modifying the values of the assignable 
slots. Wholesale changes in the format or inheritance of 
an object, such as those induced by the programmer, can 
only be accomplished by invoking special primitives. 
We say that a prototype and the objects cloned from it, 
identical in every way except for the values of their 
assignable slots, form a clone family. 

We have invented maps as an implementation technique 
to efficiently represent members of a clone family. In 
our SELF object storage system, objects are represented 
by the values of their assignable slots, if any, and a 
pointer to the object’s map; the map is shared by all 
members of the same clone family. For each slot in the 
object, the map contains the name of the slot, whether 
the slot is a parent slot, and either the offset within the 
object of the slot’s contents (if it’s an assignable slot) 
or the slot’s contents itself (if it’s a constant slot, such 
as a non-assignable parent slot). If the object has code 
(i.e., is a method), the map stores a pointer to a SELF 
byte code object representing the source code of the 
method (byte code objects are described in section 4). 

Maps are immutable so that they may he freely shared 
by objects in the same clone family. However, when the 
user changes the format of an object or the value of one 
of an object’s constant slots, the map no longer applies 
to the object. In this case, a new map is created for the 
changed object, starting a new clone family. The old 
map still applies to any other members of the originaI 
clone family. 

Without Maps 

Cartesian point traits 

two cartesian points 

With Maps 

ia cartesian point traits map 

cartesian point traits 

two cartesian points ii 
cartesian point map 

An example of the representations for two Cartesian 
points and their parent. Without maps, each slot would 
require at least two words: one for its name and another 
for its contents. This means that each point would CCCU- 

py at least 10 words. With maps, each point object only 
needs to store the contents of its assignable slots, plus 
one more word to point to the map. All constant slots and 
all format information are factored out into the map. 
Maps reduce the 10 words per point to 3 words. Since 
the cartesian point traits object has no assignable slots, 
all of its data are kept in its map. 

From the implementation point of view, maps look 
much like classes, and achieve the same sorts of space 
savings for shared data But maps are totally 
transparent at the SELF language level, simplifying the 
language and increasing expressive power by allowing 
objects to change their formats at will. In addition, the 
map of an object conveys its static properties to the 
SELF compiler, Section 5 explains how the compiler can 
exploit this information to optimize SELF code. 
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3.2. Segregation 

A common operation of the memory system is to scan 
all object references for those that meet some criterion: 

. 

. 

. 

To 

The scavenger scans all objects for references to 
objects in from-space. 
The reflective object modification and programming 
primitives have to redirect all references to an 
object if its size changes and it has to be moved. 
The browser may want to scan all objects for those 
that contain a reference to a particular object that 
interests the SELF user. 

support these and other functions, our SELF 
implementation has been designed for rapid scanning of 
object references. 

Since the elements of byte arrays are represented using 
packed bytes rather than tagged words, byte array 
elements may masquerade as object references. 
Smalltalk systems typically handle this problem by 
scanning the heap object-by-object rather than word-by- 
word. For each object, the system checks to see whether 
the object contains object references or only bytes. Only 
if the object contains object references does the system 
scan the object for matching references, iterating up to 
the length of the object. Then the scanner proceeds to 
the next object. This procedure avoids the problems 
caused by scanning byte arrays, but slows down the scan 
with the overhead to parse object headers and compute 
object lengths. 

In our SELF system, we avoid the problems associated 
with scanning byte arrays without degrading the object 
reference scamring speed by segregating the byte arrays 
from the other SELF objects. Each Generation 
Scavenging memory space is divided into two areas, one 
for byte arrays and one for objects with references. To 
scan all object references, only the object reference ama 
of each space needs to be scanned. This optimization 
speeds scans in two ways: byte array objects are never 
scanned, and object headers are never parsed. 

To avoid slowing the tight scanning loop with an 
explicit end-of-space check, the word after the end of 
the space is temporarily replaced with a sentinel 
reference that matches the scanning criterion. The 
scanner checks for the end of the space only on a 
matching reference, instead of on every word. Early 
measurements on 68020-based Sun-3/50’s showed that 
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A SELF Memory Space 

our SELF system scanned memory at the rate of 
approximately 3 megabytes per second. Measurements 
of the fastest Smalltalk- implementation on the same 
machine indicated a scanning speed for non-segregated 
memory spaces of only 1.6 megabytes per second. 

For some kinds of scans, such as finding all objects that 
refer to a particular object, the scanner needs to find the 
objects that contain a matching reference, rather than 
the reference itself. Our system can perform these types 
of searches nearly as fast as a normal scan. We use a 
special tag for the first header word of every object 
(called the murk word) to identify the beginning of the 
object. The scanner proceeds normally, searching for 
matching references. Once a reference is found, the 
object containing the reference can be found by simply 
scanning backwards to the object’s mark word, and then 
converting the mark’s address into an object reference. 

3.3. Object Formats 

A SELF memory space is organized as a linear array of 
aligned 32-bit words. Each word contains a low-order 2- 
bit tag field, used to interpret the remaining 30 bits of 
information. A reference to an integer or floating point 
number encodes the number directly in the reference 
itself. Converting between a tagged integer immediate 
and its corresponding hardware representation requires 
only a shift instruction. Adding, subtracting, and 
comparing tagged integers require no conversion at all. 
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31 

30-bit signed integer 

2 0 
I 

00 

integer immediate (or virtual machine address) 

31 2 0 

I 
I 

top 30 bits of word-aligned address 01 

reference to SELF heap object 

I 
I 

30 bits of IEEE floating point number I 10 

floating point immediate (or v. m. address) 

31 2 0 
I 

scavenging fields and hash field . 11 

mark header word (begins SELF heap object) 

References to other SELF objects and references to map 
objects embed the address of the object in the reference 
(remember that there is no object table). The remaining 
tag format is used to mark the Crst header word of each 
object, as required by the scanning scheme discussed in 
the previous subsection. Pointers to virtual machine 
functions and other objects not in the SELF heap are 
represented using raw machine addresses; since their 
addresses are at least 16-bit half-word aligned the 
scavenger will interpret them as immediates and won’t 
try to relocate them. 

object w/ slots object array byte array 

Each object begins with two header words. The first 
word is the mark word, marking the beginning of the 
object. The mark contains several bitfields used by the 
scavenger and an immutable bitfield used by the SELF 
hash primitive. The second word is a tagged reference 
to the object’s map. A SELF object with assignable 
slots contains additional words to represent their 

contents. An array object contains its length (tagged as 
a SELF integer to prevent interactions with scavenging 
and scanning) and its elements (either 32-bit tagged 
object references or 8-bit untagged bytes, padded out to 
the nearest 32-bit boundary). 

