Dataflow Framework for Checker Framework

Andreas Abel

Kivanc Muslu

Brandon Myers

abel@cs.washington.edu kivanc@cs.washington.edu bdmyers@cs.washington.edu

ABSTRACT

This paper presents a general dataflow framework for Java
that can be used to replace the data flow implementation
in the Checker Framework, a tool that adds pluggable type
systems to Java. Currently, the Checker Framework uses
a generalization and extension of the data flow analysis in
Oracle’s javac, which is hardcoded to perform a few analyses
like definite assignment. Because of this, the analyses in the
Checker Framework suffer from imprecision. Moreover, no
detailed documentation for the code is available.

Our framework aims at overcoming these flaws. It is imple-
mented to be modular, precise and we believe that it is easy
to implement different data flow analyses using it. To show
the latter, we have completely eliminated the existing data
flow analyses in the Checker Framework and implemented
the same analyses using our framework. The fact that all
these analyses were written easily and with fewer lines of
code shows the modularity of our framework. Finally, we
have run the checkers with and without our framework and
seen that checkers running with our framework issue fewer
false positives and false negatives, which shows its precision.

We believe that our framework is a useful contribution be-
cause it can improve the expressiveness and precision of the
Checker Framework. Moreover, as we tried to keep the cou-
pling between the Checker Framework and our data flow
framework to a minimum, it could also be used with other
tools that need data flow analyses.

Categories and Subject Descriptors
D3.3 [Programming Languages|: Language Constructs
and Features—Frameworks

General Terms
Languages

1. INTRODUCTION

Dataflow analysis (DFA) [4] is a technique to statically de-
rive information about the dynamic behavior of a program.
This information includes facts about the use and defini-
tion of variables and information about control and data
dependencies. Typical problems that can be solved using
DFA are: Which definitions can reach a particular program
point? Which variables are live (i.e. read before their next
write update) at a program point? Which values might a
variable have at a program point? Which variables might
be uninitialized?

A dataflow framework as we refer to it in this paper is
a structure that, given three components of a DFA (sec-
tion 3.5), creates a DFA, performs the DFA over the control-
flow graph of the program, and provides inferred values for
the nodes of the abstract syntax tree.

Oracle’s implementation of javac relies on dataflow analysis
for computing definite assignment, but it only has a hard-
coded analysis that is not useful for other DFAs. Perhaps
there was no perceived need for a general DFF, since DFAs
are often used to enable compiler optimizations but the Java
Virtual Machine’s just-in-time compiler can produce better
optimizations at runtime.

However, having a general DFF for Java would be useful
for other purposes. For example, the Checker Framework®
is a tool that enhances Java’s type system by letting the
developers add pluggable types to their code. It can be
used to prove a given kind of runtime() error, such as a null
pointer dereference, does not exist in a program, and it needs
DFA to help make the analysis more precise. Currently, the
Checker Framework uses a modified version of javac’s Flow
implementation. But as this implementation is highly spe-
cialized and poorly documented, the attempt to generalize
it leads to a number of problems and restrictions; section 2
discusses some of the problems in detail.

Our framework replaces the current flow inference with a
well documented DFF that overcomes some deficiencies of
the current version. This makes the existing checkers more
precise. Being able to use arbitrary lattices, it is also possible
to build a wider range of checkers.

Our framework could also be used as a basis for a building a
stand-alone DFF. The way in which our framework depends

http://types.cs.washington.edu/checker-framework/

on Checker Framework is TreeUtils, which is a helper class
that implements some useful operations on Trees. In sec-
tion 5 we explain how this dependence can be removed. As
aresult, we believe that our framework also has the potential
to be used for other projects, such as other partial verifica-
tion tools, bug-finding and property-proving tools, and tools
that perform optimizations.

The remainder of the paper is organized as follows: section 2
explains our motivation for replacing the the existing DFA
in the Checker Framework. Section 3 explains the imple-
mentation of the important parts of our framework. Section
4 discusses our evaluation methodology and results. Section
5 presents related work, and section 6 concludes.

2. MOTIVATION

Our motivation to replace the current flow sensitive analysis
of the Checker Framework with a new DFF implementation
has two main components: (1) flow sensitive analysis in the
Checker Framework is imprecise and should be improved,
(2) it is worth improving because the Checker Framework
is a highly scalable and easy-to-use tool that can find docu-
mentation and execution bugs in well-tested and widely used
open source software.

2.1 Problems with the Checker Framework

In this section we state the existing problems in the Checker
Framework’s internal implementation: Its flow sensitive anal-
ysis is imprecise, and it does not properly handle aliases.

2.1.1 Imprecise Merge of Variable Values

The Checker Framework’s flow sensitive analysis cannot al-
ways infer the best type when inferred values for variables
need to be merged during the traversal of the AST. The anal-
ysis was implemented as an extension and generalization of
the definite assignment analysis in javac. Javac’s definite
assignment is highly optimized and so uses only the one re-
quired bit of information for each variable at each program
point: a variable is either initialized or uninitialized. This is
not true of pluggable types checking as the sub-type hierar-
chy (lattice) of the analysis can be wider and taller. As an
example, a part of the Signature Checker’s type hierarchy is
given in Figure 1. Clearly seen from the example, an String
can get 6 different types during the program analysis.

To permit a variable to have multiple annotations during
the program analysis, Flow implementation in the Checker
Framework uses a GenKillBits implementation, which is a
map from AnnotationMirror (annotations) to BitSet (bits).
This implementation is briefly explained by Papi et al. in
[7, §3.7]. It basically creates a bit vector for each type in the
hierarchy, where each bit indicates whether the variable has
that type. It attempts to perform flow operations like split
and merge over these bits. However, the implementation is
incomplete: it does not define a least upper bound in merge.
As the result, whenever two different types need to be joined
at a program point, merge just returns the top element in
the sub-type hierarchy.

