
Craig Chambers 75 CSE 501

Advanced program representations

Goal:

• more effective analysis

• faster analysis

• easier transformations

Approach:
more directly capture important program properties

• e.g. data flow, independence

Craig Chambers 76 CSE 501

Examples

CFG:

+ simple to build

+ complete

+ no derived info to keep up to date during transformations

− computing info is slow and/or ineffective

• lots of propagation of big sets/maps

Craig Chambers 77 CSE 501

Def/use chains

Def/use chains directly linking defs to uses & vice versa

+ directly captures data flow for analysis

• e.g. constant propagation, live variables easy

− ignores control flow

• misses some optimization opportunities,
since it assumes all paths taken

• not executable by itself,
since it doesn’t include control dependence links

• not appropriate for some optimizations,
such as CSE and code motion

− must update after transformations

• not too hard (just remove edges)

− space-consuming, in worst case: O(E2V)

− can have multiple defs of same variable in program,
multiple defs can reach a use

• complicates analysis

Craig Chambers 78 CSE 501

Example

x := x + y

... x ...

... y ...

x := ...

y := ...

... x ...

... y ...

... y ...

... y ...

x := ...

y := y + 1

... x ...

Craig Chambers 79 CSE 501

Static Single Assignment (SSA) form

[Alpern, Rosen, Wegman, & Zadeck, two POPL 88 papers]

Invariant: at most one definition reaches each use

Constructing equivalent SSA form of program:

1. Create new target names for all definitions

2. Insert pseudo-assignments at merge points
reached by multiple definitions of same source variable:
xn := φ(x1,..., xn)

3. Adjust uses to refer to appropriate new names

Craig Chambers 80 CSE 501

Example

x := x + y

... x ...

... y ...

x := ...

y := ...

... x ...

... y ...

... y ...

... y ...

x := ...

y := y + 1

... x ...

Craig Chambers 81 CSE 501

Comparison

+ lower worst-case space cost than def/use chains: O(EV)

+ algorithms simplified by exploiting
single assignment property:

• variable has a unique meaning independent of program point

• can treat variable & its contents synonymously

• can have single global table mapping var to info,
not one per program pt.

+ transformations not limited by reuse of variable names

• can reorder assignments to same source variable, without
affecting dependences of SSA version

− still not executable by itself

− still must update/reconstruct after transformations

− inverse property (static single use) not provided

• dependence flow graphs [Pingali et al.] and
value dependence graphs [Weise et al.] fix this,
with single-entry, single-exit (SESE) region analysis

Very popular in research compilers, analysis descriptions

Craig Chambers 82 CSE 501

Common subexpression elimination

At each program point, compute set of available expressions :
map from expression to variable holding that expression

• e.g. {a+b → x, -c → y, *p → z}

(More generally, can have map from
expensive expression to equivalent but cheaper expression

• subsumes CSE, constant prop, copy prop.)

CSE transformation using AE analysis results:
if a+b→x available before y := a+b , transform to y := x

Craig Chambers 83 CSE 501

Specification

All possible available expressions:
AvailableExprs = {expr→var | ∀expr ∈ Exprs, ∀var ∈ Vars}

= Exprs × Vars

• Exprs = set of all right-hand-side expressions in procedure

• Vars = set of all variables in procedure

[is this a function from Exprs to Vars, or just a relation?]

Domain AV = < Pow(AvailableExprs), ≤AV >

ae1 ≤AV ae2 ⇔

• top:

• bottom:

• meet:

• lattice height:

Craig Chambers 84 CSE 501

Constraints

AEx := y op z :

AEx := y :

Initial conditions at program points?

What direction to do analysis?

Can use bit vectors?

Can summarize sequences of flow functions?

Craig Chambers 85 CSE 501

Example

j := i

i := c

z := j * 4

y := i * 4

i := i + 1

m := b + a

w := 4 * m

i := a + b

x := i * 4

Craig Chambers 86 CSE 501

Exploiting SSA form

Problem: previous available expressions overly sensitive to
name choices, operand orderings, renamings, assignments,
...

A solution:

Step 1: convert to SSA form

• distinct values have distinct names
⇒ can simplify flow functions to ignore assignments

AESSA
x := y op z :

Step 2: do copy propagation

• same values (usually) have same names
⇒ avoid missed opportunities

Step 3: adopt canonical ordering for commutative operators
⇒ avoid missed opportunities

Craig Chambers 87 CSE 501

Example

j := i

i := c

z := j * 4

y := i * 4

i := i + 1

m := b + a

w := 4 * m

i := a + b

x := i * 4

Craig Chambers 88 CSE 501

After SSA conversion, copy propagation, &
operand order canonicalization:

j 1 := i 1

i 2 := c 1

z1 := i 1 * 4

i 4 := φ(i 1,i 3)

y1 := i 4 * 4

i 3 := i 4 + 1

m1 := a1 + b 1

w1 := m1 * 4

i 1 := a 1 + b1

x1 := i 1 * 4

