Lattice-Theoretic Data Flow Analysis Framework

Goals:
- provide a single, formal model that describes all DFAs
- formalize notions of "safe", "conservative", "optimistic"
- place precise bounds on time complexity of DF analysis
- enable connecting analysis to underlying semantics for correctness proofs

Plan:
- define domain of program properties computed by DFA
 - domain has a set of elements
 - each element represents one possible value of the property
 - (partially) order elements to reflect their relative precision
 - domain = set of elements + order over elements = lattice
- define flow functions & merge function over this domain, using standard lattice operators
- benefit from lattice theory in attacking above issues

History: Kildall [POPL 73], Kam & Ullman [JACM 76]

Lattices

Define lattice \(D = (S, \leq) \):
- \(S \) is a (possibly infinite) set of elements
- \(\leq \) is a binary relation over elements of \(S \)

Required properties of \(\leq \):
- \(\leq \) is a partial order
 - reflexive, transitive, & anti-symmetric
- every pair of elements of \(S \) has
 - a unique greatest lower bound (a.k.a. meet) and
 - a unique least upper bound (a.k.a. join)

Height of \(D \) = longest path through partial order from greatest to least
- infinite lattice can have finite height (but infinite width)

Top (T) = unique element of \(S \) that’s greatest, if exists
Bottom (\(\bot \)) = unique element of \(S \) that’s least, if exists

Lattice models in data flow analysis

Model data flow information by an element of a lattice domain
- if \(a < b \), then \(a \) is less precise than \(b \)
 - i.e., \(a \) is a conservative approximation to \(b \)
 - top = most precise, best case info
 - bottom = least precise, worst case info
- merge function = g.l.b. (meet) on lattice elements
 (the most precise element that’s a conservative approximation to both input elements)
- initial info for optimistic analysis (at least back edges): top

(Opposite up/down conventions used in PL semantics!)

Examples

Reaching definitions:
- an element:
 - set of all elements:
 - \(\leq \):
 - top:
 - bottom:
 - meet:

Reaching constants:
- an element:
 - set of all elements:
 - \(\leq \):
 - top:
 - bottom:
 - meet:
Some typical lattice domains

Powerset lattice: set of all subsets of a set \(S \)
- ordered by \(\subseteq \) or \(\supseteq \)
- top & bottom = \(\emptyset \) & \(S \), or vice versa
- height = \(|S| \) (infinite if \(S \) is infinite)
- “a collecting analysis”

A lifted set: a set of incomparable values, plus top & bottom
- e.g., reaching constants domain, for a particular variable:
 \[
 \ldots \ x = -2 \ x = 1 \ x = 0 \ x = 1 \ x = 2 \ x = 3 \ \ldots
 \]
- height = 3 (even though width is infinite!)

Two-point lattice: top and bottom
- computes a boolean property

Single-point lattice: just bottom
- trivial do-nothing analysis

Example: reaching constants

How to model reaching constants for all variables?

Informally:
- each element is a set of the form \(\{ \ldots, x \rightarrow k, \ldots \} \),
 with at most one binding for \(x \)

One lattice model: a powerset of all \(x \rightarrow k \) bindings
- \(S = \text{pow}((x \rightarrow k \mid \forall x, \forall k)) \)
- \(\leq = \subseteq \)
- height?

Another lattice model:
\(N \)-tuple of 3-level constant prop. lattices, for each of \(N \) variables

\[
(\ldots \ x = 2 \ x = 1 \ x = 0 \ x = 1 \ x = 2 \ x = 3 \ \ldots)^N
\]
- height?

Are they the same?
If not, which is better?

Tuples of lattices

Often helpful to break down a complex lattice into a tuple of lattices, one per variable/stmt/… being analyzed

Formally: \(D_T = (S_T, \leq_T) = (D = (S, \leq))^N \)
- \(S_T = S_1 \times S_2 \times \ldots \times S_N \)
- element of tuple domain is a tuple of elements from each variable’s domain
 - \(i^\text{th} \) component of tuple is info about \(i^\text{th} \) variable/stmt/…
 - \(\ldots, d_{1i}, \ldots \leq_T \ldots, d_{2i}, \ldots \equiv d_{1i} \leq d_{2i}, \forall i \)
 - i.e. pointwise ordering
 - meet: pointwise meet
 - top: tuple of tops
 - bottom: tuple of bottoms
 - height(\(D_T \)) = \(N \times \text{height}(D) \)

Powerset(\(S \)) lattice is isomorphic to a tuple of two-point lattices, one two-point lattice element per element of \(S \)
- i.e., a bit-vector!

Analysis of loops in lattice model

Consider:

\((\text{Assume } B(d_{\text{head}}) \text{ computes } d_{\text{backedge}}) \)

Want solution to constraints:
\[
\begin{align*}
 d_{\text{head}} &= d_{\text{entry}} \land d_{\text{backedge}} \\
 d_{\text{backedge}} &= B(d_{\text{head}})
\end{align*}
\]

Let \(F(d) = d_{\text{entry}} \land B(d) \)

Then want fixed-point of \(F \):
\[
F_{\text{head}} = F(F_{\text{head}})
\]
Iterative analysis in lattice model

Iterative analysis computes fixed-point by iterative approximation:

\[
F^0 = \text{d}_{\text{entry}} \cap T = \text{d}_{\text{entry}}
\]

\[
F^1 = \text{d}_{\text{entry}} \cap B(F^0) = F(F^0) = F(\text{d}_{\text{entry}})
\]

\[
F^2 = \text{d}_{\text{entry}} \cap B(F^1) = F(F^1) = F(F(F^0)) = F(F(\text{d}_{\text{entry}}))
\]

\[
\ldots
\]

\[
F^k = \text{d}_{\text{entry}} \cap B(F^{k-1}) = F(F^{k-1}) = F(F(...(F(\text{d}_{\text{entry}}))...))
\]

until

\[
F^{k+1} = \text{d}_{\text{entry}} \cap B(F^k) = F(F^k) = F^k
\]

Is \(k \) finite?
If so, how big can it be?

