Loop-invariant code motion

Two steps: analysis \& transformation

Step 1: find invariant computations in loop

- invariant: computes same result each time evaluated

Step 2: move them outside loop

- to top: code hoisting
- if used within loop
- to bottom: code sinking
- if only used after loop

Example

$$
\begin{aligned}
\mathrm{z} & :=\mathrm{x} * \mathrm{y} \\
\mathrm{q} & :=\mathrm{y} * \mathrm{y} \\
\mathrm{w} & :=\mathrm{y}+\mathrm{z}
\end{aligned}
$$

90
CSE 501

Computing loop-invariant expressions

Option 1:

- repeat iterative dfa until no more invariant expressions found
- to start, optimistically assume all expressions loop-invariant

Option 2:

- build def/use chains, follow chains to identify \& propagate invariant expressions

Option 3:

- convert to SSA form, then similar to def/use form

Example using def/use chains

Example using SSA form

Loop-invariant expression detection for SSA form

SSA form simplifies detection of loop invariants, since each use has only one reaching definition

An expression is invariant w.r.t. a loop L iff:

base cases:

- it's a constant
- it's a variable use whose single def is outside L
inductive cases:
- it's an idempotent computation all of whose args are loop-invariant
- it's a variable use whose single def's rhs is loop-invariant
ϕ functions are not idempotent

Example using SSA form \& preheader

Code motion

When find invariant computation $S: \mathrm{z}:=\mathrm{x}$ op y , want to move it out of loop (to loop preheader)

When is this legal?

Sufficient conditions:

- S dominates all loop exits
[A dominates B when all paths to B must first pass through $A]$
- otherwise may execute S when never executed otherwise
- can relax this condition, if S has no side-effects or traps, at cost of possibly slowing down program
- S is only assignment to z in loop, \& no use of z in loop is reached by any def other than S
- otherwise may reorder defs/uses and change outcome
- unnecessary in SSA form!

If met, then can move S to loop preheader

- but preserve relative order of invariant computations, to preserve data flow among moved statements

Example of need for domination requirement

Example of data dependence restrictions

" S is only assignment to z in loop, \&
no use of z in loop is reached by any def other than $S^{\prime \prime}$

Example in SSA form

Restrictions unnecessary if in SSA form

- if reorder defs/uses, generate code along merging arcs to implement ϕ functions

Loop-invariant code copying

Alternative to code motion: copy instruction to loop header, assigning to new temp, then do CSE \& copy propagation to simplify in-loop version

- more modular design, leverage off of existing optimizations

Can always copy, unless instruction has side-effects
CSE \& copy propagation will eliminate in-loop instruction exactly when (non-SSA) loop-invariant code motion would have, PLUS can replace invariant but unmovable instructions with copies

SSA-based code motion gets same effect

- copies correspond to reified ϕ functions

Example

