Lattice-Theoretic Data Flow Analysis Framework

Goals:

- provide a single, formal model that describes all DFAs
- formalize notions of "safe", "conservative", "optimistic"
- place precise bounds on time complexity of DF analysis
- enable connecting analysis to underlying semantics for correctness proofs

Plan:

- define domain of program properties computed by DFA
- domain has a set of elements
- each element represents one possible value of the property
- (partially) order elements to reflect their relative precision
- domain = set of elements + order over elements = lattice
- define flow functions \& merge function over this domain, using standard lattice operators
- benefit from lattice theory in attacking above issues

History: Kildall [POPL 73], Kam \& Ullman [JACM 76]

Lattice models in data flow analysis

Model data flow information by an element of a lattice domain

- if $a<b$, then a is less precise than b
- i.e., a is a conservative approximation to b
- top = most precise, best case info
- bottom = least precise, worst case info
- merge function = g.I.b. (meet) on lattice elements (the most precise element that's a conservative approximation to both input elements)
- initial info for optimistic analysis (at least back edges): top
(Opposite up/down conventions used in PL semantics!)

Lattices

Define lattice $D=(S, \leq)$:

- S is a (possibly infinite) set of elements
- \leq is a binary relation over elements of S

Required properties of \leq :

- \leq is a partial order
- reflexive, transitive, \& anti-symmetric
- every pair of elements of S has a unique greatest lower bound (a.k.a. meet) and a unique least upper bound (a.k.a. join)

Height of $D=$ longest path through partial order from greatest to least

- infinite lattice can have finite height (but infinite width)

Top $(T)=$ unique element of S that's greatest, if exists
Bottom $(\perp)=$ unique element of S that's least, if exists

Examples

Reaching definitions:

- an element:
- set of all elements:
- $\leq:$
- top:
- bottom:
- meet:

Reaching constants:

- an element:
- set of all elements:
- $\leq:$
- top:
- bottom:
- meet:

Some typical lattice domains

Powerset lattice: set of all subsets of a set S

- ordered by \subseteq or \supseteq
- top \& bottom $=\varnothing \& S$, or vice versa
- height $=|S|$ (infinite if S is infinite)
- "a collecting analysis"

A lifted set: a set of incomparable values, plus top \& bottom

- e.g., reaching constants domain, for a particular variable:

- height $=3$ (even though width is infinite!)

Two-point lattice: top and bottom

- computes a boolean property

Single-point lattice: just bottom

- trivial do-nothing analysis

Tuples of lattices

Often helpful to break down a complex lattice into a tuple of lattices, one per variable/stmt/... being analyzed

Formally: $\left.\mathrm{D}_{\mathrm{T}}=<\mathrm{S}_{\mathrm{T}}, \leq_{\mathrm{T}}\right\rangle=(\mathrm{D}=<\mathrm{S}, \leq>)^{N}$

- $\mathrm{S}_{\mathrm{T}}=\mathrm{S}_{1} \times \mathrm{S}_{2} \times \ldots \times \mathrm{S}_{N}$
- element of tuple domain is a tuple of elements from each variable's domain
- $\mathrm{i}^{\text {th }}$ component of tuple is info about $\mathrm{i}^{\text {th }}$ variable/stmt/...
- <..., $\mathrm{d}_{1 i}, \ldots>\leq_{\mathrm{T}}<\ldots, \mathrm{d}_{2 i}, \ldots>\equiv \mathrm{d}_{1 i} \leq \mathrm{d}_{2 i}, \forall i$
- i.e. pointwise ordering
- meet: pointwise meet
- top: tuple of tops
- bottom: tuple of bottoms
- height $\left(\mathrm{D}_{\mathrm{T}}\right)=N^{*}$ height(D$)$

Powerset (S) lattice is isomorphic to a tuple of two-point lattices, one two-point lattice element per element of S

- i.e., a bit-vector!

Analysis of loops in lattice model

Consider

(Assume $B\left(\mathrm{~d}_{\text {head }}\right)$ computes $\mathrm{d}_{\text {backedge }}$)

Want solution to constraints:
$d_{\text {head }}=d_{\text {entry }} \cap d_{\text {backedge }}$
$\mathrm{d}_{\text {backedge }}=B\left(\mathrm{~d}_{\text {head }}\right)$

Let $F(\mathrm{~d})=\mathrm{d}_{\text {entry }} \cap B(\mathrm{~d})$

Then want fixed-point of F :

$$
d_{\text {head }}=F\left(d_{\text {head }}\right)
$$

Are they the same?
If not, which is better?

