
Craig Chambers 110 CSE 501

SSA form and pointers

What about pointers?

x := 5;

y := 7;

p := new int;

q := test1 ? &x : (test2 ? &y : p);

*q := 9;

// what are the unique SSA names for x & y here? *p?

x := x + 1;

// what does q point to here?

SSA wishes to assign a unique name for each variable
(memory location?) at each point

• dynamic memory allocations introduce many
"anonymous variables"

• pointer stores don’t definitely update any variable,
but may update many

• SSA gives different names to the same variable, but &
creates a pointer to all of them

Craig Chambers 111 CSE 501

Some solutions

Don’t use SSA invariant for heap memory

• maybe even locals that have had their addresses taken

Introduce ι-function at each may-def point of a variable,
analogously to φ-functions

• pointers point to original unsubscripted variable

x1 := 5;

y1 := 7;

p1 := new int;

q1 := test1 ? &x : (test2 ? &y : p);

x := x1;

y := y1;

*q1 := 9;

x2 := ι(x1,x);

y2 := ι(y1,y);

x3 := x2 + 1;

Craig Chambers 112 CSE 501

Loop-invariant code motion

Two steps: analysis & transformation

Step 1: find invariant computations in loop

• invariant: computes same result each time evaluated

Step 2: move them outside loop

• to top: code hoisting
• if used within loop

• to bottom: code sinking
• if only used after loop

Craig Chambers 113 CSE 501

Example

p := w + y

x := x + 1

q := q + 1

w := w + 5

z := x * y

q := y * y

w := y + 2

y := 4

x := 3

y := 5



Craig Chambers 114 CSE 501

Detecting loop-invariant expressions

An expression is invariant w.r.t. a loop L iff:

base cases:

• it’s a constant

• it’s a variable use, all of whose defs are outside L

inductive cases:

• it’s an idempotent computation
all of whose args are loop-invariant

• it’s a variable use with only one reaching def,
and the rhs of that def is loop-invariant

Craig Chambers 115 CSE 501

Computing loop-invariant expressions

Option 1:

• repeat iterative dfa
until no more invariant expressions found

• to start, optimistically assume all expressions loop-invariant

Option 2:

• build def/use chains,
follow chains to identify & propagate
invariant expressions

Option 3:

• convert to SSA form,
then similar to def/use form

Craig Chambers 116 CSE 501

Example using def/use chains

p := w + y

x := x + 1

q := q + 1

w := w + 5

z := x * y

q := y * y

w := y + 2

y := 4

x := 3

y := 5

Craig Chambers 117 CSE 501

Loop-invariant expression detection for SSA form

SSA form simplifies detection of loop invariants,
since each use has only one reaching definition

An expression is invariant w.r.t. a loop L iff:

base cases:

• it’s a constant

• it’s a variable use whose single def is outside L

inductive cases:

• it’s an idempotent computation
all of whose args are loop-invariant

• it’s a variable use
whose single def’s rhs is loop-invariant

φ functions are not idempotent



Craig Chambers 118 CSE 501

Example using SSA form

w3 = φ(w1, w2)
p1 := w3 + y3
x3 := x2 + 1

q2 := q1 + 1

w2 := w1 + 5

x2 = φ(x1, x3)
y3 = φ(y1, y2, y3)

z1 := x2 * y3
q1 := y3 * y3
w1 := y3 + 2

y1 := 4

x1 := 3

y2 := 5

Craig Chambers 119 CSE 501

Example using SSA form & preheader

w3 = φ(w1, w2)
p1 := w3 + y3
x3 := x2 + 1

q2 := q1 + 1

w2 := w1 + 5

x2 = φ(x1, x3)
z1 := x2 * y3
q1 := y3 * y3
w1 := y3 + 2

y1 := 4

x1 := 3

y2 := 5

y3 = φ(y1, y2)

Craig Chambers 120 CSE 501

Code motion

When find invariant computation S: z := x op y,
want to move it out of loop (to loop preheader)

• preserve relative order of invariant computations,
to preserve data flow among moved statements

When is this legal?

Craig Chambers 121 CSE 501

Condition #1: domination restriction

To move S: z := x op y,
S must dominate all loop exits
[A dominates B when all paths to B first pass through A]

• otherwise may execute S when never executed otherwise

• can relax this condition, if S has no side-effects or traps,
at cost of possibly slowing down program

x := a * b

y := x / z

q := x + y

x := 0

y := 1

z != 0?



Craig Chambers 122 CSE 501

Avoiding domination restriction

Requirement that invariant computation dominates exit is strict

• nothing in conditional branch can be moved

• nothing after loop exit test can be moved

Can be circumvented through other transformations
such as loop normalization

• move loop exit test to bottom of loop
(while-do ⇒ if-do-while)

x := a / b

i := i + 1

i := 0

i < N?

Before

x := a / b

i := i + 1

i := 0

i < N?

After

i < N?

Craig Chambers 123 CSE 501

Condition #2: data dependence restriction

To move S: z := x op y,
S must be the only assignment to z in loop, &
no use of z in loop is reached by any def other than S

• otherwise may reorder defs/uses and change outcome

z := z + 1

z := 0

... z ...

z := 5

S:

Craig Chambers 124 CSE 501

Avoiding data dependence restriction

Restrictions unnecessary if in SSA form

• implementation of φ functions as moves will cope with
reordered defs/uses

z2 := φ(z1,z4)
z3 := z2 + 1

z4 := 0

... z4 ...

z1 := 5

S:


