Representation of programs

Primary goals:
• analysis is easy & effective
• just a few cases to handle
• provide support for linking things of interest
• transformations are easy
• general, across input languages & target machines

Additional goals:
• compact in memory
• easy to translate to and from
• tracks info for source-level debugging, profiling, etc.
• extensible (new optimizations, targets, language features)
• displayable

Example IRs:
• C?
• Java bytecode?
• ...

High-level syntax-based representation

Represent source-level control structures & expressions directly

Examples
• (Attributed) AST
• Lisp S-expressions
• lambda calculus? Java bytecode?

Source:
for i := 1 to 10 do
 a[i] := b[i] * 5;
end

AST:

Low-level representation

Translate input programs into low-level primitive chunks, often close to the target machine

Examples
• assembly code, virtual machine code (e.g. stack machine)
• three address code, register transfer language (RTLs)
• lambda calculus? Java bytecode?

Standard RTL operators:

<table>
<thead>
<tr>
<th>Operator</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>assignment</td>
<td>x := y;</td>
</tr>
<tr>
<td>unary op</td>
<td>x := op y;</td>
</tr>
<tr>
<td>binary op</td>
<td>x := y op z;</td>
</tr>
<tr>
<td>address-of</td>
<td>p := &y;</td>
</tr>
<tr>
<td>load</td>
<td>x := *(p + o);</td>
</tr>
<tr>
<td>store</td>
<td>*(p + o) := x;</td>
</tr>
<tr>
<td>call</td>
<td>x := f(...);</td>
</tr>
<tr>
<td>unary compare</td>
<td>op x ?</td>
</tr>
<tr>
<td>binary compare</td>
<td>x op y ?</td>
</tr>
</tbody>
</table>
Comparison

Advantages of high-level rep:
• analysis can exploit high-level knowledge of constructs
 • probably faster to analyze
• supports semantics-based reasoning about correctness etc. of analysis
• easy to map to source code terms for debugging, profiling
• may be more compact

Advantages of low-level rep:
• can do low-level, machine-specific optimizations
 (if target-based representation)
• high-level rep may not be able to express some transformations
• can have relatively few kinds of instructions to analyze
• can be language-independent

High-level rep suitable for a source-to-source or special-purpose optimizer, e.g. inliner, parallelizer

Can mix multiple representations in single compiler
Can sequence compilers using different reps

Components of representation

Operations

Dependences between operations
• control dependences: sequencing of operations
 • evaluation of then & else arms depends on result of test
 • side-effects of statements occur in right order
• data dependences: flow of values from definitions to uses
 • operands computed before operation
 • values read from variable before being overwritten

Ideal: represent just those dependences that matter
• dependences constrain transformations
• fewest dependences ⇒ most flexibility in implementation

Representing control dependences

Option 1: high-level representation
• control flow implicit in semantics of AST nodes

Option 2: control flow graph
• nodes are basic blocks
 • instructions in basic block sequence side-effects
• edges represent branches
 (control flow between basic blocks)

Some fancier options:
• control dependence graph, part of program dependence graph (PDG) [Ferrante et al. 87]
• convert into data dependences on a memory state, in value dependence graph (VDG) [Weise et al. 94]

Kinds of data dependences

read-after-write (RAW): true/flow dependence
• reflects real data flow, operands to operation

write-after-read (WAR): anti-dependence
write-after-write (WAW): output dependence
• reflects overwriting of memory, not real data flow
 ⇒ can sometimes be eliminated by optimization

read-after-read (RAR): no dependence
• can occur in any order
Example

\[
x := 3
\]

if \(q \neq \text{NULL} \) then
\[
y := x + 2
\]
\[
w := *q
\]
\[
x := z \times 10
\]
else
\[
x := 4
\]
endif

Representing data dependences

Option 1: implicitly through variable defs/uses in CFG
+ simple, source-like
- may overconstrain order of operations
- analysis wants important things explicit \(\Rightarrow \) analysis can be slow

Option 2: def/use chains, linking each def to each use
+ explicit \(\Rightarrow \) analysis can be fast
- must be computed, maintained after transformations
- may be space-consuming

Fancier options:
- static single assignment (SSA) form [Alpern et al. 88]
- value dependence graphs (VDGs)
- dependence flow graphs (DFGs)
- ...