Consider the following example that uses the type hierarchy
presented in Figure 1:

1. @BinaryName String bn

@UnannotatedString
(TOP)

@FieldDescriptor @FullyQualifiedName

‘ @BinaryName ‘

@SignatureBottom
(BOTTOM)

Figure 1: Type hierarchy for Signature Checker. Ar-
rows represent super types. (e.g., join of @Binary-
Name and @SourceName is equal to @BinaryName
since @BinaryName is a super type of @Source-
Name)

= 7java.lang.Thread$ThreadLocal”;
2. @SourceName String sn
= ”java.lang.Thread”;

/ After line 5, temp should be @BinaryName.
@BinaryName String bn2 = temp;

3. String temp;

4. if (Math.random() = 0) { temp = bn; }
5. else { temp = sn; }

/

6.

When we run this code with Signature Checker (which uses
the flow inferences of the Checker Framework flow analysis),
it raises an error at line 6. The type-checker complains that
‘bn2’ is defined as a BinaryName, however an Unannotated-
String (temp) is given instead. Therefore, current merge
implementation in Flow is sound (since it is still safe to re-
turn top type), however not precise (reports a false positive).

As demonstrated in the example, the Checker Framework’s
current flow analysis cannot always infer the best type when
program points need to be merged during the traversal of
the AST. Our framework strengthens the existing analysis
by replacing the Flow implementation with a CheckerAb-
stractValue and CheckerLattice that represents the lat-
tice of the existing sub-typing relation of the qualifier hi-
erarchy that the checker uses. By explicitly mapping sub-
types to abstract values and maintaining their relation in a
lattice, our implementation makes it very easy to implement
join. In addition, our implementation uses an Iterative-
FixedPointSolver which finds (if the lattices are not infinite
height) the best possible abstract value at every program
point. With these improvements, when the Checker Frame-
work uses our DFF, the same example does not raise the
€rTor.

2.1.2 Aliasing: False Positives & Negatives

The Checker Framework does not have any implementa-
tion to handle aliasing. It uses javax.lang.model.element.
VariableElement to represent the program variables inter-
nally. VariableElement works well in general; however, it

only defines one object for each field of a class: all instances
of a class share the same VariableElement. This leads to an
incorrect treatment of aliasing, which can cause false nega-
tives.

Consider the following example:

class Alias {

String field = null;

void method () {
Alias objl = new Alias ();
Alias obj2 = new Alias ();
/* After this line, all ‘field”’
instances become @NonNull. x/
objl.field = ‘‘not—null”;
obj2. field .toString ();

}

When we tried to type-check this example with Nullness
Checker (a checker specialized to find null dereferencing er-
rors), it does not issue an error message. However, we
know that obj2.field.toString() would throw a Null-
PointerException. Due to the fact that the flow inference
keeps only one VariableElement to represent Alias.field
for all instances of Alias, it is as if all the actual Aliases
are aliases and all the fields are the same. This is a wrong
assumption and ends up with a false negative.

We fix this issue by storing the global variables (i.e., fields)
in a map from its global identifier to its VariableElement.
Global identifiers are simple strings at this moment. In the
above example, though VariableElements are the same for
both fields, their global identifiers are different: obj1 and
obj2 respectively. So, they are represented as different el-
ements which solves the aliasing problems. We also made
sure that when there is a possibility of aliasing, the analy-
sis would take this into account and effect all variables that
have the same VariableElement. Thus, our aliasing anal-
ysis is complete, however it still have some limitations due
to the representation of global identifiers. Simple strings
cannot encode all the program semantics. A better analysis
might represent the global identifiers as VariableElements
too, which we leave as future work.

2.2 Value of the Checker Framework

The Checker Framework can be used for finding bugs or
proving program properties in large scale projects. This
process contains two phases: annotating the source code and
running a checker to type-check the annotated code. In its
current distribution, the Checker Framework includes more
than ten checkers and on average, a checker takes 700 (~ 400
NBNC) lines of code. Moreover, Papi et al. showed that
the Checker Framework can be used to annotate Daikon?,
Annotation File Utilities® and other open source projects.
They ran different checkers that cover 600 K LoC and found
56 errors combined in these different open source projects
during this process [7].

Though it might be easy to write a checker, or use the check-
ers included in the distribution of the Checker Framework,

2http://code.google.com/p/daikon/
3http://types.cs.washington.edu/
annotation-file-utilities/

without a more precise DFA, it is not possible to leverage
the Checker Framework’s capabilities to the full extent. As
mentioned proving program properties also needs the an-
notation of the client code, which is not difficult but does
require extra effort by the programmer. Proving that Anno-
tation File Utilities* does not dereference a null value, re-
quired writing more than 1000 annotations [7], though Null-
ness Checker uses a specialized flow inference to make better
type inferences. As the number of annotations needed can
greatly increase if there were no flow inference, it can also
potentially decrease with a more precise DFA. Our frame-
work aims to improve this aspect of the Checker Framework
and decrease the total time needed for manually annotating
these programs.

3. TECHNICAL APPROACH

This section describes the design and implementation of the
DFF, specifically: the interface it provides for performing
analyses (3.1), definition of DFA (3.2), choice of program
representation for the analysis (3.3), architecture (3.4), in-
terface for describing DFAs (3.5), algorithmic details (3.6),
and how the DFF fits into the Checker Framework (3.7).

3.1 Dataflow Framework Interface

Our framework presents a simple interface for users (e.g.,
tools like Checker Framework) to perform analysis on an
AST and obtain the results. After specifying the DFA to
perform, the user calls DataflowFramework.scan on the root
of the program AST. This begins the analysis, doing in-
traprocedural analysis on every method declaration in the
AST. To use the results of the analysis, there are test meth-
ods that return abstract values of variables of AST nodes
and program points. DataflowFramework.test takes a tree
from the program and returns the inferred abstract value of
that tree. DataflowFramework.testAfterProgramPoint re-
turns the abstract value of a variable after a given statement.
The user can use the abstract values to perform checks or
optimizations on the program. A constant propagation op-
timization could test an identifier to see if it is a constant,
and if so, replace it with its constant value. A type-checker
could ask for the inferred type of the right-hand-side of an
assignment to see if the assignment is legal. This legality
check could succeed even if the declared type of the right-
hand-side (RHS) is not a subtype of the left-hand-side (LHS)
as long as the refined type of the RHS is a subtype of the
LHS.

3.2 Dataflow Analysis

A DFA involves abstract interpretation of the program. The
state of the program at some point can be represented by
an abstract store, containing mappings of variables to ab-
stract values. Interpretation proceeds by applying the trans-
fer function for a program statement or basic block to the
current store [1, §2].

A DFA can be described with three components: transfer
functions, a lattice, and a function « that maps concrete
values into an abstract domain [4, §3]. There is a transfer
function for each basic block which maps the input store
of the block to the output store (i.e., the abstract values

“http://types.cs.washington.edu/
annotation-file-utilities/

of variables before and after that basic block). The lattice
is a partially ordered set with a unique least upper bound
and unique greatest lower bound for every pair of elements.
One way a lattice can be defined is with a join function that
gives the least upper bound of two elements. In a DFA,
the elements of the lattice are abstract values. The abstrac-
tion function « maps values in the concrete domain (e.g.
primitive values) to values in an abstract domain, which is
necessary for performing abstract interpretation on an AST.
As examples: for constant propagation analysis «(5) = {5},
and for nullness inference a/(“foo”) = @NonNull.

3.3 Analysis over the Control Flow Graph

A central design point is what type of internal representation
to perform the DFA over. We choose to do analysis over an
explicit control flow graph (CFG) data structure. The AST
would have been a reasonable alternative because it already
exists and thus there is no need to write a new structure, but
it was not clear how to enable general DFA without requiring
new DFAs to deal with control-flow. The AST method is
used in the flow implementations in javac and the Checker
Framework. However, the implementations are each written
for a specific type of analysis, and the code is written with
various assumptions; for example, nodes need not be visited
more than twice (loops are processed in two passes: one for
the entrance and another to propagate information down the
back edges of the control graph).

DFA relies on knowledge of control-flow. We think that
using a structure where control-flow is explicit makes the
implementation of a fixed-point algorithm easier and clearer
because it decouples performing the fixed-point computa-
tion from handling what particular control structures mean.
Using an AST representation, the solver, in addition to its
main task, would have to find the targets of jumps, like break
statements or exceptions. In our approach, these structures
are represented generally as control-flow edges in the CFG.
Handling the control-flow details in a separate class makes
reasoning and debugging easier; for example possible, to just
look at the CFG to understand if control structures of the
language are handled incorrectly. In addition, it is more
flexible to separate how the CFG is built from how to per-
form DFA over it; if some analysis does not rely on certain
control-flow edges, like those for exceptions, then a different
CFG could be used with the same solver.

In our implementation of the CFG, each BasicBlock con-
tains a list of statement trees from the AST. So, although
our DFF internally performs the analyzes over the CFG, the
interface that it provides for users to define DFAs (see 3.5)
exposes the Java Compiler Tree API, which supports a vis-
itor pattern over the AST. Thus there is no need to become
familiar with a new program representation or API.

More specifically, the basic blocks contain sub-trees of the
AST that do not include control structures, with the excep-
tion of expressions with control-flow: those using ternary
operator and the binary && and || operators. Handling
these in the DFA is easy and it avoids the need to mutate
the AST or add nodes to the basic blocks that are not part
of the original AST.

For expressions whose result affects the control flow, like the

conditions of if-statements and loops, we use a subclass of
BasicBlock. It has additional methods that return only the
BasicBlocks that can be reached if the expression evaluates
to true and false, respectively. This makes path-sensitive
analyses possible which increases the precision.

3.4 Architecture

The DFF consists of the following classes: a top level Data-
flowFramework, a CFGTransformer to convert AST sub-trees
into CFGs, a Solver for performing analysis, and a set of
interfaces and abstract classes to define DFAs and customize
the behavior of the analysis. The DataflowFramework pro-
vides the interface to the user of the analysis, handles adding
global variables to the abstract store, and initiates the pro-
cessing for each method of the AST. The CFGTransformer
produces a CFG given a method AST. The Solver performs
fixed-point computation over a CFG, and it is also capa-
ble of answering queries about flow inference values at pro-
gram points. The abstract DataflowAnalysis provides basic
functionality for implementing transfer functions of DFAs,
particularly information propagation, traversal of expression
sub-trees, and control flow within expressions for &&, ||, and
conditional expressions.

The interactions between the parts of the DFF are illus-
trated in Figure 2. When the analysis starts by a call to scan
(step 1), DataflowFramework visits all fields of the class to
add them—and initial values, if given—to the abstract store.
For each method tree, it uses CFGTransformer to create the
CFG of the method (steps 2, 3). This CFG is passed to the
Solver to initiate the analysis (step 4). The Solver drives
the analysis, handling splitting and merging of control flow,
while calling DataflowAnalysis.interpretExpression on
various AST nodes to apply transfer functions to the store
(steps 5, 6). The interface for implementation of DFAs is
covered in section 3.5. While applying a transfer function,
the DataflowAnalysis updates a mapping from AST expres-
sions (such as identifiers) to inferred abstract values to keep
track of the results of the analysis; this mapping is used to
satisfy calls to the DataflowFramework.test method, men-
tioned in section 3.1. In addition, the Solver maintains a
mapping of statement trees to the basic blocks in which they
reside. Since the input store is kept for every basic block, the
mapping allows the Solver to answer queries about variable
values at program points.

