Pointer and Alias Analysis

Aliases:
- two expressions that denote same mutable memory location

Introduced through
- pointers
- call-by-reference
- array indexing
- C unions, Fortran common, equivalence

Applications of alias analysis:
- improved side-effect analysis:
 - if assign to one expression, what other expressions are modified?
 - if certain modified or not modified, not a problem
 - if uncertain, things can get ugly
- eliminate redundant loads/stores & dead stores (CSE & dead assign elim, for pointer ops)
- automatic parallelization of code manipulating data structures
- ...

Kinds of alias info

Points-to analysis
- at each program point, calculate set of \(p \rightarrow x \) bindings, if \(p \) points to \(x \)
- two related problems:
 - **may** points-to: \(p \) may point to \(x \)
 - **must** points-to: \(p \) must point to \(x \)

Alias-pair analysis
- at each program point, calculate set of \(\langle \text{expr}_1, \text{expr}_2 \rangle \) pairs, if \(\text{expr}_1 \) and \(\text{expr}_2 \) reference the same memory
- **may** and **must** alias-pair versions

Storage shape analysis
- at each program point, calculate an abstract description of the structure of pointers etc., e.g. list-like, or tree-like, or DAG-like, or ...

Points-to analysis is simple
Alias-pairs analysis more general than points-to analysis, but more complicated
Storage shape analysis more abstract

A points-to analysis

At each program point, calculate set of \(p \rightarrow x \) bindings, if \(p \) points to \(x \)

Outline:
- define **may** version first, then consider **must** version
- develop algorithm in increasing stages of complexity
 - pointers only to vars of scalar type
 - add pointers to pointers
 - add pointers to and from structures
 - add pointers to dynamically-allocated storage
 - add pointers to array elements

May-point-to scalars

Domain: \(\text{Pow}(\text{Var} \times \text{Var}) \)

Forward flow functions:

\[
\begin{align*}
\text{PT}_p := \lambda x. (\text{in} - \{ p \rightarrow \star \} \cup \{ p \rightarrow x \}) \\
\text{PT}_p := q.(\text{in} - \{ p \rightarrow \star \} \cup \{ p \rightarrow v \mid q \rightarrow v \in \text{in} \})
\end{align*}
\]

Meet function: union

What about \(p := \text{nil} \)?
Must-point-to

How to define must-point-to analysis?

Option 1: analogous to may-point-to, but as must problem

- e.g. intersection is meet operation

Option 2: interpretation of may-point-to results

- if \(p \) may point to only \(x \), then \(p \) must point to \(x \):

 \[
 \text{must-point-to}(p) = \{ x | \{ x \} = \text{may-point-to}(p) \}
 \]

- what if \(p \) may point to nil? \(p \) assigned an integer?

Example

\[
\begin{align*}
1 & \ x := 3 \\
2 & \ p := \&x \\
3 & \ y := 5 \\
4 & \ q := \&y \\
5 & \ q := \&x \\
6 & \ *p := 7 \\
7 & \ z := *q \\
8 & \ *q := 4 \\
9 & \ w := *p
\end{align*}
\]

Using alias info

E.g. reaching definitions

At each program point, calculate set of \(x \mapsto s \) bindings,
if \(x \) might get its definition from stmt \(s \)

Simple flow functions:

\[
\text{RD}_{x \mapsto s}(\ldots) = \text{in} - (x\mapsto*) \cup \{x\mapsto s\}
\]

\[
\text{RD}_{*p \mapsto \ldots}(\text{in}) = \text{in} - (x\mapsto*) \cup \{x\mapsto s| \forall x \in \text{must-point-to}(p)\} \\
\cup \{x\mapsto s| \forall x \in \text{may-point-to}(p)\}
\]

Reaching “right hand sides”

A variation on reaching definitions
that passes definitions through copies
\(x\mapsto s \) in set if \(x \) might get its definition from rhs of stmt \(s \),
skipping through uninteresting copies and pointer loads where possible

Can use reaching right-hand sides to construct def/uea chains
that skip through copies, e.g. for better constant propagation

