Pointer and Alias Analysis

Aliases:

two expressions that denote same mutable memory location

Introduced through

- pointers
- call-by-reference
- array indexing
- C unions, Fortran common, equivalence

Applications of alias analysis:

- improved side-effect analysis: if assign to one expression, what other expressions are modified?
- if certain modified or not modified, not a problem
- if uncertain, things can get ugly
- eliminate redundant loads/stores \& dead stores (CSE \& dead assign elim, for pointer ops)
- automatic parallelization of code manipulating data structures
- ...

Kinds of alias info

Points-to analysis

- at each program point, calculate set of $p \rightarrow x$ bindings, if p points to x
- two related problems:
- may points-to: p may point to x
- must points-to: p must point to x

Alias-pair analysis

- at each program point, calculate set of (expr $\left.{ }_{1}, \operatorname{expr}_{2}\right)$ pairs, if expr ${ }_{1}$ and expr ${ }_{2}$ reference the same memory
- may and must alias-pair versions

Storage shape analysis

- at each program point, calculate an abstract description of the structure of pointers etc., e.g. list-like, or tree-like, or DAG-like, or ...

Points-to analysis is simple
Alias-pairs analysis more general than points-to analysis, but more complicated
Storage shape analysis more abstract

Craig Chambers
95

May-point-to scalars

Domain: Pow(Var \times Var)

Forward flow functions:

$$
\begin{aligned}
& \mathrm{PT}_{\mathrm{p}}:=\delta x(\text { in })=\text { in }-\left\{p \rightarrow \rightarrow^{\star}\right\} \cup\{p \rightarrow x\} \\
& \mathrm{PT}_{\mathrm{p}}:=q^{(\text {in })}=\text { in }-\left\{p \rightarrow \rightarrow^{*}\right\} \cup\{p \rightarrow v \mid q \rightarrow v \in \text { in }\}
\end{aligned}
$$

Meet function: union

What about $\mathrm{p}:=$ nil?

Must-point-to

How to define must-point-to analysis?

Option 1: analogous to may-point-to, but as must problem

- e.g. intersection is meet operation

Option 2: interpretation of may-point-to results

- if p may point to only x , then p must point to x :

$$
\text { must-point-to }(\mathrm{p})=\{\mathrm{x} \mid\{\mathrm{x}\}=\text { may-point-to }(\mathrm{p})\}
$$

- what if p may point to nil? p assigned an integer?

Example

Reaching "right hand sides"

A variation on reaching definitions that passes definitions through copies
$x \rightarrow s$ in set if x might get its definition from rhs of stmt s, skipping through uninteresting copies and pointer loads where possible

Can use reaching right-hand sides to construct def/use chains that skip through copies, e.g. for better constant propagation

Additional flow functions:

$$
\begin{aligned}
& R_{s: x}:=y(i n)=\mathrm{in}-\left\{x \rightarrow^{*}\right\} \cup\left\{x \rightarrow s^{\prime} \mid y \rightarrow s^{\prime} \in \mathrm{in}\right\} \\
& \mathrm{RD}_{s: \mathrm{x}}:={ }^{\mathrm{k}} \mathrm{p}(\mathrm{in})=\mathrm{in}-\left\{\mathrm{x} \rightarrow{ }^{*}\right\} \\
& \cup\left\{\mathrm{x} \rightarrow s^{\prime} \mid \mathrm{p} \rightarrow \mathrm{y} \in \text { may-point-to(p) } \wedge\right. \\
& \left.\mathrm{y} \rightarrow s^{\prime} \in \mathrm{in}\right\}
\end{aligned}
$$

Another use: "scalar replacement"

If we know that a pointer expression *p aliases a variable x (p must point to x) at some point, then can replace *p with x

- both for load \& store

Load part also known as "redundant load elimination"

Adding pointers to pointers

Now allow a pointer to point to a pointer

- loads may return pointers, stores may store pointers

New flow functions:

$$
\mathrm{PT}_{\mathrm{p}}:={ }_{\mathrm{q}}(\mathrm{in})=\mathrm{in}-\left\{\mathrm{p} \rightarrow^{*}\right\} \cup\{\mathrm{p} \rightarrow v \mid \mathrm{q} \rightarrow r \in \text { in } \wedge r \rightarrow v \in \mathrm{in}\}
$$

$P T_{* p}:=q^{(i n)}=\mathrm{in}-\left\{r \rightarrow^{*} \mid\{r\}=\mathrm{in}(\mathrm{p})\right\}$

$$
\cup\{r \rightarrow v \mid p \rightarrow r \in \text { in } \wedge q \rightarrow v \in \operatorname{in}\}
$$

Example

Adding pointers to structs/records/objects/...