3.5 DFA Descriptions

In our framework, a DFA is described by extending an ab-
stract DataflowAnalysis class to implement abstract inter-
pretation and lattice operations corresponding to the three
components of a DFA (defined in 3.2). Below we describe
how each component of a DFA is implemented. We use
the intuitive running example of ConstantPropagationDFA,
which describes a DFA for inferring constants in the pro-
gram.

3.5.1 Transfer functions

Transfer functions are not explicitly defined for each basic
block; rather, AST visit methods of DataflowAnalysis class
and its subclasses define the abstract interpretation of state-
ments. The program store is updated when assignments
within the basic block are interpreted. To handle assign-
ments, values are propagated from the RHS to the LHS,

Dataflow Framework

[N

: scan(Top-level AST)

Tool
(e.g. Checker test(}'ree) R
Framework) | | DataflowFramework | 4: solve(Method body CFG) 5: interpret(statement, in store)
Abstractvalue Solver DataflowAnalysis
K = 6: out store
| K-—-===—==—-
2: convert(Method declaration AST) t
3: Methm‘i body CFG
|
l
call CFGTransformer
return value

Figure 2: The high level interaction within the DFF. The tool using the DFF calls scan to begin flow analysis
of a class. Steps 2,3,4 repeat for each method declaration of the AST. The Solver repeats steps 5,6 multiple
times for every statement of each basic block in the CFG until a fixed-point is reached. After or during the
scan process, a tool can test an AST node to get its inferred abstract value.

as specified by DataflowAnalysis.propagate. The Con-
stantPropagationDFA only requires the definition for inter-
preting operations, such as binary add, by overriding some
interpretation methods. For example, ConstantPropaga-
tionDFA.interpretBinary is implemented to perform an
operation on two abstract values that represent the constant
or non-constant operands.

3.5.2 Lattice

The lattice is defined by together the representation of ab-
stract values and a join method. Abstract values are rep-
resented in the analysis by defining a class that implements
the AbstractValue interface. An AbstractValue implemen-
tation can be as simple as a single field whose value will cor-
respond to the value in the lattice. For example, Constant-
PropagationAV just contains the constant value itself, like
5 or “foo”, and the Top of the lattice means non-constant.
The join method, which defines the structure of the lat-
tice, takes in two abstract values and returns their least
upper bound. ConstantPropagationLattice.join returns
the same abstract value if both inputs are equal (i.e., the
same constant) or the Top otherwise.

3.5.3 Abstraction function

The function o that maps concrete values to abstract values
is defined by implementing AST visit methods to interpret
leaf tree values, such as those for literals, in the abstract
domain. In ConstantPropagationDFA, the abstraction func-
tion is defined by implementing methods like interpretLit-
eral, which just returns an abstract value containing the
literal value as a constant.

3.6 Solver Algorithm

In this section we present the iterative fixed point solver
algorithm, as defined in [4, §5.3], that our framework uses
to infer the best AbstractValue at program points (stores).

Solver traverses the control flow graph representation of the
method to be analyzed. It reaches a fixed point for the input
store and the output store for each basic block in the control
flow graph. To achieve this, the solver uses a worklist algo-
rithm. We explain different parts of the solver algorithm in
the following order: the preparation step that happens be-
fore the solving algorithm starts (3.6.1), the worklist algo-
rithm for iterative fixed point solver (3.6.2), the modularity
of the algorithm and some possible extensions (3.6.3).

3.6.1 Preparation

For the analysis of each method, Solver.solve is called with
three arguments: control flow graph representation of the
method, a DFA that will interpret the statement trees that
comprise the BasicBlocks, and the global Store. Solver gets
the entry point of the control flow graph, which is a basic
block, and copies the global store to the input store of this
basic block, which contains only the method parameters at
this point. Note that during this copy of stores, we don’t
lose the information whether a variable is global or not since
Stores keep track of these.

3.6.2 Worklist Algorithm

We present the worklist algorithm used by the solver in pseu-
docode in Figure 3. The algorithm starts by adding the entry
point of the control flow graph to the worklist and continues
until the worklist is empty. In each iteration, the top basic
block is taken out of the worklist, its analysis is done (by
process) and the input store of its successors are updated
(by updateSuccessor).

Process analyzes the current basic block by calculating the
output store of this basic block using its input store and
contents. Since basic blocks don’t contain control flow, the
contents of the basic block is a combination of the following
Trees: VariableTree, ExpressionTree, ExpressionState-
mentTree. Each tree is analyzed by the current DFA, which

solve (cfg, dfa, gStore) {
// do preparation step.
worklist .add(cfg.getEntry ());
while (!worklist.isEmpty ()) {
block = worklist.remove ();
process (block);
updateSuccessors (block);

}

process (block) {
store = block .getInputStore ().copy();
for (tree: block.getContents()) {
dfa.interpretTree(tree, store);

block .setOutputStore(store);
}
updateSuccessors (block) {
os = block.getOutputStore ();
ms = new Store ();
for (successor: block.getSucc()) {
is = successor.getInputStore ();
changed = merge(os, is, ms, dfa);
successor.setInputStore (ms);
if (changed)
worklist .add(successor);

}

Figure 3: Worklist algorithm in pseudocode. solve
is the main loop, performing the worklist processing.
process applies the transfer function for each state-
ment in a basic block to produce an output store.
updateSuccessors updates the input stores of succes-
sor basic blocks and adds them to the worklist if the
input stores have changed.

updates the copy of the input store. This copy (i.e., store)
is updated by the DFA gradually, which creates the output
store of the current basic block at the end of process.

UpdateSuccessors does the propagation of the stores (i.e.,
abstract value of the variables) along the paths of the control
flow graph. For each successor of the current basic block, the
output store of the current basic block and the input store
of the basic block is merged. The merge store (i.e., ms) is set
as the new input store of the same successor. For simplicity,
the algorithm presented above assumes that the input store
of the successor already exists. If it doesn’t, (i.e., this is the
first path to that successor) we simply set the output store
of the current basic block as the input store of the successor.

