
Craig Chambers 24 CSE 501

Representation of programs

Primary goals:

• analysis is easy & effective

• just a few cases to handle

• provide support for linking things of interest

• transformations are easy

• general, across input languages & target machines

Additional goals:

• compact in memory

• easy to translate to and from

• tracks info for source-level debugging, profiling, etc.

• extensible (new optimizations, targets, language features)

• displayable

Example IRs:

• C?

• Java bytecode?

• ...

Craig Chambers 25 CSE 501

High-level syntax-based representation

Represent source-level control structures & expressions directly

Examples

• (Attributed) AST

• Lisp S-expressions

• lambda calculus? Java bytecode?

Source:

for i := 1 to 10 do
a[i] := b[i] * 5;

end

AST:
for

1 10i :=

[] *

a i [] 5

b i

Craig Chambers 26 CSE 501

Low-level representation

Translate input programs into low-level primitive chunks,
often close to the target machine

Examples

• assembly code, virtual machine code (e.g. stack machine)

• three address code, register transfer language (RTLs)

• lambda calculus? Java bytecode?

Standard RTL operators:

assignment x := y;

unary op x := op y;

binary op x := y op z;

address-of p := &y;

load x := *(p + o);

store *(p + o) := x;

call x := f(...);

unary compare op x ?

binary compare x op y ?

Craig Chambers 27 CSE 501

Source:

for i := 1 to 10 do
a[i] := b[i] * 5;

end

Control flow graph containing RTL instructions:

t1 := i * 4
t2 := & b
t3 := *(t2 + t1)
t4 := t3 * 5
t5 := i * 4
t6 := & a
*(t6 + t5) := t4

i := i + 1

i := 1

i <= 10?

Craig Chambers 28 CSE 501

Comparison

Advantages of high-level rep:

• analysis can exploit high-level knowledge of constructs

• probably faster to analyze

• supports semantics-based reasoning about correctness
etc. of analysis

• easy to map to source code terms for debugging, profiling

• may be more compact

Advantages of low-level rep:

• can do low-level, machine-specific optimizations
(if target-based representation)

• high-level rep may not be able to express some transformations

• can have relatively few kinds of instructions to analyze

• can be language-independent

High-level rep suitable for a source-to-source or special-purpose
optimizer, e.g. inliner, parallelizer

Can mix multiple representations in single compiler

Can sequence compilers using different reps

Craig Chambers 29 CSE 501

Components of representation

Operations

Dependences between operations

• control dependences: sequencing of operations

• evaluation of then & else arms depends on result of test

• side-effects of statements occur in right order

• data dependences: flow of values from definitions to uses
• operands computed before operation

• values read from variable before being overwritten

Ideal: represent just those dependences that matter

• dependences constrain transformations

• fewest dependences ⇒ most flexibility in implementation

Craig Chambers 30 CSE 501

Representing control dependences

Option 1: high-level representation

• control flow implicit in semantics of AST nodes

Option 2: control flow graph

• nodes are basic blocks
• instructions in basic block sequence side-effects

• edges represent branches
(control flow between basic blocks)

Some fancier options:

• control dependence graph ,
part of program dependence graph (PDG)
[Ferrante et al. 87]

• convert into data dependences on a memory state,
in value dependence graph (VDG) [Weise et al. 94]

Craig Chambers 31 CSE 501

Kinds of data dependences

read-after-write (RAW): true/flow dependence

• reflects real data flow, operands to operation

write-after-read (WAR): anti-dependence

write-after-write (WAW): output dependence

• reflects overwriting of memory, not real data flow
⇒ can sometimes be eliminated by optimization

read-after-read (RAR): no dependence

• can occur in any order

Craig Chambers 32 CSE 501

Example

x := 3
if q != NULL then

y := x + 2
w := *q
x := z * 10

else
x := 4

endif

➀ x := 3
➁ q != NULL?

➂ y := x + 2

➃ w := *q

➄ x := z * 10

➅ x := 4

➁

➂

➃

➄

➅

➀

Craig Chambers 33 CSE 501

Representing data dependences

Option 1: implicitly through variable defs/uses in CFG

+ simple, source-like

− may overconstrain order of operations

− analysis wants important things explicit ⇒
analysis can be slow

Option 2: def/use chains, linking each def to each use

+ explicit ⇒ analysis can be fast

− must be computed, maintained after transformations

− may be space-consuming

Fancier options:

• static single assignment (SSA) form [Alpern et al. 88]

• value dependence graphs (VDGs)

• dependence flow graphs (DFGs)

• ...

Craig Chambers 34 CSE 501

Example

➀ x := ...

