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More refined representations

Problem: control-flow edges in CFG overspecify evaluation
order

Solution: introduce more refined notions w/ fewer constraining
edges that still capture required orderings

• side-effects occur in proper order

• side-effects occur only under right conditions

Some ideas:

• explicit control dependence edges,
control-equivalent regions,
control-dependence graph (PDG)

• operators as nodes (Click, VDG, Whirlwind, etc.)

• computable φ-function operator nodes

• control dependence via data dependence (VDG)
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Control dependence graph

Program dependence graph (PDG):
data dependence graph + control dependence graph (CDG)
[Ferrante, Ottenstein, & Warren, TOPLAS 87]

Idea: represent controlling conditions directly

• complements data dependence representation

A node (basic block) Y is control-dependent on another X
iff X determines whether Y executes, i.e.

• there exists a path from X to Y s.t. every node in the path
other than X & Y is post-dominated by Y

• X is not post-dominated by Y

Control dependence graph:
Y proper descendant of X iff Y control-dependent on X

• label each child edge with required branch condition

• group all children with same condition under region node

Two sibling nodes execute under same control conditions ⇒
can be reordered or parallelized, as data dependences allow

(Challenging to “sequentialize” back into CFG form)
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Example

1 y := p + q
2 x > 0?

3 a := x * y 4 a := y - 2

5 w := y / q
6 x > 0?

7 b := 1 << w

8 r := a % b
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An example with a loop
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Operators as nodes

Before: nodes in CFG were simple assignments

• could have operations on r.h.s.

• used variable names to refer to other values

Alternative: treat the operators themselves as the nodes

• refer directly other other nodes for their operands

Node ::= Constant // 0 operands
| Var // 0 operands
| &Var // 0 operands
| Unop // 1 operand
| Binop // 2 operands
| * (ptr deref) // 1 operand
| . (field deref) // 1 operand
| [] (array deref) // 2 operands
| φ // n operands
| Fn() // n operands
| Var:= (var assn) // 1 operand
| *:= (ptr assn) // 2 operands

Flow of data captured directly in operand dataflow edges

Also have control flow edges sequencing these nodes

• or some more refined control dependence edges
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Example

p := &r;

x := *p;

a := x * y;

w := x;

x := a + a;

v := y * w;

a := v * 2;
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An improvement

Bypass variable stores and loads

• i.e., build def/use chains

Treat variable names as (temporary) labels on nodes

• a variable reference implemented by an edge from the node
with that label

• a variable assignment shifts the label

The nodes themselves become
the subscripted variables of SSA form

Each computation has its own name (i.e., itself)
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Another improvement

"Value numbering":
merge all nodes that compute the same result

• same operator

• pure operator

• same data operands (recursively)

• same control dependence conditions

Implements (local) CSE

Can do this bottom-up as nodes are initially constructed

• "hash cons’ing"

In face of possibly cyclic data dependence edges, an optimistic
algorithm can get better results [Alpern et al. 88]

Would like to support algebraic identities, too, e.g.

• commutative operators

• x+x = x*2

• associativity, distributivity
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Another example

y := p + q;
if m > 1 then
a := y * x;
b := a;

else
b := x - 2;
a := b;

endif
if m < 1 then
d := y * x;

else
d := x - 2;

endif
w := a / r;
u := b / r;
t := d / r;
if m > 1 then
c := y * x;

else
c := x - 2;

endif
z := c / r;
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The example, in SSA form

y := p + q;
if m > 1 then
a1 := y * x; b1 := a1;

else
b2 := x - 2; a2 := b2;

a3 := φ(a1,a2);
b3 := φ(b1,b2);
if m < 1 then
d1 := y * x;

else
d2 := x - 2;

d3 := φ(d1,d2);
w := a3 / r;

u := b3 / r;

t := d3 / r;

if m > 1 then
c1 := y * x;

else
c3 := x - 2;

c3 := φ(c1,c2);
z := c3 / r;
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An improvement

φ-functions are treated poorly

• impure, since don’t know when they’re the same

• even if they have the same operands
and are in the same control equivalent region!

Fix: give them an additional input: the selector value
(now called select nodes, sometimes written as γ)

• e.g., a boolean, for a 2-input φ
• e.g., an integer for an n-input φ

φ-functions now are pure functions!

An approximation, due to Click:
use merge node in CFG as proxy for selector input

− fewer equivalences

+ easier to translate back into CFG form
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Value dependence graphs

[Weise, Crew, Ernst, & Steensgaard, POPL 94]

Idea: represent all dependences,
including control dependences, as data dependences

+ simple, direct dataflow-based representation
of all “interesting” relationships

• analyses become easier to describe & reason about

− harder to sequentialize into CFG

Control dependences as data dependences:

• control dependence on order of side-effects
⇒ data dependence on reading & writing to global Store

• optimizations to break up accesses to single Store into separate
independent chunks
(e.g. a single variable, a single data structure)

• control dependence on outcome of branch
⇒ a select node, taking test, then, and else inputs
⇒ demand-driven evaluation model

Loops implemented as tail-recursive calls to local procedures

Apply CSE, folding, etc. as nodes are built/updated
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VDG for example, after store splitting

y := p + q;
if x > 0 then a := x * y else a := y - 2;
w := y / q;
if x > 0 then b := 1 << w;
r := a % b;
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Sequentialization

How to generate code for a soup of operator nodes?

• need to sequentialize back into regular CFG

Find an ordering that respects dependences (data and control)

Hard with arbitrary graph

• can get cycles with full PDG, VDG transforms

• may need to duplicate code to get a legal schedule

Click’s representation: keeps original CFG around as a guide

− limits transformations/optimizations possible

+ turns sequentialization problem into simpler placement
problem
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Placement

Goal: assign each operation to
the least-frequently-executed basic block
that respects its data dependences

• φ-nodes tied to their original basic block

Hoist operations out of loops where possible

Push operations into conditionals where possible
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Example

i := 0;

while ... do

x := i * b;

if ... then

w := c * c;

y := x + w;

else

y := 9;

end

print(y);

i := i + 1;

end
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Example, in SSA form

i1 := 0;

while ... do

i3 := φ(i1, i2);

x := i3 * b;

if ... then

w := c * c;

y1 := x + w;

else

y2 := 9;

end

y3 := φ(y1, y2);

print(y3);

i2 := i3 + 1;

end