Merge (omitted for simplicity) takes three stores and a DFA.
For each variable that exist in both first two stores, the
abstract values of this variable coming from two different
stores are joined. Join operation is done using DFA and
the same variable is added to the last store with the result
of the join. If there is at least one change in the abstract
values of the variables (i.e., the join value is different than
the value coming from the second store), then merge returns
true indicating that the fixed point is not reached for this
basic block and it is added to the worklist.

3.6.3 Extension to Other Solvers

We provide an interface ISolver, an abstract implementa-
tion Solver and the actual implementation of the iterative
fixed point solver IterativeFixedPointSolver in the solver
package. Due to this design, it is very easy to extend our
framework with other kind of solvers such as elimination
solver [4, §5.4] and path algebra solver [4, §5.5]. A new
concrete class needs to be defined for the new solver, which
needs to implement only the solve method. We leave the
implementation of other types of solvers as future work.

3.7 DFF in the Checker Framework

The DFF fits into the Checker Framework by providing func-
tionality and abstraction that replaces the existing flow im-
plementation, found in Flow. A default DataflowAnalysis
for Checker Framework, CheckerDFA, implements function-
ality in Flow that was specific to DFAs for type checkers.
More sophisticated flow sensitive inferences such as Null-
nessDFA are implemented by classes that extend Check-
erDFA. DataflowFramework provides the same interface (sec-
tion 3.1) as Flow, so the only change to the Checker Frame-
work required was instantiating a CheckerDFA rather than a
Flow.

The abstract values for the CheckerDFA are instances of
CheckerAV, which just contains an AnnotationMirror, mod-
eling of an annotation by javax.lang.model.element. The
lattice is defined by the sub-type hierarchy built by the
checker used in the analysis, and the join of two elements is
their closest common ancestor in the hierarchy. The abstrac-
tion function « is essentially implemented using the Checker
Framework’s AnnotatedTypeFactory, which gives the anno-
tated types for AST nodes.

Doing nullness checking requires more kinds of inference
than for required for basic checkers, so a NullnessDFA that
extends CheckerDFA is necessary. An example of more a
more sophisticated inference is conditional inference on the
branches, which is supported by our framework. It overrides
the DataflowAnalysis.interpretCondition (called by the
solver for ConditionBasicBlocks) in order to create a true
branch store and false branch store. For example, for the
condition (z! = null), the entry store of the true branch will
have r = @QNonNull and the entry store of the false branch
will have © = @QNwullable. We also borrow the method of in-
ference on expressions, represented as strings, that Checker
Framework’s original NullnessFlow does, which allows ex-
pressions other than just identifiers, like pure functions with
the same arguments, to have inferred values. When im-
plementing the NullnessDFA we found that there is certain
functionality it introduces, like inference on a wider class of
expressions, that could be provided for more general class
of DFAs. We currently have documentation in the code on
where special inference functionality can be generalized, and
we leave it to future work.

4. EVALUATION

Since our framework’s integration with the Checker Frame-
work is almost complete and one of our goals was to re-
place the flow inference of the Checker Framework with a
DFA (CheckerDFA), we evaluate our framework by using the
Checker Framework and existing checkers. In this section
we present the results from running the test cases for the

Table 1: False positives and false negatives issued by the Checker Framework with old flow and with DFF.

Codebase Checker CF DFF CF CF DFF CF Ave. CF Ave. DFF CF DFF
False Neg. | False Neg. || False Pos. | False Pos. || Compile Time | Compile Time | Overhead
AFU Signature 0 0 30 30 27s 28s 1%
ASM Signature 0 0 46 46 01m05s 01m12s 10.5%
CF Tests (basic) Various 17 0 13 0 42s 44s 4%
CF Tests (nullness) | Nullness 0 13 0 55 22s 24s 9.9%
Checker Framework and from running Signature Checker
on a completely annotated open source project. We show Table 2: Success of our framework vs. . Checker
the usability of our framework by comparing the implemen- Framework (CF) for new tests we have written
tation of the old flow inference and the new CheckerDFA. CF& DFF | CF & Flow
Finally we evaluate the quality of our implementation by # of passed tests (basic) 163 152
the documentation of our framework. # of failed tests (basic) 0 11
of passed tests (nullness) 49 75
4.1 Performance on the test suite # of failed tests (nullness) 26 0

We evaluate the DFF basic functionality by the number of
tests it passes in the existing Checker Framework test suite,
as well as the number of valid tests it passes that we added in
the course of our work. We have written 25 Java code tests
to test different concepts during the development. Since
Nullness Checker uses more advanced type inference, and
its integration with our framework is is still in progress, we
present the tests written for Nullness Checker separately.
We also exclude 36 tests from the original suite since they
were written to test the Checker Framework itself and not
a particular checker or the flow inference. The results are
presented in Table 2.

Since the modified version of the Checker Framework passes
all basic inference tests (which are implemented to test the
different properties of at least 10 checkers), we conclude that
our framework’s integration with the Checker Framework is
complete. Notice that the current version (which uses Flow)
fails 11 of these tests. Five of these tests come from the ex-
isting test suite: Flow implementation wasn’t able to handle
annotations that have values (e.g., @Fenum("A")). We have
fixed this problem in our implementation of CheckerDFA and
the same tests pass in our version. The remaining six failing
tests come from the new tests we have added; most fail due
to the loss of information during the joins in control flow
merges and not handling aliasing properly.

Currently our NullnessDFA when run on the nullness checker
tests, produces a number of false negatives and false posi-
tives. False negatives show that our analysis is not yet safe,
and they are due to bugs in the NullnessDFA when it does
inference. An example is that our DFA cannot report a
null dereference when a @Nullable value is dereferenced in
a condition. This is related to the fact that after such a
dereference, the variable is always considered @NonNull to
reduce the number of reported errors later in the program.
False positives are due to our DFA missing some inferences
that refine variables to @NonNull the nullness tests expect
to happen.