Iterative analysis in lattice model

Iterative analysis computes fixed-point by iterative approximation:

$$
\begin{aligned}
& F^{0}=\mathrm{d}_{\text {entry }} \cap \mathrm{T}=\mathrm{d}_{\text {entry }} \\
& F^{1}=\mathrm{d}_{\text {entry }} \cap B\left(F^{0}\right)=F\left(F^{0}\right)=F\left(\mathrm{~d}_{\text {entry }}\right) \\
& F^{2}=\mathrm{d}_{\text {entry }} \cap B\left(F^{1}\right)=F\left(F^{1}\right)=F\left(F\left(F^{0}\right)\right)=F\left(F\left(\mathrm{~d}_{\text {entry }}\right)\right) \\
& \ldots \\
& F^{k}=\mathrm{d}_{\text {entry }} \cap B\left(F^{k-1}\right)=F\left(F^{k-1}\right)=F\left(F\left(\ldots\left(F\left(\mathrm{~d}_{\text {entry }}\right)\right) \ldots\right)\right)
\end{aligned}
$$

until

$$
F^{k+1}=\mathrm{d}_{\text {entry }} \cap B\left(\digamma^{k}\right)=F\left(F^{\kappa}\right)=\digamma^{k}
$$

Is k finite?
If so, how big can it be?

Termination of iterative analysis

In general, k need not be finite

Sufficient conditions for finiteness:

- flow functions (e.g. F) are monotonic
- lattice is of finite height

A function F is monotonic iff:
$d_{2} \leq d_{1} \Rightarrow F\left(d_{2}\right) \leq F\left(d_{1}\right)$

- for application of DFA, this means that giving a flow function at least as conservative inputs $\left(d_{2} \leq d_{1}\right)$ leads to at least as conservative outputs $\left(F\left(\mathrm{~d}_{2}\right) \leq F\left(\mathrm{~d}_{1}\right)\right)$

For monotonic F over domain D, the maximum number of times that F can be applied to itself, starting $\mathrm{w} /$ any element of D , w/o reaching fixed-point, is height(D)-1

- start at top of D
- for each application of F, either it's a fixed-point, or the result must go down at least one level in lattice
- eventually must hit a fixed-point (which will be the best fixed-point) or bottom (which is guaranteed to be a fixed-point), if D of finite height

Another example: integer range analysis

For each program point,
for each integer-typed variable,
calculate (an approximation to) the set of integer values that can be taken on by the variable

- use info for constant folding comparisons, for eliminating array bounds checks, for (in)dependence testing of array accesses, for eliminating overflow checks

What domain to use?

- what is its height?

What flow functions to use?

- are they monotonic?

Example

Widening operators

If domain is tall, then can introduce artificial generalizations (called widenings) when merging at loop heads

- ensure that only a finite number of widenings are possible
- not easy to design the "right" widening strategy

Sharlit

A data flow analyzer generator [Tjiang \& Hennessy 92]

- analogous to YACC

User writes basic primitives:

- control flow graph representation
- nodes are instructions, not basic blocks
- domain ("flow value") representation and key operations
- init
- copy
- is_equal
- meet
- flow functions for each kind of instruction
- action routines to optimize after analysis

Sharlit generates iterative dataflow analyzer from these pieces

+ easy to build, extend
- not highly efficient, so far...

For faster analysis, want to follow topological order

- number nodes in topological order
- remove nodes from worklist in increasing topological order

Path compression

Can improve analysis efficiency by summarizing effect of sequences of nodes

User can define path compression operations to collapse nodes together

- collapse linear sequence of nodes \Rightarrow summarizes effect of whole BB in a single node
- presumes a fixed GEN/KILL bit-vector structure to be effective
- collapse trees \Rightarrow extended BB's
- collapse merges \& loops as in interval analysis
- use simplification to analyze reducible parts efficiently
- use iteration to handle nonreducible parts
+ gets efficiency, preserves modularity \& generality
- doesn't support data-dependent flow functions, cannot simulate optimizations during analysis

Performance results for code quality of generated optimizer, but not for compilation speed of optimizer

Vortex IDFA framework

Like Sharlit, except a compiler library rather than a compiler-compiler

User defines a subclass of AnalysisInfo to represent elements of domain

- copy
- merge (lattice g.l.b. operator)
- generalizing_merge (g.l.b. with optional widening)
- as_general_as (lattice \leq operator)

User invokes traverse to perform analysis:

```
cfg.traverse(direction, is_iterative?,
    initial_analysis_info,
    \lambda(rtl, info){ rtl.flow_fn(info) })
```

Flow function returns an AnalysisResult: one of

- keep instruction and continue analysis w/ updated info(s)
- delete instruction/constant-fold branch
- replace instruction with instruction or subgraph

ComposedAnalysis supports running multiple analyses interleaved at each instruction

Craig Chambers
73

Features of Vortex IDFA

Big idea: separate analyses and transformations, make framework compose them appropriately

- don't have to simulate the effect of transformations during analysis
- can run analyses in parallel if each provides opportunities for the other
- sometimes can achieve strictly better results this way than if run separately in a loop
- more general transformations supported (e.g. inlining) than Sharlit

Exploit inheritance \& closures

Analysis speed is not stressed

- no path compression
- no "compilation" of analysis with framework
[Vortex's interprocedural analysis support discussed later]