Additional flow functions:

\[
\text{RD}_{x \mapsto y}(\text{in}) = \text{in} - (x\mapsto*) \cup (x\mapsto s'| y\mapsto s' \in \text{in})
\]

\[
\text{RD}_{*p \mapsto \text{in}}(\text{in}) = \text{in} - (x\mapsto*) \cup (x\mapsto s'| p\mapsto y \in \text{may-point-to}(p) \wedge y\mapsto s' \in \text{in})
\]
Another use: "scalar replacement"

If we know that a pointer expression $*p$ aliases a variable x (p must point to x) at some point, then can replace $*p$ with x
- both for load & store

Load part also known as "redundant load elimination"

Adding pointers to pointers

Now allow a pointer to point to a pointer
- loads may return pointers, stores may store pointers

New flow functions:
\[
\text{PT}_p : \ L = \text{pt}(\text{in} - \{p \to *\} \cup \{p \to v \mid v \in \text{in} \land z \to v \in \text{in})}
\]

\[
\text{PT}_p : \ L = \text{pt}(\text{in} - \{z \to *\} \cup \{z \in \text{in})}
\]

Adding pointers to structs/records/objects/...

A variable can be a structure with a collection of named fields
- a pointer can point to a field of a structure variable
- a field can hold a pointer

Introduce location domain: $\text{Loc} = \text{Var} + \text{Loc} \times \text{Field}$
- either a variable or a location followed by a field name

Old PT domain: sets of $v_1 \to v_2$ pairs = $\text{Pow} \times \text{Var} \times \text{Var}$
New PT domain: sets of $l_1 \to l_2$ pairs = $\text{Pow} \times \text{Loc} \times \text{Loc}$

Some new forward flow functions:
\[
\text{PT}_p : \ y \times \text{f} (\text{in}) = \text{pt} (\{p \to *\} \cup \{p \to x \times \text{f}\})
\]
\[
\text{PT}_p : \ y \times \text{f} (\text{in}) = \text{pt} (\{p \to *\} \cup \{p \to x \times \text{f}\})
\]
\[
\text{PT}_p : \ y \times \text{f} (\text{in}) = \text{pt} (\{p \to *\} \cup \{p \to x \times \text{f}\})
\]
\[
\text{PT}_p : \ y \times \text{f} (\text{in}) = \text{pt} (\{p \to *\} \cup \{p \to x \times \text{f}\})
\]
Adding pointers to dynamically-allocated memory

\[p := \text{new } T \]

- \(T \) could be scalar, pointer, structure, ...

Issue: each execution creates a new location

Idea: generate new var of type \(T \) to stand for new location

- make Var domain unbounded
- \textit{newvar}: return next unused element of \textit{Var}

Flow function:
\[P_{p} := \text{new } T \in = \in - \{ p \rightarrow * \} \cup \{ p \rightarrow \text{newvar} \} \]

Example

- \(\text{lst} := \text{new Cons} \)
- \(p := \text{lst} \)

- \(t := \text{new Cons} \)
- \((*p).\text{next} := t \)
- \(p := t \)

A monotonic, finite approximation

Can't create a new variable each time analyze statement

- lattice is infinitely tall if Var domain is infinite!
- not a monotonic flow function!

One solution:
- create a special \textit{summary} node for each \textit{new stmt}

- \(\text{Loc} = \text{Var} + \text{Stmt} + \text{Loc} \times \text{Field} \)

Fixed flow function:
\[P_{s,p} := \text{new } T \in = \in - \{ p \rightarrow * \} \cup \{ p \rightarrow s \} \]

Summary nodes abstract a set of possible locations

- cannot strongly update a summary node

- \[P_{s,p} := q \in = \in - \{ p \rightarrow * \} \cup \{ p \rightarrow q \} \]

Alternative summarization strategies:

- summary node for each type \(T \)
- \(k \)-limited summary
- maintain distinct nodes up to \(k \) links removed from root vars, then summarize together

Adding pointers to array elements

Array index expressions can generate aliases:
- \(a[i] \) aliases \(b[j] \):
 - \(a \) aliases \(b \) and \(i \) equals \(j \)
 - more generally, \(a \) and \(b \) overlap, and \(\&a[i] = \&b[j] \)

Can have pointers to array elements:
\[p := \&a[i] \]

Can have pointer arithmetic, for array addressing:
\[p := \&a[0]; \ldots; p++ \]

How to model arrays?

Option 1: reason about array index expressions

- array dependence analysis

Option 2: use a summary node to stand for all elements of the array