4.2 Checking real code

We evaluated the use of our framework in the Checker Frame-
work in realistic situations to make sure that it can actually
handle large projects and perform at least as well as Checker
Framework on real code. To perform at least as well, it

should find all errors and report no more false positives than
the original. We ran the new framework on completed (i.e.,
annotated for a particular checker) case studies that run on
different checkers. So far we have run Signature Checker on
Annotation File Utilities (AFU) and we plan to run differ-
ent checkers on different case studies in the future. AFU
contains a modified version of the ASM® and has 70 K LoC
(43 K NCNB). The completed case study contains 327 an-
notations. Annotations can be seen as documentation of the
source code to give the Signature Checker more information
about ‘what to check’ and extended types of some variables
in various program points. We counted the number of false
negatives and false positives reported. We also measured the
running time to show that our framework does not impose
a great deal of overhead over the Flow implementation. We
report our results for AFU (with ASM) and complete test
suite of the Checker Framework (to analyze the results in a
different perspective) in Table 1.

The results show that our DFA is better than the current
Flow implementation (for inferences other than nullness)
since it gives less false positives and false negatives over
all. Our framework performs relatively bad on nullness tests
since NullnessDFA is not completely implemented yet. The
table also shows that, for the default flow analysis, our
framework’s integration is complete since modified version
of the Checker Framework can match the expected output
in AFU case study.

The Checker Framework is intended to be used every time
code is compiled, and a high overhead would damage this
goal. We wanted to make sure that running time of the
Checker Framework using our framework is not significantly
more than the original. For timing calculations, we have
run the Checker Framework with our framework and with
Flow implementation on AFU and the Checker Framework
test suite 5 times and take the average of the compile (type-
check) times. Confidence intervals for this timing is given in
Table 3. In addition, table 1 shows that the worst overhead
is seen in ASM: a 10% increase in compile time over the
original Checker Framework. The results suggest that our
implementation, without optimizations, does not put much

Shttp://asm.ow2.org/

Table 3: Confidence intervals (CI, in seconds) for
timing calculations (for confidence level 95%)

CF& DFF CI | CF & Flow CI
ASM 0.39 1.06
ASM & AFU 1.85 0.75
CF Tests (all) 0.88 0.42
CF Tests (nullness) 0.77 0.36

overhead over the old implementation.

4.3 Usability

We designed our framework such that developers can easily
and effectively implement DFAs. To accommodate this goal,
all common behavior for DFF and DFAs is implemented in
our framework and our framework provides a clean API over
abstract methods that defines the behavior changes across
the different DFAs. Defining a particular DFA would not
even require the implementation of traversal methods of the
AST, in fact the traversal methods in DataflowAnalysis
are final. Instead of forcing the developer to write the whole
traversal method, our framework provides the required infor-
mation, such as the abstract values returned by the traversal
of sub trees, in abstract interpret* methods so that many
DFA could easily implement the transfer functions without
the need to think about the whole traversal details. In addi-
tion to this, we also present the actual AST node in interpret
method in case the DFA must traverse the original node it-
self.

To show this property, we analyze the number of lines of code
(LoC) and non-comment non-blank lines of code (NCNB)
of our core framework and the Checker Framework exten-
sions. We define our core framework to be the general pur-
pose implementation that can be used by any DFA such as
DataflowAnalysis and Solver. The Checker Framework
extensions are the classes that would replace the current
flow sensitive analysis in the Checker Framework, written
especially for the analysis it uses.

Our core framework contains 4230 LoC (2362 NCNB). The
default inference implementation in the Checker Framework
contains 764 LoC (443 NCNB). Our implementation com-
pletely eliminates two of the existing classes in the Checker
Framework: Flow and GenKillBits, which contain 1134
LoC (659 NCNB). Notice that though the new implemen-
tation is more precise, it contains one third less code com-
pared to the old implementation. Our nullness inference,
which would replace NullnessFlow, contains 1122 LoC (703
NCNB), which is almost the same as the existing imple-
mentation. However, we strongly believe that most of the
current behavior in NullnessDFA can be transferred to the
DataflowAnalysis or be implemented more clearly and effi-
ciently. Therefore, we believe that our framework will help
developers to write DFAs for javac more efficiently and eas-

ily.

4.4 Quality of Implementation

A final important goal in building the DFF was the qual-
ity of the documentation, understandability, and ease of
maintenance. We ensure that all declarations are properly
documented in the Javadoc-specified manner and that all

non-self-explanatory code has descriptive comments. Crit-
ical parts of the code should be understandable to other
developers or at least be easily explainable, but we have not
yet evaluated this. We leave this as future work. Quanti-
tatively speaking, our core framework (i.e., the basic func-
tionality such as DataflowAnalysis and Solver, etc.) has
~1500 lines of comments. This is 35% of the implementa-
tion. Our Checker Framework extensions (i.e., CheckerDFA
and CheckerAV, etc.) have ~250 lines of comments, which is
34% of the implementation. As having a 1/3 documentation
(Javadoc and normal comments about the implementation)
overall, we believe that our framework will be easy to main-
tain, understand and extend in the future.

S. RELATED WORK

In this section we present some other literature on DFF and
DFA for javac as well as for other Java compilers and we
argue in what aspects our framework is different from them.

5.1 DFFs and DFAs for javac

Various research ([3], [5], [7]) has tried to implement DFF's
for javac, the Java compiler. In most of these cases, instead
of creating a completely general framework, researchers de-
cide to integrate their DFF or DFA closely to their main
product for reasons such as performance, fast implementa-
tion, and limited interest in the DFF itself. Because of this
integration, most of these analyses or frameworks are not
general enough to be reused by similar research. The inte-
gration also fuses the main program logic with the frame-
work’s logic which makes it very hard to maintain or enhance
either parts. In this section, we present some of the other
attempts to write a DFA or DFF for javac and argue that
our approach is different.