The representation of a map is similar. Map objects 
begin with mark and map words. AU map objects share 
the same map, called the “map map.” The map map is 
its own map. All maps in new-space are linked together 
by their third words; after a scavenge the system 
traverses this list to finalize inaccessible maps. The 
fourth word of a map contains the virtual machine 
address of an array of function pointers;* these 
functions perform format-dependent operations on 
objects or their maps. 

For maps of objects with slots, the fifth word specifies 
the size of the object in words. The sixth word 
indicates the number of slots in the object. The next 
two words contain a change dependency link for the 
map, described in section 6.1. These four words are 
tagged as integers. If the map is for a method, the ninth 
word references the byte code object representing the 
method’s source code. 

map for 
a data object 

fTii%J 

El 

I dwqgpcy I 

. 

I dot 

description I 

map for 
a method 

map for 
an array 

1 byte code ] 

1 des%$on / 
I I 

: 
. 

/ de.s%$ion 1 

* This function pointer array is exactly the virtual function array 
generated by the C++ compiler. 

54 OOPSLA ‘89 Proceedings October i-6, 1989 



Finally, the map includes a five-word description for 
each of the object’s slots. The first word points to the 
SELF string object representing the name of the slot; 
the next word describes both the type of the slot 
(either constant data slot, assignable data slot, or 
assignment slot) and whether the slot is a parent slot.* 
The thid word of a slot description contains either the 
contents of the slot (if it’s a constant slot), the offset 
within the object of the contents of the slot (if it’s au 
assignable data slot), or the index of the corresponding 
data slot (if it’s an assignment slot). The last two 
words of each slot contain a change dependency link for 
that slot, described in section 6.1. 

constant slot 
description 

data slot 
description 

assignment slot 
description 

slot contents 1 slot offset 1 Idata slot index1 

From the above object formats, we can determine that 
the total space cost to represent a clone family of n 
objects (each with s slots, (I of which are assignable) is 
(2 + a)n + 5s + 8 words. For the simple Cartesian point 
example, s is 5 (x, x: , y. y:, and parent) and u is 2 
(x and y), leading to a total space cost to represent all 
point objects of 4n + 33 words. Published accounts of 
Smalltalk- systems [DS84, Ung86] indicate that these 
systems use at least two extra words per object: one for 
its class pointer and another for either its address or its 
hash code and flags. Therefore, maps allow objects in a 
prototype-based system like SELF to be represented just 
as space-efficiently as objects in a class-based system 
like Smalltalk. 

* In SELF parents are prioritized; the priority of a parent slot is 
stored in the second word of the slot description. 

slot contenfs 

liil 

3 i 

slot contents 4 i 
. . . . . . . : 

map i 

slot contents 7.5 i 

B 
slot contents -24 : 

. . . c 

. . . 

map map 

. . . 

. . . 

4 

5 

. . . 

‘parent 

const. parent slo 

cart. point traits 

. . . 

‘X’ 

data slot 

2 

. . * 

3 3 
Y 

data slot 

3 

. . . 

‘x:’ 

assignment slot 

1 

. . . 

‘y:’ 

assignment slot 

2 

. . . 

mark 

map 

scav’ing link 

function array 

object length 

slot count 

map 
f;rdew 

slot name 

slot type 

slot contents 

slot 
;; dew 

R” 

slot name 

slot type 

slot offset 

slot 

hfe 
de ndency 

slot name 

slot type 

slot offset 

slot 
j?; dew 

r 

slot name 

slot type 

data slot index 

slot 
;; dew 

r 

s/of name 

slot type 

dafa slot index 

slot 
de ndency 
/inRe 

The representation of two carte&n point objects. The 
objects on the left are the point “instances,” containing 
the values of the x and y assignable data slots. The 
right object is the shared map for all Cartesian points, 
containing the value of the constant parent slot and the 
offsets of the assignable x and y slots. 
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4. The Parser 

To minimize parsing overhead, textual SELF programs 
are parsed once when entered into the system, generating 
SELF-level byte code objects, much like Smalltalk 
CompiledMethod instances. Each method object 
represents its source code by storing a reference to the 
pre-parsed byte code object in the method’s map; all 
cloned invocations of the method thus share the same 
byte code object. A byte code object contains a byte 
array holding the byte codes for the source, and an 
object array holding the message names and object 
literals used in the source. Each byte code in the byte 
array represents a single byte-sized virtual machine 
instruction, and is divided into two parts: a 3-bit 
opcode and a 5-bit object array index. The opcodes am 
specified as if for execution by a stack-oriented 
interpreter, in actuality, our SELF compiler 
dynamically translates byte code objects into native 
machine instructions just prior to execution The only 
opcodes used to represent SELF programs are the 
following: 

SELF 
push aelf onto the execution stack 

LITERAL cvaiue index> 
push a literal value onto the execution stack 

SEND <message name index> 
send a message, popping the receiver and arguments off 
the execution stack and pushing the result 

SELF SEND <message name index> 
send a message to self, popping the arguments off the 
execution stack and pushing the result 

SUPER SEND <message name index> 
send a message to self, delegated to all parents, 
popping the arguments off the execution stack and 
pushing the result 

DELEGATEE <parent name index> 
delegate the next message send to the named parent 

NON-LOCAL RETURN 
execute a non-local return from the lexically-enclosing 
method activation 

INDEX-EXTENSION <index extension> 
extend the next index by prepending the index 
extension 

The index for the opcodes is an index into the 
accompanying object array. The 5-bit offset allows the 
ftrst 32 message names and literals to be referred to 
directly; indices larger than 32 are constructed using 
extra INDEX-EXTENSION instmctions. 

In SELF source code, primitive operations are invoked 
with the same syntax used to send a message, except 
that the message name begins with an underscore (“-“). 

method object 
(prototype activation record) 

SELF SEND #I0 (x) 

SEND #l (prin?) 

LITERAL #2 (: ‘) 

SEND #l (print) 

SELF SEND #3 (y) 

SEND #l {print) 

The representation of the point print method. The top ob- 
ject is the prototype activation record, containing place- 
holders for the local slots of the method (in this case, just 
the self slot) plus a reference to the byte code object rep- 
resenting the source code (actually stored in the method’s 
map). The byte code object contains a byte array for the 
byte codes themselves, and a separate object array for the 
constants and message names used in the source code. 

Every call of a primitive operation may optionally pass 
in a block to be invoked if the primitive fails by 
appending IfFail: to the message name. If invoked, 
the block is passed an error code identifying the nature 
of the failure (e.g. overflow, divide by zero, or 
incorrect argument type). The normal SEND byte codes 
are used to represent all primitive operation 
invocations, simplifying the byte codes and facilitating 
extensions to the set of available primitive operations. 
By contrast, SmalltaIk-80 primitives are invoked by 
number rather than name, and may only be called at the 
beginning of a method. The rest of the method is 
executed if the primitive fails, without any indication 
of why the primitive failed. 