A variable can be a structure with a collection of named fields

- a pointer can point to a field of a structure variable
- a field can hold a pointer

Introduce location domain: Loc = Var + Loc \times Field

- either a variable or a location followed by a field name

Old PT domain: sets of $v_{1} \rightarrow v_{2}$ pairs $=\operatorname{Pow}(\operatorname{Var} \times \operatorname{Var})$
New PT domain: sets of $I_{1} \rightarrow I_{2}$ pairs $=\operatorname{Pow}(\operatorname{Loc} \times \mathrm{Loc})$

Some new forward flow functions:
$P T_{p}:=\& x . f(\mathrm{in})=\mathrm{in}-\left\{p \rightarrow^{\star}\right\} \cup\{p \rightarrow x . f\}$
$\mathrm{PT}_{\mathrm{p}}:=\mathrm{x} . \mathrm{f} \quad$ (in) $=\mathrm{in}-\left\{\mathrm{p} \rightarrow^{*}\right\} \cup\{\mathrm{p} \rightarrow I \mid \mathrm{x} . \mathrm{f} \rightarrow I \in \mathrm{in}\}$
$P T_{p}:=(* q) \cdot f(\mathrm{in})=\mathrm{in}-\left\{p \rightarrow^{*}\right\}$
$\cup\{p \rightarrow 1 \mid q \rightarrow r \in \operatorname{in} \wedge r . f \rightarrow 1 \in \mathrm{in}\}$
$P T_{x . f}:=q \quad(i n)=$ in $-\left\{x . f \rightarrow^{*}\right\} \cup\{x . f \rightarrow 1 \mid q \rightarrow 1 \in \operatorname{in}\}$
$\mathrm{PT}_{\left({ }^{*} \mathrm{p}\right)} . \mathrm{f}:=\mathrm{q}(\mathrm{in})=\mathrm{in}-\left\{r . \mathrm{f} \rightarrow^{*} \mid\{r\}=\mathrm{in}(\mathrm{p})\right\}$
$\cup\{r . f \rightarrow 1 \mid p \rightarrow r \in \operatorname{in} \wedge q \rightarrow I \in \operatorname{in}\}$

Adding pointers to dynamically-allocated memory
p := new T

- T could be scalar, pointer, structure, ...

Issue: each execution creates a new location

Idea: generate new var of type T to stand for new location

- make Var domain unbounded
- newvar. return next unused element of Var

Flow function:
$\mathrm{PT}_{\mathrm{p}}:=$ new $\mathrm{T}(\mathrm{in})=$ in $-\left\{\mathrm{p} \rightarrow^{*}\right\} \cup\{\mathrm{p} \rightarrow$ newvar $\}$

A monotonic, finite approximation

Can't create a new variable each time analyze statement

- lattice is infinitely tall if Var domain is infinite!
- not a monotonic flow function!

One solution:
create a special summary node for each new stmt

- Loc = Var + Stmt + LocxField

Fixed flow function:

$$
\mathrm{PT}_{s: ~} \mathrm{p}:=\text { new } \mathrm{T}(\mathrm{in})=\mathrm{in}-\left\{\mathrm{p} \rightarrow^{*}\right\} \cup\{\mathrm{p} \rightarrow s\}
$$

Summary nodes abstract a set of possible locations
\Rightarrow cannot strongly update a summary node
$\mathrm{PT}_{*_{\mathrm{p}}}:=\mathrm{q}(\mathrm{in})=\mathrm{in}-\left\{r \rightarrow^{*} \mid\{r\}=\mathrm{in}(\mathrm{p}) \wedge \mathbf{r} \in \mathbf{L o c}\right\}$

$$
\cup\{r \rightarrow v \mid \mathrm{p} \rightarrow r \in \text { in } \wedge q \rightarrow v \in \operatorname{in}\}
$$

Alternative summarization strategies:

- summary node for each type T
- k-limited summary
- maintain distinct nodes up to k links removed from root vars, then summarize together

Example

Adding pointers to array elements

Array index expressions can generate aliases:
a [i] aliases b[j] if:

- a aliases b and i equals j
- more generally, a and b overlap, and $\& a[i]=\& b[j]$

Can have pointers to array elements:
p := \&a[i]

Can have pointer arithmetic, for array addressing:
$\mathrm{p}:=\& a[0] ; \quad . . ; p++$

How to model arrays?

Option 1: reason about array index expressions \Rightarrow array dependence analysis

Option 2: use a summary node to stand for all elements of the array

