
Craig Chambers 125 CSE 501

More refined representations

Problem: control-flow edges in CFG overspecify evaluation
order

Solution: introduce more refined notions w/ fewer constraining
edges that still capture required orderings

• side-effects occur in proper order

• side-effects occur only under right conditions

Some ideas:

• explicit control dependence edges,
control-equivalent regions,
control-dependence graph (PDG)

• operators as nodes (Click, VDG, Whirlwind, etc.)

• computable φ-function operator nodes

• control dependence via data dependence (VDG)

Craig Chambers 126 CSE 501

Control dependence graph

Program dependence graph (PDG):
data dependence graph + control dependence graph (CDG)
[Ferrante, Ottenstein, & Warren, TOPLAS 87]

Idea: represent controlling conditions directly

• complements data dependence representation

A node (basic block) Y is control-dependent on another X
iff X determines whether Y executes, i.e.

• there exists a path from X to Y s.t. every node in the path
other than X & Y is post-dominated by Y

• X is not post-dominated by Y

Control dependence graph:
Y proper descendant of X iff Y control-dependent on X

• label each child edge with required branch condition

• group all children with same condition under region node

Two sibling nodes execute under same control conditions ⇒
can be reordered or parallelized, as data dependences allow

(Challenging to “sequentialize” back into CFG form)

Craig Chambers 127 CSE 501

Example

1 y := p + q
2 x > 0?

3 a := x * y 4 a := y - 2

5 w := y / q
6 x > 0?

7 b := 1 << w

8 r := a % b

Craig Chambers 128 CSE 501

An example with a loop

B1

B2 B3

B4

B5 B6

B7

T F

T F

Craig Chambers 129 CSE 501

Operators as nodes

Before: nodes in CFG were simple assignments

• could have operations on r.h.s.

• used variable names to refer to other values

Alternative: treat the operators themselves as the nodes

• refer directly other other nodes for their operands

Node ::= Constant // 0 operands
| Var // 0 operands
| &Var // 0 operands
| Unop // 1 operand
| Binop // 2 operands
| * (ptr deref) // 1 operand
| . (field deref) // 1 operand
| [] (array deref) // 2 operands
| φ // n operands
| Fn() // n operands
| Var:= (var assn) // 1 operand
| *:= (ptr assn) // 2 operands

Flow of data captured directly in operand dataflow edges

Also have control flow edges sequencing these nodes

• or some more refined control dependence edges

Craig Chambers 130 CSE 501

Example

p := &r;

x := *p;

a := x * y;

w := x;

x := a + a;

v := y * w;

a := v * 2;

Craig Chambers 131 CSE 501

An improvement

Bypass variable stores and loads

• i.e., build def/use chains

Treat variable names as (temporary) labels on nodes

• a variable reference implemented by an edge from the node
with that label

• a variable assignment shifts the label

The nodes themselves become
the subscripted variables of SSA form

Each computation has its own name (i.e., itself)

Craig Chambers 132 CSE 501

Another improvement

"Value numbering":
merge all nodes that compute the same result

• same operator

• pure operator

• same data operands (recursively)

• same control dependence conditions

Implements (local) CSE

Can do this bottom-up as nodes are initially constructed

• "hash cons’ing"

In face of possibly cyclic data dependence edges, an optimistic
algorithm can get better results [Alpern et al. 88]

Would like to support algebraic identities, too, e.g.

• commutative operators

• x+x = x*2

• associativity, distributivity

Craig Chambers 133 CSE 501

Another example

y := p + q;
if m > 1 then
a := y * x;
b := a;

else
b := x - 2;
a := b;

endif
if m < 1 then
d := y * x;

else
d := x - 2;

endif
w := a / r;
u := b / r;
t := d / r;
if m > 1 then
c := y * x;

else
c := x - 2;

endif
z := c / r;

Craig Chambers 134 CSE 501

The example, in SSA form

y := p + q;
if m > 1 then
a1 := y * x; b1 := a1;

else
b2 := x - 2; a2 := b2;

a3 := φ(a1,a2);
b3 := φ(b1,b2);
if m < 1 then
d1 := y * x;

else
d2 := x - 2;

d3 := φ(d1,d2);
w := a3 / r;

u := b3 / r;

t := d3 / r;

if m > 1 then
c1 := y * x;

else
c3 := x - 2;

c3 := φ(c1,c2);
z := c3 / r;

Craig Chambers 135 CSE 501

An improvement

φ-functions are treated poorly

• impure, since don’t know when they’re the same

• even if they have the same operands
and are in the same control equivalent region!

Fix: give them an additional input: the selector value
(now called select nodes, sometimes written as γ)

• e.g., a boolean, for a 2-input φ
• e.g., an integer for an n-input φ

φ-functions now are pure functions!

An approximation, due to Click:
use merge node in CFG as proxy for selector input

− fewer equivalences

+ easier to translate back into CFG form

Craig Chambers 136 CSE 501

Value dependence graphs

[Weise, Crew, Ernst, & Steensgaard, POPL 94]

Idea: represent all dependences,
including control dependences, as data dependences

+ simple, direct dataflow-based representation
of all “interesting” relationships

• analyses become easier to describe & reason about

− harder to sequentialize into CFG

Control dependences as data dependences:

• control dependence on order of side-effects
⇒ data dependence on reading & writing to global Store

• optimizations to break up accesses to single Store into separate
independent chunks
(e.g. a single variable, a single data structure)

• control dependence on outcome of branch
⇒ a select node, taking test, then, and else inputs
⇒ demand-driven evaluation model

Loops implemented as tail-recursive calls to local procedures

Apply CSE, folding, etc. as nodes are built/updated

Craig Chambers 137 CSE 501

VDG for example, after store splitting

y := p + q;
if x > 0 then a := x * y else a := y - 2;
w := y / q;
if x > 0 then b := 1 << w;
r := a % b;

x p q b

+

* - /

γ> <<

γ

%

r

1

2

0

y

a1 a2

a

b

w

Craig Chambers 138 CSE 501

Sequentialization

How to generate code for a soup of operator nodes?

• need to sequentialize back into regular CFG

Find an ordering that respects dependences (data and control)

Hard with arbitrary graph

• can get cycles with full PDG, VDG transforms

• may need to duplicate code to get a legal schedule

Click’s representation: keeps original CFG around as a guide

− limits transformations/optimizations possible

+ turns sequentialization problem into simpler placement
problem

Craig Chambers 139 CSE 501

Placement

Goal: assign each operation to
the least-frequently-executed basic block
that respects its data dependences

• φ-nodes tied to their original basic block

Hoist operations out of loops where possible

Push operations into conditionals where possible

Craig Chambers 140 CSE 501

Example

i := 0;

while ... do

x := i * b;

if ... then

w := c * c;

y := x + w;

else

y := 9;

end

print(y);

i := i + 1;

end

Craig Chambers 141 CSE 501

Example, in SSA form

i1 := 0;

while ... do

i3 := φ(i1, i2);

x := i3 * b;

if ... then

w := c * c;

y1 := x + w;

else

y2 := 9;

end

y3 := φ(y1, y2);

print(y3);

i2 := i3 + 1;

end