The byte codes needed to express SELF programs fall 
into only three classes: base values (LITERAL and 
SELF), message sends, and non-local return. This small 
number results from both the simplicity and elegance of 
the SELF language and the lack of elaborate space-saving 
encodings. Smalltalk- defines a much larger set of 
byte codes [GR83], tuned to minimize space and 
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maximize interpretation speed, and includes byte codes 
to fetch and store local, instance, class, pool, and 
global variables and shortcut byte codes for common- 
case operations such as loading constants like nil, 
true. and 0. 

Smalltalk- systems also use special control flow 
byte codes to implement common boolean messages Iike 
ifTrue:ifFalse: and whilelrue:; the Smalltalk 
parser translates the message sends into conditional and 
unconditional branch byte codes, open-coding the 
argument blocks. Similarly, the == message is 
automatically translated into the identity comparison 
primitive operation byte code. A similar optimization is 
included for messages like + and <, which the parser 
translates into special byte codes. When executed, these 
byte codes either directly invoke the corresponding 
integer primitive operation (if the receiver is an 
integer), or perform the message send (if the receiver 
isn’t an integer). 

Although this special processing for common messages 
may significantly improve the performance of existing 
Smalltalk systems, especially interpreted ones, they 
violate the extensible and flexible spirit of Smalltalk: 

l The source code for the 
relegated to documentation, 
hard-wired source code are 
hY definitions of 
whileTrue:, and == for 
are ignored. 

hard-wired methods is 
and all changes to the 
ignored by the system. 

ifTrue:ifFalse:, 
other types of objects 

l The receiver of an ifTrue:ifFalse: message 
must evaluate to either the true or the false object 
at run-time and the arguments must be block 
literals at parse-time; the receiver and argument to 
whileTrue: must be block literals at parse-time, 
and the receiver block must evaluate to either the 
true or the false object at run-time. 

l Perhaps the worst aspect of these parser 
“optimizations” is that they tempt programmers to 
select inappropriate control structures like 
whileTrue: instead of to : do : to obtain the 
performance of the hard-wired message. 

In effect, these hard-wired messages have become the 
non-object-oriented built-in operators of Smalltalk. 
Our SELF system incorporates none of these tricks. 
Instead our compilation techniques achieve better 
performance without compromising the language’s 
conceptual simplicity and elegance, preserving the 
message passing model for all messages. 

5. The Compiler 

The SELF compiler is a significant part of our efficient 
implementation [CU89]. It is similar to the Deutsch- 
Schiffman translator described in [DS84] (and 
implemented in the PamPlace Smalltalk- system) in 
that it supports dynamic translation of byte-coded 
methods into machine code transparently on demand at 
run-time, and it uses an inline caching technique to 
reduce the cost of non-polymorphic message sends. 
However, although the Deutsch-Schiffman system is the 
fastest Smalltalk system (as of July 1989), it still runs 
about 10 times slower than optimized C. By combining 
traditional optimizing compiler technology, techniques 
from high-performance Smalltalk systems, and some 
critical new techniques we developed, our SELF 
compiler has already achieved a level of performance 
more than twice as fast as the Deutsch-Schiffman 
system, and only 4 to 5 times slower than optimized C. 
We hope that our second-generation system under 
construction (and described in section 7) will achieve 
even better levels of performance. 

The main obstacle to generating efficient code from 
Smalltalk programs, as many people have noted before 
[Atk86, JGZ88, BMW86], is that very little static type 
information is available in the Smalltalk source. Only 
literal constants have a known class at compile-time; 
without detailed analysis, no other types are known. 
Type infemncing is difficult for Smalltalk programs, 
especially when the compiler is using the inferred types 
to improve performance [Suz81, BI82, Cur89]. Even if 
the Smalltalk programmer were willing to sacrifice 
many of the benefits of his exploratory programming 
environment and annotate his programs with static tyPe 
declarations, designing an adequate type system for 
Smalltalk would be hard [Atk86, JGZ88]; the more 
flexible the type system, the smaller the performance 
improvement possible and the smaller the reward for 
including type declarations in the first place. 

SELF programs are even hauler to compile efficiently 
than Smalltalk programs. All the problems of missing 
static type information that Smalltalk compilers face 
are also faced by our SELF compiler. In addition, all 
variables in SELF are accessed by sending messages, 
rather than being explicitly identified as variables in the 
source code and byte codes. And since there am no 
classes in SELF, some of the class-based techniques used 
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to optimize Smalltalk programs, such as inline caching, 
type inferencing, and static type checking, cannot he 
directly used in our SELF system. 

Rather than compromising the flexibility of SELF 
programs with a static type system, or compromising 
the execution speed of programs by interpreting 
dynamic type information, we have developed 
compilation techniques that automatically derive much 
of the type information statically specified in other 
type systems. By combining this extra information with 
a few general-purpose techniques from optimizing 
compilers for traditional languages like Fortran and C, 
our compiler achieves good performance without 
sacrificing any of the comforts of an interactive, 
exploratory programming environment: fast turnaround 
for programming changes, complete source-level 
debugging, and a simple, elegant programming language 
unfettered by static type declarations. The next few 
subsections summarize our new compilation techniques; 
a more detailed discussion may be found in [CU89]. 

5.1. Customized Compilation 

The Deutsch-Schiffman Smalltalk- system compiles a 
single machine code method for a given source code 
method. Since many classes may inherit the same 
method the SmalltaUc-80 compiler cannot know the 
exact class of the receiver. Our SELF compiler, on the 
other hand, compiles a different machine code method 
for each type of receiver that runs a given source 
method. The advantage of this approach is that our SELF 
compiler can know the type of the receiver of the 
message at compile-time, and can generate much better 
code for each of the specific versions of a method than it 
could for a single general-puxpose compiled method. 
We call this technique of dynamic translation of 
multiple specially-compiled methods for a single 
source-code method customized compilation. 

Consider the min : method defined for all objects: 

min: arg = ( 
< arg ifTrue: [self] False: [arg] ). 

This method could be invoked on integers, floating 
point numbers, strings, or any other objects that can be 
compared using <. Like other dynamic compilation 

systems, our SELF system waits until the min: method 
is first invoked before compiling any code for this 
method. Other systems would compile this method once 
for all receiver and argument types, which would 
require generating the code for a full message dispatch 
to select the right < comparison routine. Since our SELF 
compiler generates a separate compiled version for each 
receiver type, it can customize the version to that 
specific receiver type, and use the new-found type 
information to optimize the < message. 