Data flow analysis

Want to compute some info about program
- at program points
 - to identify opportunities for improving transformations

Can model data flow analysis as solving system of constraints
- each node in CFG imposes a constraint relating info at predecessor and successor points
- solution to constraints is result of analysis

Solution must be safe/sound
Solution can be conservative

Key issues:
- how to represent info efficiently?
- how to represent & solve constraints efficiently?
 - how long does constraint solving take? does it terminate?
 - what if multiple solutions are possible?
- how to synchronize transformations with analysis?
- how to know if analysis & transformations we’ve defined is semantics-preserving?
Example: reaching definitions

For each program point,
want to compute set of definitions (statements) that
may reach that point
• reach: are the last definition of some variable

Info = set of var→stmt bindings
E.g.: {x→s₁, y→s₅, y→s₈}

Can use reaching definition info to:
• build def-use chains
• do constant & copy propagation
• detect references to undefined variables
• present use/def info to programmer
• ...

Safety rule (for these intended uses of this info):
can have more bindings than the “true” answer,
but can’t miss any

Constraints for reaching definitions

Main constraints:

A simple assignment removes any old reaching defs for the lhs
and replaces them with this stmt:
• strong update
 s: x := ...:
 info_succ = info_pred − {x→s’ | ∀x ∈ may-point-to(s’)} ∪ {x→s}

A pointer assignment may modify anything, but doesn’t definitely
replace anything
• weak update
 *p := ...:
 info_succ = info_pred ∪ {x→s | ∀x ∈ may-point-to(p)}

Other statements: do nothing
 info_succ = info_pred

Constraints for reaching definitions, continued

Branches pass through reaching defs to both successors
 info_succ[i] = info_pred

Merges take the union of all incoming reaching defs
• we don’t know which path is being taken at run-time
 ⇒ be conservative
 info_succ = ∪ᵢ info_pred[i]

Conditions at entry to CFG: definitions of formals
 info_entry = {x→entry | ∀x ∈ formals}

Solving constraints

A given program yields a system of constraints
Need to solve constraints

For reaching definitions,
can traverse instructions in forward topological order,
computing successor info from predecessor info
Example

```
1. x := ...
2. y := ...
3. y := ...
4. p := ...
```

```
... x ...
1. x := ...
... y ...
2. y := ...
```

```
... x ...
2. x := ...
... y ...
3. p := ...
```

Another example

```
1. x := ...
2. y := ...
3. y := ...
4. p := ...
```

```
... x ...
1. x := ...
... y ...
2. p := ...
```

```
... x ...
1. x := ...
... y ...
2. y := ...
```

Topological order not defined!

Loop terminology

loop: strongly-connected component in CFG with single entry

loop entry edge: source not in loop, target in loop

loop exit edge: the reverse

back edge: target is loop head node

loop head node: target of loop entry edge

loop tail node: source of back edge

loop preheader node: single node that’s source of loop entry edge

nested loop: loop whose head is inside another loop

reducible flow graph: all SCC’s have single entry

Analysis of loops

If CFG has a loop, data flow constraints are recursively defined:
\[
\text{info}_{\text{loop-head}} = \text{info}_{\text{loop-entry}} \cup \text{info}_{\text{back-edge}}
\]
\[
\text{info}_{\text{back-edge}} = \ldots \text{info}_{\text{loop-head}} \ldots
\]

Substituting definition of $\text{info}_{\text{back-edge}}$:
\[
\text{info}_{\text{loop-head}} = \text{info}_{\text{loop-entry}} \cup (\ldots \text{info}_{\text{loop-head}} \ldots)
\]

Summarizing r.h.s. as F:
\[
\text{info}_{\text{loop-head}} = F(\text{info}_{\text{loop-head}})
\]

A legal solution to constraints is a **fixed-point** of F.

Recursive constraints can have many solutions
- want least or greatest fixed-point, whichever corresponds to the most precise answer.

