Homework 2

Due Wednesday, February 11, at the start of class

Turn in a hard copy of your answers. The usual rules about collaboration, not
finding solutions elsewhere, etc., apply.

1 Meet is monotonic

Prove that M is monotonic. In other words, given a lattice (D,C, L, T,M), show
that Va,b,c,d € D.a CTbAcE d = (aMec C bMNd). Your proof should be
rigorous, in that every step needs to be justified. The only facts that you can
use are:

e the definition of M: a M b is the element ¢ € D such that ¢ C aAc¢ C
bAVA[(dCaAdEb) = dLC .

e transitivity: a C b and b C ¢ implies a C ¢

e commutativity: amlb=5bMa

2 Constant prop flow function is monotonic

Prove that the following constant prop flow function is monotonic:
CPp—yiz(in) =in—{(z = x)}U{(x = c3) | (y > c1) €inA (2 = c2) €inAcg = c1+ca}

In other words, prove that, if iny C ing, then CPp.—y4.(in1) C CPp—yy,(ing).
Your proof should be rigorous. You'll need to use the following facts (if you
don’t, then chances are that your proof is not rigorous enough):

¢ (ACB) < Vz.[(z € A) = (z € B)]
ez €(AUB) < (x€ A)V(x € B)
e c(A-—B) < (z€A)AN(z¢B)

3 Map lattice constructor

Given a set D; and a lattice (D2, Ca, Lo, T2,My), define the domain Dy + D,
which represents the lattice of maps from set D; to domain Ds. In particular,
Dy — Dy = (D,C, L, T,M) and you need to define D,C, L, T and M. An
element of your domain D should be a set of pairs restricted in such a way so
that it represents a total function. (A function f is a set of pairs such that
for any x there is at most one y such that (z,y) € f. A total function f is a
function that has the property that for any x in the domain of f, there is an
element (z,y) € f.)

Show how to use this lattice constructor to define a domain D, for constant
prop.

Write the flow function C'Py.—y4 . using the D., domain. It may be helpful to
define some map domain helper functions, such as lookup and update.

4 SSA

Put the following program in SSA form (you may draw a control flow graph to
illustrate your solution):

x := 0;
do {
X :=x + 1;
Z = X;
y = 0;
if (...) {
y = 1;
X
W i=y t z;

} while (...);
print(x, y, z, w);

5 Constant prop over def-use chains

Give an algorithm for constant propagation that exploits def/use chains to work
faster than the propagation-based algorithm presented in class. What is the time
complexity of your algorithm, assuming def/use chains are already constructed?
How, if at all, would converting the program to SSA form before constructing
def/use chains help your analysis?

6 Liveness analysis over def-use chains

Give an algorithm for dead assignment elimination that exploits def/use chains
to work faster than the propagation-based algorithm that used live variables
analysis presented in class. Your algorithm should not miss any optimization
opportunities found by the best live variables-based algorithm presented in class.
What is the time complexity of your algorithm, assuming def/use chains are
already constructed? How, if at all, would converting the program to SSA form
before constructing def/use chains help your analysis?

7 Pointer analysis

Perform the pointer analysis defined in class (using simple allocation-site sum-
mary nodes as on slide 93) on the following program:

struct T { field f } // struct T has a field f

T g; // global of type T
main() {
x = &y;
if (...) {
do {
if (...) {
z = &y;
a := new T;
}
else {
z = &z;
a := &g;
}
a->f := xz;
*z := &a;
} while (...)
}
else {
t = &y;
*x = t;
}

Draw the control flow graph, and draw the points-to graphs representing the
dataflow information computed at each program point. If there is iteration,
identify clearly which edges and nodes are added at each iteration.

8 Correctness of pointer analysis

8.1 Abstraction relation

Define the ay relation for a may-points-to analysis assuming that the domain
of the analysis is Pow(Var x Var) (no dynamically allocated memory or other
summaries). You can use a model of concrete memories that has the same
domain, except that it must be a partial function: any variable points to at
most one target variable. (We’ll keep things as simple as possible by assuming
that all variables hold pointers, or null; no other values are in our memories.)

8.2 Local soundness [Extra Credit]

Consider the following may-points-to flow function for statements of the form
Ti=y:
MAY-PT .y (in) = in — {(z,%)} U {(z,v) | (y,v) € in}

Also, consider the following definition of the concrete semantics of statements
of the form z := y (ignoring the in and out program points):

MeMin —z:—y MEMin[T — Memin(y)]

Show that the abstract flow function MAY-PT,._, is sound with respect to ap;
and the concrete flow function —,.—,. In other words, show that if mem;, —;.=y

MeMoyt, (MeMin, din) € apt, and MAY-PT ;.—y(din) = dout, then (memoys, dout) €

Qpt.