Let’s trace the operations of our SELF compiler to 
evaluate the expression i min: j, where i contains an 
integer at nm-time. Assuming this is the first time 
min : has been sent to an integer, our compiler will 
generate code for a version of min: that is customized 
for integer receivers. The compiler first builds the 
following internal flow graph (expensive operations axe 
in bold face):* 

I I send < 
L 

I 
1 

, 4 

1 push [self] 1 

create-closure 

send ifTrue:False: 

Many of the expensive operations can be eliminated by 
inlining messages sent to receivers of known type, as 
described next. 

* To simplify the discussion. message sends that access local 
slots within the executing activation record (e.g. arguments) are 
assumedto bereplaced with localregisteraccesses immediately. 
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5.2. Message Inlining 

Our compiler uses sources of type information, such as 
the types of source-code literals and the type of self 
gleaned from customized compilation, to perform 
compile-time message lookup and message inlining. If 
the type of the receiver of a message is known at 
compile-time, the compiler can perform the message 
lookup at compile-time rather than wait until run-time. 
If this lookup is successful, which it will be in the 
absence of dynamic inheritance and programming errors, 
our compiler will do one of the following: 

l If the slot contains a method, the compiler will 
inline the body of the method at the call site, if the 
method is short enough and nonrecursive. 

l If the slot contains a block value method, the 
compiler will inline the body of the block value 
method at the call site, if it is short enough. If 
after inlining there are no remaining uses of the 
block object, the compiler will eliminate the code 
to create the block at run-time. 

l If the slot is a constant data slot, the compiler 
will replace the message send with the value of the 
slot (a constant known at compile-time). 

. If the slot is an assignable data slot, the compiler 
will replace the message send with code to fetch 
the contents of the slot (e.g. a load instruction). 

l If the slot is an assignment slot, the compiler will 
replace the message send with code to update the 
contents of the slot (e.g. a store instruction). 

After inlining all messages sent to receivers of lolown 
type, the compiler will have inlined all messages that 
in an equivalent Smalltalk program would have been 
variable refe=nces or assignments, thus eliminating the 
overhead in SELF of using message passing to access 
variables. In addition, many more messages have been 
inlined that in a Smalltalk system would have remained 
full message sends. 

For example, in the version of min: customized for 
integers, the compiler can statically look up the 
definition of < defined for integers: 

< arg = ( 

IntLTPrim: arg IfFail: [...I ). 

This method simply calls the integer less-than 
primitive with a failure block (omitted here for 
brevity). The compiler inlines this < method to get to 
the flow graph pictured at the top of the next column. 

I push self ~~ I 

1 push arg 1 

1 create-closure 1 

create-closure 

send ifTrue:False: 

The overhead for sending the < message has been 
eliminated, but calling a procedure to compare integers 
is still expensive. The next section explains how our 
compiler open-codes common primitive built-in 
operations to further increase performance. 

5.3. Primitive Inlining 

Primitive inlining can be viewed as a simpler form of 

message inlining. Calls to primitive operations are 
normally implemented using a simple procedure call to 
an external function in the virtual machine. However, 
like most other high-performance systems, including 
some Smalltalk systems [DS84, JGZ88], our SELF 
compiler replaces calls of certain common primitives, 
such as integer arithmetic, comparisons, and array 
accesses, with their hard-wired definitions. This 
significantly improves perfomumce since some of these 
primitives can be implemented in two or three machine 
instructions if the overhead of the procedure call is 
removed. If the arguments to a side-effect-free 
primitive, such as an arithmetic or comparison 
primitive, are known at compile-time, the compiler 
actually calls the primitive at compile-time, replacing 
the call to the primitive with the result of the 
primitive; this is SELF’s form of constant folding. 
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In our ongoing min: example, the compiler inlines the 
1ntLTPrim:IfFai.l: - call (the definition of the 

integer less-than primitive, but not the integer less- 
than method, is hard-wired into the compiler) to get 
the flow graph: 

push [self] 
I 

create-closure 
I 

push [argl 
I 

&Elziz& 

The first compare-and-branch sequence verifies that the 
argument to the _ 1ntLTPrim:IfFail: cd is also 
an integer (the receiver is already known to be an 
integer courtesy of customization); if not, the failure 
block is created and invoked. If the argument is an 
integer, then the two integers are compared, and either 
the true object or the false object is returned as the 
result of the < message. 

The next message considered by our compiler is the 
ifTrue:False: message. If arg is an integer--the 
common case-the receiver of ifTrue: False: Will 

be either true or false; otherwise it will be the result 
of the value message (unknown at compile-time). 
Normally, tbis would prevent inlining of the 
ifTrue:False: message, since the type of its 
receiver cannot be uniquely determined. However, by 
compiling multiple versions of the ifTrue:False: 
message, one version for each statically-known receiver 
type, our SELF compiler can handle and optimize each 
case separately. This technique is explained next. 

5.4. Message Splitting 

When type information is lost because the 5ow of 
control merges (such as happens just prior to the 
ifTrue:False: message in the min: example), our 
SELF compiler may elect to split the message following 
the merge into separate messages at the end of each of 
the preceding branches; the merge is postponed until 
after the split message. The compiler knows the type of 
the receiver for some of the copies of the message, and 
can perform compile-time message lookup and message 
inlining to radically improve performance for these 
versions. The proper semantics of the original unsplit 
message is preserved by compiling a real message send 
along those branches with unknown receiver types. 
Message splitting can be thought of as an extension to 
customized compilation, by customizing individual 
messages along particular control flow paths, with 
similar improvements in run-time performance. 

For the min: example, the SELF compiler will split 
the ifTrue:False: message into three separate 
versions: 

and #3, arg 

bzero 

I cmp self,arg I 

create-closure /$$I create-closure create-closure C 
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Now the compiler can inline the definition of 
ifTrue:False: forthe trueobject: 

ifTrue: trueBlk False: falseBlk = ( 
trueBlk value ). 

and for the false object: 

ifTrue: trueBlk False: falseBlk = ( 
falseBlk value ) . 

to get to the following flow graph: 

1 push ; self] 1 1 push iself] 1 

push [ . . . ] 
I 

create-closure 
I 

send value 
I 

push [self] 
I 

create-closure IIcreate-closure 

1 Push ,L=-gl 1 1 push /arg] 1 1 push :arg] 1 

I create-closure I I createclosure II create-closure 1 

i[self] valuei [arg] value i send ifTrue: ~~~~1 

The two value messages can be inlined, replaced by the 
bodies of the blocks. Since none of the receiver and 
arguments of the inlined ifTrue: False: messages 

need to be created at run-time any more, the compiler 
eliminates them from the control flow graph, 
producing the following flow graph: 

