Lattice-Theoretic Data Flow Analysis Framework

Goals:
« provide a single, formal model that describes all DFAs
« formalize notions of “safe”, “conservative”, “optimistic”
« place precise bounds on time complexity of DF analysis

< enable connecting analysis to underlying semantics for
correctness proofs

Plan:
« define domain of program properties computed by DFA
» domain has a set of elements
« each element represents one possible value of the property
« (partially) order elements to reflect their relative precision
» domain = set of elements + order over elements = lattice

« define flow functions & merge function over this domain,
using standard lattice operators

« benefit from lattice theory in attacking above issues

History: Kildall [POPL 73], Kam & Ullman [JACM 76]
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Lattices

Define lattice D = (S, <):
» Sis a (possibly infinite) set of elements
» <is a binary relation over elements of S

Required properties of <:
» <is a partial order
« reflexive, transitive, & anti-symmetric

» every pair of elements of S has
a unique greatest lower bound (a.k.a. meet) and
a unique least upper bound (a.k.a. join)

Height of D =
longest path through partial order from greatest to least

« infinite lattice can have finite height (but infinite width)

Top (T) = unique element of Sthat's greatest, if exists
Bottom (00) = unique element of S that's least, if exists
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Lattice models in data flow analysis

Model data flow information by an element of a lattice domain
e if a< b, then ais less precise than b
* i.e,, ais a conservative approximation to b
* top = most precise, best case info
« bottom = least precise, worst case info

« merge function = g.l.b. (meet) on lattice elements
(the most precise element that's a conservative
approximation to both input elements)

« initial info for optimistic analysis (at least back edges): top

(Opposite up/down conventions used in PL semantics!)
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Examples

Reaching definitions:
e an element:
 set of all elements:
. <
 top:
* bottom:
* meet:

Reaching constants:
e an element:
 set of all elements:
. <
* top:
* bottom:
* meet:
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Some typical lattice domains

Powerset lattice: set of all subsets of a set S
« ordered by Oor O
¢ top & bottom =0 & S, or vice versa
« height = |S] (infinite if Sis infinite)
« “acollecting analysis”

A lifted set: a set of incomparable values, plus top & bottom
* e.g., reaching constants domain, for a particular variable:

// \\\2

« height = 3 (even though width is infinite!)

Two-point lattice: top and bottom
« computes a boolean property

Single-point lattice: just bottom
« trivial do-nothing analysis
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Tuples of lattices

Often helpful to break down a complex lattice into a tuple of
lattices, one per variable/stmt/... being analyzed

Formally: Dy = <Sp,<1> = (D=<S, <)V
‘ST—S]_XSZ ...XSN
« element of tuple domain is a tuple of elements from each

variable’s domain
« i component of tuple is info about it" variable/stmt/...
o <.,y ..> < <., dy...> = dyj<dy;, Oi

« i.e. pointwise ordering
* meet: pointwise meet
* top: tuple of tops
* bottom: tuple of bottoms

* height(D) = N * height(D)

Powerset(S) lattice is isomorphic to a tuple of two-point lattices,
one two-point lattice element per element of S

* i.e., a bit-vector!
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Example: reaching constants

How to model reaching constants for all variables?

Informally:
each element is a set of the form {..., x - k, ...},
with at most one binding for x

One lattice model: a powerset of all x — k bindings
e S=pow({x - k|Ox, 0k}
e <=0]
¢ height?

Another lattice model:
N-tuple of 3-level constant prop. lattices,
for each of N variables

« height?

Are they the same?
If not, which is better?
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Analysis of loops in lattice model

Consider:
dentry

dhead dbackedge

(Assume B(dneaq) computes dyackedge)

Want solution to constraints:

dhead = dentry n dbackedge
dbackedge = B(dhead)

Let F(d) = denyy 0 B(d)

Then want fixed-point of F:
dhead = F(dhead)
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Iterative analysis in lattice model

Iterative analysis computes fixed-point
by iterative approximation:

F= dentry N T = dentry
F' = dentry 0 B(F%) = F(F%) = F(dentry)

F? = denuy N B(FY) = F(FY) = F(F(FY)) = F(F(dentry)

F¥= depyy 0 B(FCY) = FIFFY) = F(A(..(F(denty)).--.))

until

F*L = depyy 0 B(F) = F(FY) = FX

Is k finite?

