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Lattice-Theoretic Data Flow Analysis Framework

Goals:

• provide a single, formal model that describes all DFAs

• formalize notions of “safe”, “conservative”, “optimistic”

• place precise bounds on time complexity of DF analysis

• enable connecting analysis to underlying semantics for
correctness proofs

Plan:

• define domain  of program properties computed by DFA

• domain has a set of elements

• each element represents one possible value of the property

• (partially) order elements to reflect their relative precision

• domain = set of elements + order over elements = lattice

• define flow functions & merge function over this domain,
using standard lattice operators

• benefit from lattice theory in attacking above issues

History: Kildall [POPL 73], Kam & Ullman [JACM 76]
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Lattices

Define lattice D = (S, ≤):

• S is a (possibly infinite) set of elements

• ≤ is a binary relation over elements of S

Required properties of ≤:

• ≤ is a partial order
• reflexive, transitive, & anti-symmetric

• every pair of elements of S has
a unique greatest lower bound  (a.k.a. meet) and
a unique least upper bound  (a.k.a. join)

Height of D =
longest path through partial order from greatest to least

• infinite lattice can have finite height (but infinite width)

Top (T) = unique element of S that’s greatest, if exists

Bottom (⊥) = unique element of S that’s least, if exists
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Lattice models in data flow analysis

Model data flow information by an element of a lattice domain

• if a < b, then a is less precise than b

• i.e., a is a conservative approximation to b

• top = most precise, best case info

• bottom = least precise, worst case info

• merge function = g.l.b. (meet) on lattice elements
(the most precise element that’s a conservative
approximation to both input elements)

• initial info for optimistic analysis (at least back edges): top

(Opposite up/down conventions used in PL semantics!)
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Examples

Reaching definitions:

• an element:

• set of all elements:

• ≤:

• top:

• bottom:

• meet:

Reaching constants:

• an element:

• set of all elements:

• ≤:

• top:

• bottom:

• meet:
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Some typical lattice domains

Powerset lattice: set of all subsets of a set S

• ordered by ⊆ or ⊇
• top & bottom = ∅ & S, or vice versa

• height = |S| (infinite if S is infinite)

• “a collecting analysis”

A lifted set: a set of incomparable values, plus top & bottom

• e.g., reaching constants domain, for a particular variable:

• height = 3 (even though width is infinite!)

Two-point lattice: top and bottom

• computes a boolean property

Single-point lattice: just bottom

• trivial do-nothing analysis

T

⊥

x=0 x=1 x=2 ...x=-1x=-2...
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Tuples of lattices

Often helpful to break down a complex lattice into a tuple of
lattices, one per variable/stmt/... being analyzed

Formally: DT = <ST, ≤T> = (D = <S, ≤>)N

• ST = S1 × S2 × ... × SN

• element of tuple domain is a tuple of elements from each
variable’s domain

• ith component of tuple is info about ith variable/stmt/...

• <..., d1i, ...> ≤T <..., d2i, ...> ≡ d1i ≤ d2i, ∀i

• i.e. pointwise  ordering

• meet: pointwise meet

• top: tuple of tops

• bottom: tuple of bottoms

• height(DT) = N * height(D)

Powerset(S) lattice is isomorphic to a tuple of two-point lattices,
one two-point lattice element per element of S

• i.e., a bit-vector!
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Example: reaching constants

How to model reaching constants for all variables?

Informally:
each element is a set of the form {..., x → k , ...},
with at most one binding for x

One lattice model: a powerset of all x → k  bindings

• S = pow({ x → k  | ∀x , ∀k  })

• ≤ = ⊆
• height?

Another lattice model:
N-tuple of 3-level constant prop. lattices,
for each of N variables

• ( )N

• height?

Are they the same?

If not, which is better?

T

⊥

x=0 x=1 x=2 ...x=-1x=-2...
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Analysis of loops in lattice model

Consider:

(Assume B(dhead) computes dbackedge)

Want solution to constraints:

dhead = dentry ∩ dbackedge

dbackedge = B(dhead)

Let F(d) = dentry ∩ B(d)

Then want fixed-point of F:

dhead = F(dhead)

B

dentry

dbackedgedhead
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Iterative analysis in lattice model

Iterative analysis computes fixed-point
by iterative approximation:

F0 = dentry ∩ T = dentry

F1 = dentry ∩ B(F0) = F(F0) = F(dentry)

F2 = dentry ∩ B(F1) = F(F1) = F(F(F0)) = F(F(dentry))

. . .

Fk = dentry ∩ B(Fk-1) = F(Fk-1) = F(F(...(F(dentry))...))

until

Fk+1 = dentry ∩ B(Fk) = F(Fk) = Fk

Is k finite?