The Checker Framework already does some type inference
as introduced by Papi et al. in [7, §3.7]. The default in-
ference handles all basic flow sensitive analysis needed by
pluggable types, including flow of the inferred types of the
variables during the traversal of the AST, propagation of the
inferred type of the right hand side of an assignment to the
left hand side, propagation of the inferred types in the differ-
ent branches of a conditional to the end of the conditional,
and a (not complete, see 2.1.1) join. This analysis is imple-
mented as a generalization of javac’s Flow implementation
as discussed in Section 1.

Our DFF is different from the inference rules that already
exist in the Checker Framework in 3 ways: It is more general,
more abstract, and more precise.

The DFA in the Checker Framework only does analyses for
pluggable types. Besides the ability to support pluggable
type inference, our framework is able to handle other DFAs,
such as constant propagation®. Moreover, the Checker Frame-
work provides the inferred type information on certain AST
nodes, whereas our framework also provides the inferred ab-
stract value of the variables before and after each basic block
in the converted program (see section 3.1). With these ad-
ditions, our framework is more general.

50ur framework also includes a simple constant propagation
analysis implementation that is tested on a sample code.

Current flow sensitive inference in the Checker Framework is
embedded into the implementation very tightly. So, it is not
possible, without considerable changes, to use this inference
implementation somewhere other than the Checker Frame-
work itself. On the other hand, our framework minimizes
this coupling by abstracting out the current Flow implemen-
tation and providing a clean and usable API for Flow infer-
ence users. All matters specific to annotated type-checking
are implemented in a user DFA extension class. Other than
TreeUtils, which is an internal helper class that provides
different operations on Trees, our framework does not use
any construct from the Checker Framework implementation.
This coupling can also be removed by implementing the
same functionality offered by TreeUtils in our framework.
We leave this as future work.

Flow inference in the Checker Framework uses a bitwise rep-
resentation of abstract values for variables, so it loses preci-
sion when results of sub-analyses from different control flow
paths are joined in a program point. A correct implementa-
tion of merge and split over bits is theoretically possible,
though it is very hard to implement due to the fact that
the implementation does not have an actual representation
of the abstract values and their relations. Our framework
contains a complete implementation of abstract values, (fi-
nite) lattices, and the default DFA is fully integrated with
this representation. Details about this problem and our ap-
proach are already given in section 2.1, so we skip further
discussion here.

JavaCOP7 is another pluggable type system that can do flow
sensitive type analysis. Its DFF is introduced by Markstrum
et al. in [3, §4]. The paper includes very little implementa-
tion detail about the DFF. The DFF provides an interface,
FlowFacts, which is very similar to the type inference re-
sults stored as a map in the Checker Framework, but it pro-
vides an additional level of abstraction. Similarly it does a
GEN/KILL analysis: the concrete class implementing Flow-
Facts overrides the generate and kill methods. Generate
methods (i.e., FlowFacts.genSet) supply information that
a new type inference is valid at that program point and kill
methods (i.e., FlowFacts.killSet) supply information that
a type inference, existing or not, is not valid anymore. At
program join points, these GEN/KILL information from dif-
ferent branches are merged (by using FlowFacts.meetWith).
The checkers that need flow sensitive analysis can implement
FlowFacts to implement their analysis in JavaCOP.

The paper also argues that their DFF can handle every pos-
sible control situation in a Java program analysis since it is
an extension of the flow analysis in javac, which is very well
tested, maintained and optimized. We believe that this is
both true and wrong. It is true in the sense that the flow sen-
sitive analysis implemented in javac (definitive assignment,
undefinitive assignment, liveness and exception analyses) are
complete and highly tested. However, it is a misconception
that these analyses can be generalized directly to pluggable
type-checking flow sensitive analysis. The analysis included
in javac are highly optimized for their cases, and we have
already shown that a trivial direct generalization of these
analyses does not work for pluggable type-checking. Java-

"http://javacop.sourceforge.net/

COP paper does not explain how and to what extend the
analyses in javac are generalized to their framework.

Both the Checker Framework’s current flow sensitive anal-
ysis and JavaCOP’s DFF are generalizations of the already
existing Flow in javac for pluggable type-checking. Also,
they both offer a minimal interface. Due to this similarity,
our framework differs from the JavaCOP flow framework in
a similar way: it is not limited to pluggable type-checking
analysis, rather this analysis is one of the many kinds of anal-
yses handled and offered by our framework. It also provides
a more explicit and usable interface and some functionality
classes for different kind of analyses.

jDFA [5] is a “Java framework for data-flow based program
analysis”. The paper states that this DFF allows users to
“easily implement specific analyses, test their correctness,
and evaluate their performance”. Besides the DFAs on gen-
eral graphs, it supports the definition of intra-procedural
analyses for JVM code on a high level of abstraction. Like
our framework, jDFA is also implemented in Java and makes
extensive use of the interface concept. This makes it, for
example, possible to use different implementations of ab-
stract domains. The major difference between our frame-
work and jDFA is that our framework works on the Con-
trol Flow Graph (i.e. a representation of the source code)
while jDFA works on JVM code (i.e. a representation of the
program in a later stage of the compilation process) or on
general graphs. There is however no direct way to perform
a DFA on a source code representation of the program in
jDFA.

5.2 DFFs and DFAs for other Java compilers

Other projects, often involving extensible Java compilers
rather than javac, have enabled user implementation of in-
traprocedural DFAs.