➁ ... x ...

➂ ... x ...

➃ x := ...

➄ ... x ...

➅ ... x ...

➀

➁

➂

➃

➄

➅

➆ ... x ... ➇ ... x ...

➆ ➇

Craig Chambers 35 CSE 501

Data flow analysis

Want to compute some info about program

• at program points

• to identify opportunities for improving transformations

Can model data flow analysis as solving system of constraints

• each node in CFG imposes a constraint relating info at
predecessor and successor points

• solution to constraints is result of analysis

Solution must be safe /sound

Solution can be conservative

Key issues:

• how to represent info efficiently?

• how to represent & solve constraints efficiently?

• how long does constraint solving take? does it terminate?

• what if multiple solutions are possible?

• how to synchronize transformations with analysis?

• how to know if analysis & transformations we’ve defined is
semantics-preserving?

Craig Chambers 36 CSE 501

Example: reaching definitions

For each program point,
want to compute set of definitions (statements) that
may reach that point

• reach: are the last definition of some variable

Info ≡ set of var→stmt bindings

E.g.:
{x→s1, y→s5, y→s8}

Can use reaching definition info to:

• build def-use chains

• do constant & copy propagation

• detect references to undefined variables

• present use/def info to programmer

• ...

Safety rule (for these intended uses of this info):
can have more bindings than the “true” answer,
but can’t miss any

Craig Chambers 37 CSE 501

Constraints for reaching definitions

Main constraints:

A simple assignment removes any old reaching defs for the lhs
and replaces them with this stmt:

• strong update

s: x := ... :
infosucc = infopred − {x→s’ | ∀s’} ∪ {x→s}

A pointer assignment may modify anything, but doesn’t definitely
replace anything

• weak update

s: *p := ... :
infosucc = infopred ∪ {x→s | ∀x ∈ may-point-to(p)}

Other statements: do nothing

infosucc = infopred

Craig Chambers 38 CSE 501

Constraints for reaching definitions, continued

Branches pass through reaching defs to both successors

infosucc[i] = infopred

Merges take the union of all incoming reaching defs

• we don’t know which path is being taken at run-time
⇒ be conservative

infosucc = ∪i infopred[i]

Conditions at entry to CFG: definitions of formals

infoentry = {x→entry | ∀x ∈ formals}

Craig Chambers 39 CSE 501

Solving constraints

A given program yields a system of constraints

Need to solve constraints

For reaching definitions,
can traverse instructions in forward topological order,
computing successor info from predecessor info

Craig Chambers 40 CSE 501

Example

➀ x := ...

➁ y := ...

➂ y := ...

➃ p := ...

... x ...

➄ x := ...

... y ...

... x ...

➅ x := ...

➆ *p := ...

... x ...

... y ...

➇ y := ...

Craig Chambers 41 CSE 501

Another example

Topological order not defined!

➀ x := ...

➁ y := ...

➂ y := ...

➃ p := ...

... x ...

➄ x := ...

... y ...

... x ...

➅ x := ...

➆ *p := ...

... x ...

... y ...

➇ y := ...

Craig Chambers 42 CSE 501

Loop terminology

loop : strongly-connected component in CFG with single entry

loop entry edge : source not in loop, target in loop

loop exit edge : the reverse

back edge : target is loop head node

loop head node : target of loop entry edge

loop tail node : source of back edge

loop preheader node :
single node that’s source of loop entry edge

nested loop : loop whose head is inside another loop

reducible flow graph : all SCC’s have single entry

Craig Chambers 43 CSE 501

Example

preheader

head

entry edge

exit edge

back edge

tail

loop

Craig Chambers 44 CSE 501

Analysis of loops

If CFG has a loop, data flow constraints are recursively defined:
infoloop-head = infoloop-entry ∪ infoback-edge
infoback-edge = ... infoloop-head ...

Substituting definition of infoback-edge:
infoloop-head = infoloop-entry ∪ (... infoloop-head ...)

Summarizing r.h.s. as F:
infoloop-head = F(infoloop-head)

A legal solution to constraints is a fixed-point of F

Recursive constraints can have many solutions

• want least or greatest fixed-point,
whichever corresponds to the most precise answer

How to find least/greatest fixed-point of F?

• for restricted CFGs can use specialized methods

• e.g. interval analysis for reducible CFGs

• for arbitrary CFGs, can use iterative approximation

Craig Chambers 45 CSE 501

Iterative data flow analysis

1. Start with initial guess of info at loop head:
infoloop-head = guess

2. Solve equations for loop body:
infoback-edge = Fbody (infoloop-head)

infoloop-head’ = infoloop-entry ∪ infoback-edge

3. Test if found fixed-point:
infoloop-head’ = infoloop-head ?

A. if same, then done

B. if not, then adopt result as (better) guess and repeat:

infoback-edge’ = Fbody (infoloop-head’)

infoloop-head’’ = infoloop-entry ∪ infoback-edge’

infoloop-head’’ = infoloop-head’ ?