Termination of iterative analysis

In general, \(k \) need not be finite

Sufficient conditions for finiteness:
- flow functions (e.g. \(F \)) are monotonic
- lattice is of finite height

A function \(F \) is monotonic iff:

\[
d_2 \leq d_1 \Rightarrow F(d_2) \leq F(d_1)
\]

- for application of DFA, this means that giving a flow function at least as conservative inputs \((d_2 \leq d_1)\) leads to at least as conservative outputs \((F(d_2) \leq F(d_1))\)

For monotonic \(F \) over domain \(D \), the maximum number of times that \(F \) can be applied to itself, starting w/ any element of \(D \), w/o reaching fixed-point, is \(\text{height}(D) - 1 \)

- start at top of \(D \)
- for each application of \(F \), either it’s a fixed-point, or the result must go down at least one level in lattice
- eventually must hit a fixed-point (which will be the best fixed-point) or bottom (which is guaranteed to be a fixed-point), if \(D \) of finite height

Complexity of iterative analysis

How long does iterative analysis take?

\(l \): depth of loop nesting
\(n \): # of stmts in loop
\(t \): time to execute one flow function
\(k \): height of lattice

Another example: integer range analysis

For each program point,
for each integer-typed variable,
calculate (an approximation to) the set of integer values that can be taken on by the variable
- use info for constant folding comparisons,
 for eliminating array bounds checks,
 for (in)dependence testing of array accesses,
 for eliminating overflow checks

What domain to use?
- what is its height?

What flow functions to use?
- are they monotonic?
Example

```plaintext
for i := 0 to N-1
  ...
a[i] ...
end
```

Widening operators

If domain is tall, then can introduce artificial generalizations (called *widenings*) when merging at loop heads

- ensure that only a finite number of widenings are possible
- not easy to design the “right” widening strategy

A generic worklist algorithm for lattice-theoretic DFA

Maintain a mapping from each program point to info at that point
- optimistically initialize all pp’s to T

Set initial pp’s (e.g. entry/exit point) to their correct values

Maintain a worklist of nodes whose flow functions need to be evaluated
- initialize with all nodes in graph
- include explicit meet & widening-meet nodes

While worklist nonempty do
- Remove a node from worklist
- Evaluate the node’s flow function,
 given current info on predecessor/successor pp’s,
 allowing it to change info on predecessor/successor pp’s
- If any pp info changed, then put adjacent nodes on worklist
 (if not already there)

For faster analysis, want to follow topological order
- number nodes in topological order
- remove nodes from worklist in increasing topological order

Sharlit

A data flow analyzer generator [Tjiang & Hennessy 92]
- analogous to YACC

User writes basic primitives:
- control flow graph representation
 - nodes are instructions, not basic blocks
- domain (“flow value”) representation and key operations
 - `init`
 - `copy`
 - `is_equal`
 - `meet`
- flow functions for each kind of instruction
- action routines to optimize after analysis

Sharlit generates iterative dataflow analyzer from these pieces
+ easy to build, extend
- not highly efficient, so far...
Path compression

Can improve analysis efficiency by summarizing effect of sequences of nodes

User can define path compression operations to collapse nodes together

- collapse linear sequence of nodes
 - summarizes effect of whole BB in a single node

- collapse trees ⇒ extended BB’s

- collapse merges & loops as in interval analysis
 - use simplification to analyze reducible parts efficiently
 - use iteration to handle nonreducible parts

+ gets efficiency, preserves modularity & generality
- doesn’t support data-dependent flow functions, cannot simulate optimizations during analysis

Performance results for code quality of generated optimizer, but not for compilation speed of optimizer

Vortex IDFA framework

Like Sharlit, except a compiler library rather than a compiler-compiler

User defines a subclass of AnalysisInfo to represent elements of domain

- copy
- merge (lattice g.l.b. operator)
- generalizing_merge (g.l.b. with optional widening)
- as_general_as (lattice ≤ operator)

User invokes traverse to perform analysis:

\[
\text{cfg.traverse}(\text{direction}, \text{is_iterative}?, \text{initial_analysis_info}, \lambda(\text{rtl, info})\{ \text{rtl.flow_fn}(\text{info}) \})
\]

Flow function returns an AnalysisResult: one of

- keep instruction and continue analysis w/ updated info(s)
- delete instruction/constant-fold branch
- replace instruction with instruction or subgraph

ComposedAnalysis supports running multiple analyses interleaved at each instruction

Features of Vortex IDFA

Big idea: separate analyses and transformations, make framework compose them appropriately

- don’t have to simulate the effect of transformations during analysis
- can run analyses in parallel if each provides opportunities for the other
 - sometimes can achieve strictly better results this way than if run separately in a loop
- more general transformations supported (e.g. inlining) than Sharlit

Exploit inheritance & closures

Analysis speed is not stressed

- no path compression
- no “compilation” of analysis with framework

[Vortex’s interprocedural analysis support discussed later]