1 push .[ . . . I 1 

1 send value1 
I 

1 

1 push Lselfl 1 

I create-closure 
I I 

I 1 

1 push [argl 1 

I create-closure I 

Let’s assume that the failure block for integer 
comparisons is too complex to inline away. The 
compiler won’t inline the value message, and so the 
value message’s result type is unknown at compile- 
time. Thus the receiver type of the ifTrue:False: 
message is unknown, and a simple SELF compiler 
wouldn’t be able to inline this message away either. 
However, the next subsection describes how our 
compiler uses la-~own patterns of usage to predict that 
the receiver of the ifTrue:False: message Will be a 
boolean and optimizes the message accordingly. 
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5.5. Type Prediction 

When the type of the receiver of a message is unknown 
at compile-time, the SELF compiler uses static type 
prediction to generate better code for some common 
situations. Certain messages are known to the compiler 
to be likely to be sent to receivers of certain types: + 
and < are likely to be sent to integers, and 
ifTrue:False: is likely to be sent to either true or 
false. The compiler generates a run-time test based on 
the expected type or value of the receiver, followed by 
a conditional branch to one of two sections of code; 
along the “success” branch, the type (or value) of the 
receiver is known (at compile-time), along the 
“failure” branch, the type is unknown. The compiler 
then uses the message splitting techniques to split the 
predicted message, compiling a copy of the message 
along each branch. Because the compiler now knows the 
type of the receiver of the split message along the 
“success” branch, it can inline that version of the 
message away, significantly improving performance for 
common operations like integer arithmetic and boolean 
testing. A real message send is executed in the case that 
the prediction fails, preserving the original message’s 
semantics for all possible receivers. 

This type prediction scheme requires little additional 
implementation work, since message splitting and 
inlining is already implemented. It is also much better 

hard-wiring the ifTrue:ifFalse:, 
whileTrue:, ==, +, and < messages into the parser 
and compiler as SmaLltalk- systems do, since it 
achieves the same sorts of performance improvements 
but preserves the message passing semantics of the 
language and aLlows the programmer to modify the 
definitions of all SELF methods, including those that 
are optimized through type prediction. 

Let’s apply type prediction to the remaining 
ifTrue:False: message in the min: example. The 
compiler fust inserts run-time tests for the true object 

and the false object, followed by several copies of the 
ifTrue:False: message (we’ll just look at the 
remaining unoptimized branch): 

create-closure 
I 

send value 

In the left branch, the receiver of ifTrue:False: is 
known to be the value true; for the middle branch, the 
receiver is known to be the value false. As before, the 
Compiler idineS these IWO ifTrue:False: messages, 
plus the corresponding value messages, and eliminates 
the closure creations to get to the final flow graph for 
the entire method, picture at the top of the next page. 
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__TJ 1 create-pure 1 

\ 1 send value 1 

create-closure create-closure 

create-closure create-closure 
I I 

\I r I 
send ifTrue: 

False: 

In the common case of taking the minimum of two 
integers, our compiler executes only two simple 
compare-and-branch sequences, for fast execution. A 
simihr savings will be seen if the user calls min : on 
two floating point numbers or two strings, since our 
compiler customizes and optimizes special versions for 
each of these receiver types. But even in the case of 
taking the minimum of two values of different types, 
such as an integer and a floating point number, our 
compilation techniques preserve the message passing 
semantics of the original source code, and execute the 
source code faithfully. 

6. Supporting the 
Programming Environment 

Our SELF system supports a high-productivity 
programming environment. This environment requires 
both rapid turn-around time for programming changes 
and complete source-level debugging at the byte code 
level. These features must coexist with our optimizing 
compiler techniques, including message inhning. The 
next two subsections describe the compiler-maintained 
change dependency links that support incremental 
recompilation of compiled code affected by 
programming changes, and the compiler-generated 
debugging information that allows the debugger to 
reconstruct inlined stack frames at debug-time. This 
information is appended to each compiled method object 
iu the compiled code cache. 

a compiled method a scope description 

I header 

native 
machine 

code 

scavenging info k $i~$$gg$? 
:!:::::::;:;:i:v 

depy;lzncy 
.y$;::::::::: ::M:i:;:;::.’ 

&$#L:’ a ,,yte code mapp,ng 
$$$> 
:::::.: p .+::g ..,.:::::::z:::: .:::::::::::::::::: ,.~.:::::::::::::::::::::: 

..,~!~~~~Sl~ii(iiiiiiii .A.,..... .A........ .,I.......,... .‘.‘.‘.‘.‘f:.:.:.:.:......,:,:.:,:,: . ..A.. ..A.. . :.:.:.: .,.,.,.,.,.,.,.,.,...,.,.,.,.,.,, :i:i:~.~:1:~:i:b~::~~:~~:~:~:~ .,. ,.,.,.,.,., _.....,.,.,., . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . “‘!‘:‘:‘:.:::::::~:::::::::::: . ‘....:.::::~.~:~:~::~: 

slot locations 

A compiled method contains more than just instruc- 
tions. It includes a list of the offsets within the in- 
structions of embedded object references, used by the 
scavenger to modify the compiled code if a refer- 
enced object is moved. The compiled method includes 
dependency links to support selective invalidation. It 
also includes descriptions of the inlined method 
scopes, which are used to fiid the values of local 
slots of the method and to display source-level call 
stacks, and a bidirectional mapping between source- 
level byte codes and actual program counter values. 
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6.1. Support for Incremental Recompilation 

A high-productivity programming environment requires 
that programming changes take effect within a fraction 
of a second. This is accomplished in our SELF system by 
selectively invalidating only those compiled methods 
that m, affected by the programming change, 
recompiling them from new definitions when next 
needed. The compiler maintains two-way change 
dependency links between each cached compiled method 
and the slots that the compiled method depends on. The 
information used to compile code-object formats and 
the contents of non-assignable slots-is precisely the 
information stored in maps. Therefore we can confine 
our dependency links to maps. These links are formed in 
four ways: 

9 When a method is being compiled, the system 
creates a dependency link between the map slot 
description containing the method and the compiled 
code in case the definition of the method changes or 
its slot is removed. 

l When the compiler inlines a message, the system 
creates a dependency link between the matching slot 
description (either a method slot, a data slot, or an 
assignment slot) and the compiled code in case the 
definition of the inlined method changes or its slot 
is removed. 

l When the compiler searches a parent object during 
the course of a compile-time lookup, the system 
creates a dependency link between the slot 
description containing the parent and the compiled 
code in case the parent pointer changes and alters 
the result of the lookup. 

l When the compiler searches an object 
unsuccessfully for a matching slot during compile- 
time lookup, the system creates a dependency link 
between the map of the object searched and the 
compiled code in case a matching slot is added to 
the object later. 