If so, how big can it be?
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Termination of iterative analysis

In general, k need not be finite

Sufficient conditions for finiteness:
« flow functions (e.g. F) are monotonic
« lattice is of finite height

A function F is monotonic iff:
d,<d; O Fd,) < FHdq)
« for application of DFA, this means that giving a flow function

at least as conservative inputs (d, < d;) leads to
at least as conservative outputs (F(d,) < F(d,))

For monotonic F over domain D, the maximum number of times
that F can be applied to itself, starting w/ any element of D,
w/o reaching fixed-point, is height(D)-1

* start at top of D

« for each application of F, either it's a fixed-point, or the
result must go down at least one level in lattice
 eventually must hit a fixed-point
(which will be the best fixed-point) or bottom
(which is guaranteed to be a fixed-point),
if D of finite height
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Complexity of iterative analysis

How long does iterative analysis take?

| : depth of loop nesting

n: # of stmts in loop

t : time to execute one flow function
k: height of lattice
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Another example: integer range analysis

For each program point,
for each integer-typed variable,
calculate (an approximation to) the set of integer values
that can be taken on by the variable

« use info for constant folding comparisons,
for eliminating array bounds checks,
for (in)dependence testing of array accesses,
for eliminating overflow checks

What domain to use?
* what is its height?

What flow functions to use?
 are they monotonic?
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Example

fori:=0to N-1
2 afi] -
end

i>=0&&i<N?
t = ali]

=i+l
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Widening operators

If domain is tall, then can introduce artificial generalizations
(called widenings ) when merging at loop heads

« ensure that only a finite number of widenings are possible
* not easy to design the “right” widening strategy
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A generic worklist algorithm for lattice-theoretic DFA

Maintain a mapping from each program point to info at that point
« optimistically initialize all pp’'sto T

Set initial pp’s (e.g. entry/exit point) to their correct values

Maintain a worklist of nodes whose flow functions need to be
evaluated

« initialize with all nodes in graph
 include explicit meet & widening-meet nodes

While worklist nonempty do
Remove a node from worklist

Evaluate the node’s flow function,
given current info on predecessor/successor pp’s,
allowing it to change info on predecessor/successor pp’s

If any pp info changed, then put adjacent nodes on worklist
(if not already there)

For faster analysis, want to follow topological order

* number nodes in topological order
« remove nodes from worklist in increasing topological order
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Sharlit

A data flow analyzer generator [Tjiang & Hennessy 92]
» analogous to YACC

User writes basic primitives:

« control flow graph representation
« nodes are instructions, not basic blocks

« domain (“flow value”) representation and key operations
* init
* copy
« is_equal
* meet

« flow functions for each kind of instruction

* action routines to optimize after analysis

Sharlit generates iterative dataflow analyzer from these pieces

+ easy to build, extend
- not highly efficient, so far...
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Path compression

Can improve analysis efficiency by
summarizing effect of sequences of nodes

User can define path compression operations to collapse nodes
together

« collapse linear sequence of nodes
O summarizes effect of whole BB in a single node

» presumes a fixed GEN/KILL bit-vector structure to be effective
« collapse trees O extended BB's
« collapse merges & loops as in interval analysis

« use simplification to analyze reducible parts efficiently

« use iteration to handle nonreducible parts

+ gets efficiency, preserves modularity & generality

- doesn’t support data-dependent flow functions,
cannot simulate optimizations during analysis

Performance results for code quality of generated optimizer,
but not for compilation speed of optimizer
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Vortex IDFA framework

Like Sharlit,
except a compiler library rather than a compiler-compiler

User defines a subclass of Analysisinfo to represent
elements of domain
* copy
» merge (lattice g.l.b. operator)
* generalizing_merge (9.l.b. with optional widening)
e as_general_as (lattice < operator)

User invokes traverse  to perform analysis:

cfg.traverse( direction , is_iterative? ,
initial_analysis_info,
A(rtl, info){ rtl. flow_fn (info) })

Flow function returns an AnalysisResult : one of
» keep instruction and continue analysis w/ updated info(s)
« delete instruction/constant-fold branch
* replace instruction with instruction or subgraph

ComposedAnalysis  supports running multiple analyses
interleaved at each instruction
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Features of Vortex IDFA

Big idea: separate analyses and transformations, make
framework compose them appropriately

« don'’t have to simulate the effect of transformations during
analysis

¢ can run analyses in parallel if each provides opportunities
for the other

» sometimes can achieve strictly better results this way than if run
separately in a loop

« more general transformations supported (e.g. inlining) than
Sharlit

Exploit inheritance & closures
Analysis speed is not stressed

* no path compression
* no “compilation” of analysis with framework

[Vortex’s interprocedural analysis support discussed later]
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