[6] adds a control-flow and DFA extension to the JastAdd
Extensible Java Compiler. It defines the extension declar-
atively using support for reference attributes provided by
JastAdd. Reference attributes of AST nodes are references
to other nodes, used to superimpose different kinds of graphs
over the AST. The control flow graph is described by speci-
fying a successor function for each statement type. A class
of DFAs are built atop the control flow graphs by declaring
equations that use union and intersection to build (1) value
sets of variables (analogous to our transfer functions that
transform the store) and (2) ”in/out” sets of basic blocks
in terms of the value sets (analogous to merges of stores
done in our solver). JastAdd’s circular attribute is used to
automatically provide fix-point computations. The declara-
tive implementation of this control-flow and DFA extension
is relatively concise, an advantage enabled by using the Jas-
tAdd platform. The declarative descriptions of new analyses
themselves can also be concise and can correspond closely to
analysis formulations in the literature. However, there are
possible tradeoffs in flexibility not addressed in the paper:
they only demonstrate binary analyses, and so it is not clear
how simple it would be to support lattices of a parameter-
ized number of elements, which would be required to support
a type checker framework, or lattices of infinite width (like
that for constant propagation), since their method relies on
explicit sets for abstract values. Our framework supports

both of these qualities in a straight-forward way by allowing
any lattice to be defined using abstract values and a join
method.

The Java Compiler Kit (JKit) [8] is an extensible Java com-
piler that includes support for defining DFAs. Their dfa
package includes an interface FlowSet for defining a store—
and implicitly, the lattice—and simply includes a method to
clone the store for control splits and a method to join stores.
It provides abstract classes for forward and backward analy-
ses, which are analogous to the functionality in our abstract
DataflowAnalysis and solver together. These classes pro-
vide abstract transfer methods for the user to define the
abstract interpretation of their analysis. This framework
has the advantage of presenting a very distilled and clean
interface. However, it seems there is no indication of con-
dition expressions, meaning that users building their own
DFAs must sacrifice inference on conditions or else take on
the burden of dealing with control flow statements them-
selves. Mocha, an extension of Java built on JKit, performs
type inference with DFA in order to relax the requirement
of static type declarations. In [2, §3.2.2] it seems that the
Mocha implementation must handle control statements it-
self to be able to do its conditional inference. Unlike the dfa
package in JKit, our DFF provides users an interface for do-
ing inference on conditions without the burden of handling
control flow.

Soot [9], a mature Java Optimization Framework for analyz-
ing and optimizing bytecode, has a DFF very similar to ours.
The intraprocedural analysis is done over the CFG meth-
ods, and control-flow is handled by the framework. Like our
framework, there are interfaces for implementing stores with
join and clone operations, a method interface for implement-
ing transfer functions of statement “Units”, and it supports
analyses that infer different stores in branches. Since the
DFF is part of Soot, users can use the same optimization
framework for both the analysis and the resulting optimiza-
tions or checks. The Soot DFF differs from ours in that it
works with Soot rather than javac, it is slightly more fea-
ture rich, and transfer functions are applied over bytecode
units rather than source-level AST nodes. The advantage of
our DFF operating over the source level is that users might
be more familiar with language constructs than bytecode.
However, the advantage of the DFF being part of a byte-
code framework is that the analyses can be applied to any
legal Java class file created by any compiler®. Our DFF pro-
vides more basic functionality, such as value propagation,
for DFAs; however, conceivably, implementations of basic
classes of DFAs could be distributed with Soot.

6. CONCLUSION

This paper described a DFF for Checker Framework. Our
framework increases the precision of the extended type-check-
ing of the checkers and improves the extensibility of the
Checker Framework. It also decouples the core implemen-
tation of the DFAs and AST traversal from the Checker
Framework. In addition, we believe that our framework is

8Technically, our framework is not restricted to javac, but it
uses the Java Compiler Tree API for ASTs, which is not an
enforced Standard for all Java compilers. It currently has
some utilities that depend on the JDK implementation of
the Java Compiler Tree APL.

ready to be used in other projects with minor modifications.
Thus, we provide a well documented and highly tested (by
using the checker in real programs) DFF that can be used
in general. In summary, we believe that this paper makes
the following contributions:

e it improves the precision and extensibility of an open
source product that is used widely.

e it provides a DFF implementation for javac that can
be used by any project that needs to define a DFA over
Java programs using the compiler tree API

. REFERENCES

[1] N. D. Jones and F. Nielson. Handbook of logic in
computer science (vol. 4). chapter Abstract
interpretation: a semantics-based tool for program
analysis, pages 527-636. Oxford University Press,
Oxford, UK, 1995.

[2] C. J. Male. Mocha: Type inference for java. Master’s
thesis, Victoria University of Wellington, 2009.

[3] S. Markstrum, D. Marino, M. Esquivel, T. Millstein,
C. Andreae, and J. Noble. Javacop: Declarative
pluggable types for java. ACM Trans. Program. Lang.
Syst., 32:4:1-4:37, February 2010.

[4] T. J. Marlowe and B. G. Ryder. Properties of data flow
frameworks: a unified model. Acta Inf., 28:121-163,
December 1990.

[5] M. Mohnen. An open framework for data-flow analysis
in java: extended abstract. In Proceedings of the
inaugural conference on the Principles and Practice of
programming, 2002 and Proceedings of the second
workshop on Intermediate representation engineering
for virtual machines, 2002, PPPJ '02/IRE ’02, pages
157-161, Maynooth, County Kildare, Ireland, Ireland,
2002. National University of Ireland.

[6] E. Nilsson-Nyman, G. Hedin, E. Magnusson, and
T. Ekman. Declarative intraprocedural flow analysis of
java source code. Electron. Notes Theor. Comput. Sci.,
238:155-171, October 2009.

[7] M. M. Papi, M. Ali, T. L. Correa, Jr., J. H. Perkins,
and M. D. Ernst. Practical pluggable types for java. In
Proceedings of the 2008 international symposium on
Software testing and analysis, ISSTA ’08, pages
201-212, New York, NY, USA, 2008. ACM.

[8] D. J. Pearce. The java compiler kit (jkit).

http://homepages.ecs.vuw.ac.nz/ djp/jkit, September

2010.

R. Vallée-Rai, L. Hendren, V. Sundaresan, P. Lam,

E. Gagnon, and P. Co. Soot - a java optimization

framework. In Proceedings of CASCON 1999, pages

125-135, 1999.

9