These rules ensure that no out-of-date compiled meth- 
ods survive programming changes, while limiting invali- 
dations to those methods actually affected by a change. 

A dependency link is represented by a circular list that 
connects a slot description or map to all dependent 
compiled methods. When the system changes the 
contents of a constant slot or removes a slot, it 
traverses the corresponding dependency list and 
invalidates all compiled code objects on the list. When 
the system adds a slot, it similarly traverses the map’s 
dependency list and invalidates linked compiled code 
objects. Links must be removed from their lists when a 
method is invalidated or a map is garbage-collected; 
lists are doubly-linked to speed these removals. 

compiled code for integer min: 

( dependency lists= 

root 

+-mr 

inteaer I 
trait; T-t 

I I I 

I ’ (map dependency) XG#~ 

(map dependency) 

iffrue:False: I=+ 
(map dependency) I 

incase min: 
is changed 

in case parent 
than e affects 
min: ookup f 

in case 4 is 
is changed 

in case min: 
is added 

in case parent 
change affects 
< or min: lookups 

in case < or min: 
is added 

in case 
ifTrue:False: 
is changed 

in case 
ifTrue:False: 
is changed 

The dependency lists for the compiled min: method custom- 
ized for integers. The gray line represents eight separate 
circularly-linked dependency lists. Each list connects a slot 
description to its dependent compiled code objects. If any 
of the map information linked to the compiled code chang- 
es, the compiled code for min: (and for any other compiled 
methods that depend on the same changed information) will 
be thrown away and recompiled when next needed. 

Selective invalidation is complicated by methods that 
are executing when a programming change requires that 
they be invalidated. The methods cannot really be 
flushed, because they are still executing, and some co& 
must exist. But neither can they remain untouched, since 
they have been optimized based on information that is 
no longer correct. One solution, which has not been 
implemented yet, would be to recompile executing 
methods immediately and to rebuild the execution stack 
for the new compiled methods. We do not know yet if 
this procedure would be fast enough to keep 
programming turn-around time short.. 
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6.2. Support for Source-Level Debugging 

A good programming environment must include a 
source-level debugger The SELF debugger presents the 
program execution state in terms of the programmer’s 
execution model: the state of the byte code interpreter, 
with no optimizations. This requires that the debugger 
be able to examine the state of the compiled, optimized 
SELF program, and construct a view of that state (the 
virtuaE state) in terms of the byte-coded execution 
model. Examining the execution state is complicated by 
having methods in the virtual call stack actually be 
inlined within other methods in the compiled method 
call stack, and by allocating the slots of virtual 
methods to registers and/or stack locations in the 
compiled methods. To allow the debugger to 
reconstruct the virtual call stack from the physical 
optimized call stack, the SELF compiler appends 
debugging information to each compiled method For 
each scope compiled (the initial method, and any 
methods or block methods inlined within it), the 
compiler outputs information describing that scope’s 
place in the virtual call chain within the compiled 
method’s physical stack frame. For each argument and 
local slot in the scope, the compiler outputs either the 
value of the slot (if it’s a constant known at compile- 
time, as many slots are) or the register or stack location 
allocated to hold the value of the slot at run-time. 

Our SELF compiler also outputs debugging information 
to support computing and setting breakpoints. This 
information takes the form of a bidirectional mapping 
between program counter addresses and byte code 
instructions within a particular scope. One complexity 
with this mapping is that it is not one-to-one: several 
byte codes may map to the same program counter 
address (as messages get inhned and optimized away), 
and several program counter addresses may map to the 
same byte code (as messages get split and compiled in 
more than one place). To determine the current state of 
the program in byte code tenus at any program counter 
address, the debugger first finds the Iarest program 
counter address in the mapping that is less than or equal 
to the current program counter, and then selects the 
latest byte code mapped to that address; this algorithm 
returns the last byte code that has been started but not 
completed for any program counter address, The 

min: I I selt: rl 
arg: f-2 

The debugging information for the min: method. Each 
scope description points to its calling scope description 
(black arrows); a block scope also points to its lexically- 
enclosing scope description (gray arrows). For each slot 
within a scope, the debugging information identifies ei- 
ther the slot’s compile-time value or its run-time location. 
For the min: example, only the initial arguments have nm- 
time locations (registers rl and r2 in this case); all other 
slot contents are known statically at compile-time. 

execution stack displayer uses this mapping information 
to find the bottommost virtual stack frame for each 
physical stack frame to display the call stack whenever 
the program is halted. 

We have not implemented the breakpointing facilities in 
our debugger yet; the current “debugger” displays the 
virtual execution stack and immediately continues 
execution whenever the -DumpSelfStack primitive is 
called. However, our mapping system is designed to 
support computing and setting breakpoints in 
anticipation of breakpointing and process control 
primitives. To set a breakpoint at a particular source- 
level byte code, the debugger would find all those 
program counter addresses associated with the byte code 
and set breakpoints there. In cases where several byte 
codes map to the same program counter address, single 
stepping from one byte code to the next wouldn’t 
actually cause any instructions to be executed, the 
debugger would pretend to execute instructions to 
preserve the illusion of byte-coded execution. 
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7. Performance Comparison 

SELF is implemented in 33,000 lines of C++ code and 
1,000 lines of assembler, and runs on both the Sun-3 (a 
68020-based machine) and the Sun-4 (a SPARC-based 
machine). We have written almost 9,000 lines of SELF 
code, including a hierarchy of collection objects, a 
recursive descent parser for SELF, and a prototype 
graphical user interface. 

We compare the performance of our first-generation 
SELF implementation with a fast Smalltalk 
implementation and the standard Sun optimizing C 
compiler on a &m-4/260 workstation. The fastest 
Smalltalk system currently available (excluding 

graphics performance) is the ParcPlacc V2.4 p2 
Smalltalk- virtual machine, rated at about 4 
Dorados* [pP88]; this system includes the Deutsch- 
Schiffman techniques described earlier. We compare 
transliterations from C into Smalltalk and SELF of the 
Stanford integer benchmarks men881 and the Richards 
operating system simulation benchmadr [Deu88], as 
well as the following smail benchmarks, adapted from 
Smalltalk- systems FTcC!83]: 

sumToTe& = ( 1 sumTo: 10000 ). 
sumTo : arg = ( 

I total <- 0 I 
to: arg Do: I I :index I 

total: total + index. 

1. 
total ). 

recurseTest = ( 14 recurse ). 
recurse = ( 

= 0 ifFalse: [ 

(- 1) recurse. (- 1) recurse. 

3 1. 

We also rewrote most of the Stanford integer 
benchmarks in a more SELFish programming style, 
using the first argument of a C function as tbe receiver 
of the corresponding SELF method. Measurements for 
the rewritten benchmarks are presented in columns 
labeled SELF’; times in parentheses mark those 
benchmarks that were not rewritten. 

* A “Dorado” is a measure of the performance of Smalltalk 
implementations. One Dorado is defined as the performance of 
an early Smalltalk implementation in microcode on the 7011s 
Xerox Dorado [Deu83]; until recently it was the fastest 
available Smalltalk implementation. 

The following table presents the actual running times 
of the benchmarks on the specified platform. All times 
are in milliseconds of CPU time, except for the 
Smalltalk times, which are in milliseconds of real time; 
the real time measurements for the SELF system and the 
compiled C program are practically identical to the 
CPU time numbers, so comparisons in measured 
performance between the ParcPlace SmaRtalk system 
and the other two systems are valid. 

Raw Running Times 

Smalltalk SELF SELF’ 
(real ms) (cpu ms) (cpu ms) (cpu m$ 

perm 1559 660 420 120 
towers 2130 900 

z-F% 
859 520 i% E 

1490 970 

F$ 16510 5290 (“Z$ 1 
160 
770 

1239 110 
bubble 2970 1% 1230 170 
tree 1760 1750 1480 820 

richards 7740 2760 (2760) 730 

sumToTe& 25 18 (‘8) 4 

recurreTest 169 52 (52) 32 

The entries in the following table are the ratios of the 
running times of the benchmarks for the given pair of 
systems. From our point of view, bigger numbers am 
better in the first two columns, while smaller numbers 
am better in the last two columns. The most 
meaningful rows of the table am probably the rows for 
the median of the Stanford integer benchmarks and the 
row for the Richards benchmark. 

Relative Performance of SELF 

Smalltalk/ SmalHalW Smalltalk/ SELF/ SELF’/ 
SELF SELF’ C C C 

perm 
$:i 

3.7 13.0 
2; 

3.5 
towers 3.8 11.2 

Fgy . 1.8 5:; 

puule i: 
1.5 ES 3 6.1) 

quick 1:s 
I 1 
;::, 

21:4 
11.3 :! 

I 

bubble 1.8 2.4 17.5 9:s 
%? 
7.2 

tree 
::x ::; 

2.1 
min 

1% 
z 
5:s 

:.t 
median 

E X:; 21:4 
5:1 

max 9.8 7.2 

richads 2.8 (2.8) 10.6 3.8 (3.8) 

sumToTest 1.4 (1.4) 6.2 4.5 (4.5) 

recurseTest 3.2 (3.2) 5.3 1.6 (1.6) 

Our SELF implementation outperforms the Smalltalk 
implementation on every benchmark; in many cases 
SELF runs more than twice as fast as Smalltalk. Not 
surprisingly, an optimizing C compiler does better than 
the SELF compiler. Some of the difference in 
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performance results from significantly poorer 
implementation in the SELF compiler of standard 
compiler techniques such as register allocation and 
peephole optimization. Some of the difference may be 
attributed to the robust semantics of primitive 
operations in SELF: arithmetic operations always check 
for overflow, array accesses always check for indices 
out of bounds, method calls always check for stack 
overflow. The rest of the difference is probably caused 
by the lack of type information, especially for 
arguments and assignable data slots. We are remedying 
these deficiencies to a large extent in the second- 
generation SELF system described in the next section. 

The above table shows that the performance of object- 
oriented systems is improving dramatically. As a new 
metric for comparing the performance of these systems, 
we propose the millions of messages per second 
(MiMS) measure, analogous to the millions of 
instructions per second (MIPS) measure for processors. 
This number measures the performance of an object- 
oriented system in executing messages. To compute the 
MiMS rating of a system for a specific benchmark on a 
particular hardware platform, divide the number of 
messages the benchmark sends by its total running time. 
We define message sends as those invocations whose 
semantics include a dispatch; for SELF, this includes 
references to slots in the receiver (“instance variable” 
accesses), since the same reference could invoke a 
method, but excludes references to slots local to a 
method invocation (“local variable” accesses), since 
these could never do anything other than access data. We 
computed the MiMS rating of our first-generation 
SELF system for the Richards benchmark on the 
SPARC-based Sun-4/260 to be 3.3 MiMS, or a message 
executed every 300ns [Lee88]. 

The efhciency of an object-oriented system is inversely 
proportionaI to the number of instructions executed per 
message sent. The cycle time on the Sun-4/260 is 6Ons 
[Nam88], giving our SELF system a cost per message of 
about 5 cycles. Since the SPARC has been clocked at 1.6 
cycles per instruction [Nam88] (accounting for cache 
misses and multicycle instructions), this would give 
our SELF system an efficiency rating of around 3 
instructions per message sent. We are not aware of any 
other implementations of dynamically-typed object- 
oriented languages that approach this level of efficiency. 

Other researchers have attempted to speed Smalltalk 
systems by adding type declarations to Smalltalk 

programs. Atkinson’s Hurricane compiler compiles a 
subset of Smalltalk annotated with type declarations 
[Atk86]. He reports a performance improvement of a 
factor of 2 for his Hurricane compiler over the Deutsch- 
Schiffman system on a 68020-based Sun-3; our initial 
SELF system already achieves the same performance 
improvement over the Deutsch-S&i&an system 
without type declarations. Johnson’s TS Typed 
Smalltalk system type-checks and compiles Smalltalk- 
80 programs fully annotated with type declarations 
[JGZ88]. He reports a performance improvement of a 
factor of between 5 and 10 over the Tektronix 
Smalltal.k-80 interpreter on a 68020-based Tektronix 
4405. For a benchmark almost identical to our 
sumToTest benchmark, he reports an execution time 
of 62ms, which we executed in 18ms on a machine 3 to 
4 times faster than his machine. This makes his system’s 
performance roughly comparable to our system’s 
performance, even though his system relies on type 
declarations while ours does not. These results suggest 
that our compilation techniques do a good job of 
extracting as much type information as is available to 
these other systems through programmer-supplied type 
declarations. 

8. Future Work 

SELF has not reached its fmal state. Although we have 
established the feasibility and rewards of the 
implementation techniques described in this paper, much 
work remains. 

8.1. The Second-Generation SELF System 

We are in the process of reimplementing our entire 
SELF system to clean up our code, simplify our design, 
and include better compilation algorithms. As of this 
writing (July 1989), we have completely rewritten the 
object storage system and unified the run-time/compile- 
time message lookup system. We have implemented the 
core of the second-generation compiler, and it is now 
compiles and executes about half of our SELF code. 

