Advanced program representations

Goal:

- more effective analysis
- faster analysis
- easier transformations

Approach:

more directly capture important program properties

- e.g. data flow, independence

Examples

CFG:

+ simple to build
+ complete
+ no derived info to keep up to date during transformations
- computing info is slow and/or ineffective
- lots of propagation of big sets/maps

Def/use chains

Def/use chains directly linking defs to uses \& vice versa + directly captures data flow for analysis

- e.g. constant propagation, live variables easy
- ignores control flow
- misses some optimization opportunities, since it assumes all paths taken
- not executable by itself, since it doesn't include control dependence links
- not appropriate for some optimizations, such as CSE and code motion
- must update after transformations
- not too hard (just remove edges)
- space-consuming, in worst case: $\mathrm{O}\left(E^{2} V\right)$
- can have multiple defs of same variable in program, multiple defs can reach a use
- complicates analysis

Example

Static Single Assignment (SSA) form

[Alpern, Rosen, Wegman, \& Zadeck, two POPL 88 papers]

Invariant: at most one definition reaches each use

Constructing equivalent SSA form of program:

1. Create new target names for all definitions
2. Insert pseudo-assignments at merge points reached by multiple definitions of same source variable: $x_{n}:=\phi\left(x_{1}, \ldots, x_{n}\right)$
3. Adjust uses to refer to appropriate new names

Example

Common subexpression elimination

At each program point, compute set of available expressions: map from expression to variable holding that expression

- e.g. $\{a+b \rightarrow x,-c \rightarrow y, * p \rightarrow z\}$
(More generally, can have map from expensive expression to equivalent but cheaper expression
- subsumes CSE, constant prop, copy prop.)

CSE transformation using AE analysis results:
if $a+b \rightarrow x$ available before $y:=a+b$, transform to $y:=x$

Specification

All possible available expressions:
AvailableExprs $=\{$ expr \rightarrow var $\mid \forall$ expr \in Exprs, $\forall v a r \in$ Vars $\}$

$$
=\text { Exprs } \times \text { Vars }
$$

- Exprs = set of all right-hand-side expressions in procedure
- Vars = set of all variables in procedure [is this a function from Exprs to Vars, or just a relation?]

Domain AV $=<$ Pow(AvailableExprs), $\leq_{\text {AV }}>$
$\mathrm{ae}_{1} \leq_{\mathrm{AV}} \mathrm{ae}_{2} \Leftrightarrow$

- top:
- bottom
- meet:
- lattice height:

Constraints

$A E_{x}:=y$ op $z:$
$A E_{x}:=y$:

Initial conditions at program points?

What direction to do analysis?

Can use bit vectors?
Can summarize sequences of flow functions?

Craig Chambers
84
CSE 501

Exploiting SSA form

Problem: previous available expressions overly sensitive to name choices, operand orderings, renamings, assignments,

A solution:

Step 1: convert to SSA form

- distinct values have distinct names \Rightarrow can simplify flow functions to ignore assignments
$\operatorname{AE}_{\mathrm{xS}}^{\mathrm{SS}}:=\mathrm{y}$ op z :

Step 2: do copy propagation

- same values (usually) have same names \Rightarrow avoid missed opportunities

Step 3: adopt canonical ordering for commutative operators \Rightarrow avoid missed opportunities

Example

After SSA conversion, copy propagation, \& operand order canonicalization:

88