...

Craig Chambers 46 CSE 501

When does iterating work?

1. need to be able to make an initial guess

2. infon+1 must be closer to the fixed-point than infon

(true if Fbody is monotonic)

3. must eventually reach the fixed-point
in a finite number of iterations
(true if info drawn from a finite-height domain)

To reach best fixed-point, initial guess for loop head
should be optimistic

• easy choice: infoloop-head = infoloop-entry

(Even if guess is overly optimistic, iteration will ensure we won’t
stop analysis until the answer is safe.)

To speed iterative analysis, want to test guess ASAP

• avoid solving constraints outside of loop until fixed-point is
reached within loop

Craig Chambers 47 CSE 501

The example, again

➀ x := ...

➁ y := ...

➂ y := ...

➃ p := ...

... x ...

➄ x := ...

... y ...

... x ...

➅ x := ...

➆ *p := ...

... x ...

... y ...

➇ y := ...

Craig Chambers 48 CSE 501

Direction of dataflow analysis

In what order are constraints solved, in general?

Constraints are declarative, not directional/procedural, so may
require mixing forward & backward solving, or other more
global solution methods

But often constraints can be solved by (directional) propagation
& iteration

• may be forward or backward propagation of info

• topological traversals of acyclic subgraphs minimize
analysis time

Directional constraints often called flow functions

• often written as functions on input info to compute output

RDs: x := ... (in) = in − {x→s’ | ∀s’} ∪ {x→s}

RDs: *p := ... (in) = in ∪ {x→s | ∀x ∈ may-point-to(p)}

Craig Chambers 49 CSE 501

GEN and KILL sets

For even more structure,
can often think of flow functions in terms of each’s
GEN set and KILL set

• GEN = new information added

• KILL = old information removed

Then
Finstr(in) = in - KILLinstr ∪ GENinstr

E.g., for reaching defs:

RDs: x := ... (in) = in − {x→s’ | ∀s’} ∪ {x→s}

RDs: *p := ... (in) = in ∪ {x→s | ∀x ∈ mpt(p)}

Craig Chambers 50 CSE 501

Bit vectors

Can sometimes represent info/KILL/GEN sets as bit vectors

• if can express abstractly as set of things
(e.g. statements, vars),
drawn from a statically known set of things,
each thing getting a statically determined bit position

• bitvector encodes characteristic function of set

E.g., for reaching defs:

info = bitvector over statements,
each stmt getting a distinct bit position

• statement implies which variable is defined

Bit vectors compactly represent sets

Bit-vector operations efficiently perform set difference & union

Flow function may be able to be represented simply by a pair of
bit vectors, if they don’t depend on input bit vector

• can merge the KILL and GEN bit vectors of a whole basic
block of instructions into a single overall KILL and GEN
set, for faster iterating

Craig Chambers 51 CSE 501

Another example: constant propagation

Goal: data flow analysis that implements constant propagation

What info computed for each program point?

I is a conservative approximation to true info Itrue iff:

CPx := N:

CPx := y + z :

CP*p := *q + *r :

Merge function?

Direction of analysis?

Initial info, at what program point(s)?

Can use bit vectors?

Craig Chambers 52 CSE 501

Example

x := x + 1

w := 3

w := 3

y := x * 2

z := y + 5

w := w * v

x := 5

v := 2

Craig Chambers 53 CSE 501

May vs. must info

Some kinds of info imply guarantees: must info

Some kinds of info imply possibilities: may info

• the complement of may info is must not info

May Must

desired info small set big set

safe overly big set overly small set

GEN add everything that
might be true

add only if guaranteed
true

KILL remove only if
guaranteed wrong

remove everything
possibly wrong

MERGE ∪ ∩

Craig Chambers 54 CSE 501

Another example: live variables

Want the set of variables that are live at each pt. in program

• live: might be used later in the program

Supports dead assignment elimination, register allocation

What info computed for each program point?

May or must info?

I is a conservative approximation to true info Itrue iff:

LVx := y + z :

LV*p := *q + *r :

Merge function?

Direction of analysis?

Initial info, at what program point(s)?

Can use bit vectors?

Craig Chambers 55 CSE 501

Example

x := x + 1 y := x + 10

... y ...

x := 5

y := x * 2