The new compiler performs type flow analysis to 
determine the types of many local slots at compile- 
time. It also includes a significantly more powetil 
message splitting system. The initial message splitter 
described in this paper only splits a message based on 
the type of the result of the previous message; the 
second-generation message splitting system can use any 
type information constructed during type flow analysis, 
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especially the types of local slots. The message splitter 
may elect to split messages even when the message is 
not immediately after a merge point, splitting all 
messages that intervene between the merge that lost the 
type information and the message that needs the type 
information. 

Our goal for the combined type analyzer and extended 
message splitter is to ahow the compiler to split off 
entire sections of the control flow graph, especially 
loop bodies, that manipulate the most common data 
types. Along these common-case sections, the types of 
most variables will be known at compile-time, leading 
to maximally-inlined code with few run-time type 
checks; in the other sections, less type information is 
available to the compiler, and more full message sends 
are generated. Under normal conditions the optimized 
code will be executed, and the method will run fast, 
possibly just as fast as for a C program. However, in 
exceptional situations, such as when an overflow 
actually occurs, the flow of control will transfer to a 
less optimized section of the method that preserves the 
message passing semantics. 

Our second-generation compiler also performs data 
flow analysis, common subexpression elimination, code 
motion, global register allocation, and instruction 
scheduling. We hope that the addition of these 
optimizations will allow our new SELF compiler to 
compete with high-quality production optimizing 
compilers. 

8.2. Open Issues 

Method arguments are one of the largest sources of 
“unknown” type information in the current compiler. 
We want to extend our second-generation system to 
customize methods by the types of their arguments in 
addition to the receiver type. This extension would 
provide the compiler with static type information about 
arguments so it could generate faster code. These 
benefits have to be balanced against the costs of 
verifying the types of arguments in the prologue of the 
method at run-time. 

The compile-time lookup strategy works nicely as long 
as all the parents that get searched am constant parents; 
if any am assignable, then the compile-time lookup 

fails, and the message cannot be inlined. Our second 
generation system provides limited support for 
dynamically-inherited methods by adding the types of 
any assignable parents traversed in the run-time lookup 
to the customization information about the method; the 
method prologue tests the values of the assignable 
parents in addition to the type of the receiver. We plan 
to investigate techniques to optimize dynamically- 
inherited methods. 

The message inliner needs to make better decisions about 
when to inline a method, and when not to. The inliner 
should use information about the call site, such as 
whether it’s in a loop or in a failure block, to help 
decide whether to inhne the send, without wasting too 
much extra compile time and compiled code space. It 
should also do a better job of deciding if a method is 
short enough to inline reasonably; counting the byte 
codes with a fixed cut-off value as it does now is not a 
very good algorithm. Finally, our implementation of 
type prediction hard-wires both the message names and 
the predicted type; a mom dynamic implementation that 
used dynamic profile information or analysis of the 
SELF inheritance hierarchy might produce better, more 
adapting results. 

The current implementation of the compiler, though 
speedy by traditional batch optimizing compiler 
standards, is not yet fast enough for our interactive 
programming environment. The compiler takes over 
seven seconds to compile and optimize the Stanford 
integer benchmarks (almost 900 lines of SELF code), 
and almost three seconds to compile and optimize the 
Richards benchmark (over 400 lines of SELF code). We 
plan to experiment with strategies in which the 
compiler executes quickly with little optimization 
whenever the user is waiting for the compiler, queuing 
up background jobs to recompile unoptimized methods 
with full optimization later. 

Work remains in making sure that our techniques are 
practical for larger systems than we have tested. To 
fully understand the contributions of our work, we 
need to analyze the relative performance gains and the 
associated space and time costs of our techniques. This 
analysis will be performed as part of the first author’s 
forthcoming dissertation, 
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9. Conclusions 

Many researchers have attempted to boost the 
performance of dynamically-typed object-oriented 
languages. The designers of Smalltalk- hard-wired 
the definitions of user-level arithmetic and control 
methods into the compiler, preventing the users from 
changing or overriding them. Other researchers added 
type declarations to Smalltalk, thereby hindering reuse 
and modification of code. We devised dynamic 
customized compilation, static type prediction, type 
flow analysis, message splitting, and message inlining to 
automatically extract and preserve static type 
information. Our measurements suggest that our system 
runs just as fast as Smalltalk systems with type 
declarations and at least twice as fast as those with 
hard-wired methods. Researchers seeking to improve 
performance should improve their compilers instead of 
compromising their languages. 

SELF’s novel features do not cost the user either 
execution time or storage space. Our virtual machine 
supports the prototype object model just as space- and 
time-efficiently as similar class-based systems; maps 
act as implementation-level classes and thus reclaim the 
efficiency of classes for the implementation without 
inflicting class-based semantics on the SELF user. 
SELF’s use of messages to access variables has 
absolutely no effect on the fmal performance of SELF 
programs, since these message sends are the first to get 
inlined away. Once an implementation reaches this level 
of sophistication and performance, the information 
provided by classes and explicit variables becomes 
redundant and unnecessary. Prototype-based languages 
can run just as fast as class-based languages. 

Our implementation introduces new techniques to 
support the programming environment. The segregation 
of object references from byte arrays speeds scavenging 
and scanning operations. Dependency lists reduce the 
response time for programming changes. Detailed 
debugging information maps the execution state into the 
user’s source-level execution model, transparently 
“undoing” the effects of method inlining and other 
optimizations. 

Our techniques are not restricted to SELF; they apply to 
other dynarnicaIly-typed object-oriented languages like 
Smalltalk, Flavors, and CLOS. Many of our techniques 
could even be applied to statically-typed object-oriented 
languages like Ct+ and Trellis/Owl. For example, 

customization and automatic inlining could be used to 
eliminate many C-t-+ virtual function calls, encouraging 
broader use of object-oriented features and programming 
styles by reducing their cost. Compiler-generated 
debugging information could be used by the C++ 
debugger to hide the inlining from the user, just as our 
compiler generates debugging information to 
reconstruct the SELF virtual call stack. 

SELF is practical: our implementation of SELF is twice 
as fast as any other dynamically-typed purely object- 
oriented language documented in the literature. The 
SELF compiler achieves this level of efficiency by 
combining traditional optimizing compiler technology 
like procedure inhning and global register allocation, 
specialized techniques developed for high-speed 
Smalltalk systems like dynamic translation and inline 
caching, and new techniques like customization, message 
splitting, and type prediction to bridge the gap between 
them. The resulting synergy of old and new results in 
good performance. 
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