SSA form and pointers

What about pointers?

```plaintext
x := 5;
y := 7;
p := new int;
q := test1 ? &x : (test2 ? &y : p);
*q := 9;
// what are the unique SSA names for x & y here? *p?
x := x + 1;
// what does q point to here?
```

SSA wishes to assign a unique name for each variable (memory location?) at each point

- dynamic memory allocations introduce many "anonymous variables"
- pointer stores don’t definitely update any variable, but may update many
- SSA gives different names to the same variable, but & creates a pointer to all of them

Some solutions

Don’t use SSA invariant for heap memory
- maybe even locals that have had their addresses taken

Introduce \(\iota \)-function at each may-def point of a variable, analogously to \(\phi \)-functions
- pointers point to original unsubscripted variable

```plaintext
x := 5;
y := 7;
p := new int;
q := test1 ? &x : (test2 ? &y : p);
x := x1;
y := y1;
*q := 9;
x2 := \iota(x1, x);
y2 := \iota(y1, y);
x3 := x2 + 1;
```

Loop-invariant code motion

Two steps: analysis & transformation

Step 1: find invariant computations in loop
- invariant: computes same result each time evaluated

Step 2: move them outside loop
- to top: code hoisting
 - if used within loop
- to bottom: code sinking
 - if only used after loop

Example

```
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>x := 3</td>
<td>y := 4</td>
<td>y := 5</td>
</tr>
<tr>
<td>z := x * y</td>
<td>q := y * y</td>
<td>w := y + 2</td>
</tr>
<tr>
<td>w := w + 5</td>
<td>p := w + y</td>
<td>x := x + 1</td>
</tr>
<tr>
<td>q := q + 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
Detecting loop-invariant expressions

An expression is invariant w.r.t. a loop L iff:

- **base cases:**
 - it’s a constant
 - it’s a variable use, **all of whose defs are outside L**

- **inductive cases:**
 - it’s an idempotent computation
 all of whose args are loop-invariant
 - it’s a variable use **with only one reaching def**, and the rhs of that def is loop-invariant

Computing loop-invariant expressions

Option 1:
- repeat iterative dfa until no more invariant expressions found
- to start, optimistically assume all expressions loop-invariant

Option 2:
- build def/use chains, follow chains to identify & propagate invariant expressions

Option 3:
- convert to SSA form, then similar to def/use form

Example using def/use chains

<table>
<thead>
<tr>
<th>$q := 3$</th>
<th>$y := 4$</th>
<th>$y := 5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$z := x + y$</td>
<td>$q := y * y$</td>
<td>$w := y + 2$</td>
</tr>
<tr>
<td>$w := w + 5$</td>
<td>$p := w + y$</td>
<td>$x := x + 1$</td>
</tr>
<tr>
<td>$q := q + 1$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Loop-invariant expression detection for SSA form

SSA form simplifies detection of loop invariants, since each use has only one reaching definition

An expression is invariant w.r.t. a loop L iff:

- **base cases:**
 - it’s a constant
 - it’s a variable use **whose single def is outside L**

- **inductive cases:**
 - it’s an idempotent computation
 all of whose args are loop-invariant
 - it’s a variable use
 whose single def’s rhs is loop-invariant

ϕ functions are **not** idempotent
Example using SSA form

```plaintext
x_1 := 3
y_1 := 4
y_2 := 5

x_2 = \phi(x_1, x_3)
y_3 = \phi(y_1, y_2, y_3)
z_1 := x_2 * y_3
d_1 := y_3 * y_3
w_1 := y_3 + 2

w_2 := w_1 + 5

w_3 = \phi(w_1, w_2)
p_1 := w_3 + y_3
x_3 := x_2 + 1
d_2 := d_1 + 1
```

Example using SSA form & preheader

```plaintext
x_1 := 3
y_1 := 4
y_2 := 5

y_3 = \phi(y_1, y_2)

x_2 = \phi(x_1, x_3)
z_1 := x_2 * y_3
d_1 := y_3 * y_3
w_1 := y_3 + 2

w_2 := w_1 + 5

w_3 = \phi(w_1, w_2)
p_1 := w_3 + y_3
x_3 := x_2 + 1
d_2 := d_1 + 1
```

Code motion

When find invariant computation S: $z := x \, \text{op} \, y$, want to move it out of loop (to loop preheader)
- preserve relative order of invariant computations, to preserve data flow among moved statements

When is this legal?

Condition #1: domination restriction

To move S: $z := x \, \text{op} \, y$, S must dominate all loop exits
- A dominates B when all paths to B first pass through A

- otherwise may execute S when never executed otherwise
- can relax this condition, if S has no side-effects or traps, at cost of possibly slowing down program

```
x := 0
y := 1

z := 0?

x := a * b
y := x / z
q := x + y
```
Avoiding domination restriction

Requirement that invariant computation dominates exit is strict
 • nothing in conditional branch can be moved
 • nothing after loop exit test can be moved

Can be circumvented through other transformations such as loop normalization
 • move loop exit test to bottom of loop
 (while-do ⇒ if-do-while)

Condition #2: data dependence restriction

To move $S: z := x \text{ op } y$, S must be the only assignment to z in loop, &
no use of z in loop is reached by any def other than S
 • otherwise may reorder defs/uses and change outcome

Avoiding data dependence restriction

Restrictions unnecessary if in SSA form
 • implementation of ϕ functions as moves will cope with reordered defs/uses