If so, how big can it be?
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Termination of iterative analysis

In general, k need not be finite

Sufficient conditions for finiteness:

• flow functions (e.g. F) are monotonic

• lattice is of finite height

A function F is monotonic iff:

d2 ≤ d1 ⇒ F(d2) ≤ F(d1)

• for application of DFA, this means that giving a flow function
at least as conservative inputs (d2 ≤ d1) leads to
at least as conservative outputs (F(d2) ≤ F(d1))

For monotonic F over domain D, the maximum number of times
that F can be applied to itself, starting w/ any element of D,
w/o reaching fixed-point, is height(D)-1

• start at top of D

• for each application of F, either it’s a fixed-point, or the
result must go down at least one level in lattice

• eventually must hit a fixed-point
(which will be the best fixed-point) or bottom
(which is guaranteed to be a fixed-point),
if D of finite height
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Complexity of iterative analysis

How long does iterative analysis take?

l : depth of loop nesting

n: # of stmts in loop

t : time to execute one flow function

k : height of lattice
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Another example: integer range analysis

For each program point,
for each integer-typed variable,
calculate (an approximation to) the set of integer values
that can be taken on by the variable

• use info for constant folding comparisons,
for eliminating array bounds checks,
for (in)dependence testing of array accesses,
for eliminating overflow checks

What domain to use?

• what is its height?

What flow functions to use?

• are they monotonic?
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Example

for i := 0 to N-1
... a[i] ...

end

...

i >= 0 && i < N?
t := a[i]
...

i := i + 1

i := 0

i <= N-1?
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Widening operators

If domain is tall, then can introduce artificial generalizations
(called widenings ) when merging at loop heads

• ensure that only a finite number of widenings are possible

• not easy to design the “right” widening strategy
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A generic worklist algorithm for lattice-theoretic DFA

Maintain a mapping from each program point to info at that point

• optimistically initialize all pp’s to T

Set initial pp’s (e.g. entry/exit point) to their correct values

Maintain a worklist of nodes whose flow functions need to be
evaluated

• initialize with all nodes in graph

• include explicit meet & widening-meet nodes

While worklist nonempty do

Remove a node from worklist

Evaluate the node’s flow function,
given current info on predecessor/successor pp’s,
allowing it to change info on predecessor/successor pp’s

If any pp info changed, then put adjacent nodes on worklist
(if not already there)

For faster analysis, want to follow topological order

• number nodes in topological order

• remove nodes from worklist in increasing topological order
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Sharlit

A data flow analyzer generator [Tjiang & Hennessy 92]

• analogous to YACC

User writes basic primitives:

• control flow graph representation

• nodes are instructions, not basic blocks

• domain (“flow value”) representation and key operations

• init

• copy

• is_equal

• meet

• flow functions for each kind of instruction

• action routines to optimize after analysis

Sharlit generates iterative dataflow analyzer from these pieces

+ easy to build, extend

− not highly efficient, so far...
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Path compression

Can improve analysis efficiency by
summarizing effect of sequences of nodes

User can define path compression operations to collapse nodes
together

• collapse linear sequence of nodes
⇒ summarizes effect of whole BB in a single node

• presumes a fixed GEN/KILL bit-vector structure to be effective

• collapse trees ⇒ extended BB’s

• collapse merges & loops as in interval analysis

• use simplification to analyze reducible parts efficiently

• use iteration to handle nonreducible parts

+ gets efficiency, preserves modularity & generality

− doesn’t support data-dependent flow functions,
cannot simulate optimizations during analysis

Performance results for code quality of generated optimizer,
but not for compilation speed of optimizer
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Vortex IDFA framework

Like Sharlit,
except a compiler library rather than a compiler-compiler

User defines a subclass of AnalysisInfo  to represent
elements of domain

• copy

• merge  (lattice g.l.b. operator)

• generalizing_merge  (g.l.b. with optional widening)

• as_general_as  (lattice ≤ operator)

User invokes traverse  to perform analysis:

cfg.traverse( direction , is_iterative? ,
initial_analysis_info,
λ(rtl, info){ rtl. flow_fn (info) })

Flow function returns an AnalysisResult : one of

• keep instruction and continue analysis w/ updated info(s)

• delete instruction/constant-fold branch

• replace instruction with instruction or subgraph

ComposedAnalysis  supports running multiple analyses
interleaved at each instruction
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Features of Vortex IDFA

Big idea: separate analyses and transformations, make
framework compose them appropriately

• don’t have to simulate the effect of transformations during
analysis

• can run analyses in parallel if each provides opportunities
for the other

• sometimes can achieve strictly better results this way than if run
separately in a loop

• more general transformations supported (e.g. inlining) than
Sharlit

Exploit inheritance & closures

Analysis speed is not stressed

• no path compression

• no “compilation” of analysis with framework

[Vortex’s interprocedural analysis support discussed later]