How to find least/greatest fixed-point of F?
- for restricted CFGs can use specialized methods
 - e.g. interval analysis for reducible CFGs
- for arbitrary CFGs, can use **iterative** approximation

Iterative data flow analysis

1. Start with initial guess of info at loop head:
 \[
 \text{info}_{\text{loop-head}} = \text{guess}
 \]

2. Solve equations for loop body:
 \[
 \text{info}_{\text{back-edge}} = F_{\text{body}}(\text{info}_{\text{loop-head}})
 \]
 \[
 \text{info}_{\text{loop-head}} = \text{info}_{\text{loop-entry}} \cup \text{info}_{\text{back-edge}}
 \]

3. Test if found fixed-point:
 \[
 \text{info}_{\text{loop-head}} = \text{info}_{\text{loop-head}} ?
 \]
 A. if same, then done
 B. if not, then adopt result as (better) guess and repeat:
 \[
 \text{info}_{\text{back-edge}} = F_{\text{body}}(\text{info}_{\text{loop-head}})
 \]
 \[
 \text{info}_{\text{loop-head}} = \text{info}_{\text{loop-entry}} \cup \text{info}_{\text{back-edge}}
 \]

When does iterating work?

1. need to be able to make an initial guess
2. info^{n+1} must be closer to the fixed-point than info^n
 (true if F_{body} is **monotonic**)
3. must eventually reach the fixed-point
 in a finite number of iterations
 (true if info drawn from a **finite-height domain**)

To reach best fixed-point, initial guess for loop head
should be **optimistic**
- easy choice: $\text{info}_{\text{loop-head}} = \text{info}_{\text{loop-entry}}$
(Even if guess is overly optimistic, iteration will ensure we won't stop analysis until the answer is safe.)

To speed iterative analysis, want to test guess ASAP
- avoid solving constraints outside of loop until fixed-point is reached within loop

The example, again

\[
\begin{array}{c}
\text{x := \ldots} \\
\text{y := \ldots} \\
\text{y := \ldots} \\
\text{p := \ldots}
\end{array}
\]

\[
\begin{array}{c}
\text{x := \ldots} \\
\text{y := \ldots} \\
\text{y := \ldots}
\end{array}
\]

\[
\begin{array}{c}
\text{x := \ldots} \\
\text{y := \ldots} \\
\text{\ldots}
\end{array}
\]

\[
\begin{array}{c}
\text{x := \ldots} \\
\text{p := \ldots}
\end{array}
\]

\[
\begin{array}{c}
\text{\ldots}
\end{array}
\]

\[
\begin{array}{c}
\text{\ldots}
\end{array}
\]

\[
\begin{array}{c}
\text{\ldots}
\end{array}
\]
Direction of dataflow analysis

In what order are constraints solved, in general?

Constraints are declarative, not directional/procedural, so may require mixing forward & backward solving, or other more global solution methods

But often constraints can be solved by (directional) propagation & iteration
- may be forward or backward propagation of info
- topological traversals of acyclic subgraphs minimize analysis time

Directional constraints often called flow functions
- often written as functions on input info to compute output
\[
\begin{align*}
RD_{x} &: \ldots \text{(in)} = \text{in} - \{x \rightarrow s' \mid \forall s' \} \cup \{x \rightarrow s\} \\
RD_{*p} &: \ldots \text{(in)} = \text{in} \cup \{x \rightarrow s \mid \forall x \in \text{may-point-to}(p)\}
\end{align*}
\]

GEN and KILL sets

For even more structure, can often think of flow functions in terms of each’s GEN set and KILL set
- GEN = new information added
- KILL = old information removed

Then
\[
F_{\text{instr}}(\text{in}) = \text{in} - \text{KILL}_{\text{instr}} \cup \text{GEN}_{\text{instr}}
\]

E.g., for reaching defs:
\[
\begin{align*}
RD_{x} &: \ldots \text{(in)} = \text{in} - \{x \rightarrow s' \mid \forall s' \} \cup \{x \rightarrow s\} \\
RD_{*p} &: \ldots \text{(in)} = \text{in} \cup \{x \rightarrow s \mid \forall x \in \text{may-point-to}(p)\}
\end{align*}
\]

Bit vectors

Can sometimes represent info/KILL/GEN sets as bit vectors
- if can express abstractly as set of things (e.g. statements, vars), drawn from a statically known set of things, each thing getting a statically determined bit position
- bitvector encodes characteristic function of set

E.g., for reaching defs:
- info = bitvector over statements, each stmt getting a distinct bit position
- statement implies which variable is defined

Bit vectors compactly represent sets
Bit-vector operations efficiently perform set difference & union

Flow function may be able to be represented simply by a pair of bit vectors, if they don’t depend on input bit vector
- can merge the KILL and GEN bit vectors of a whole basic block of instructions into a single overall KILL and GEN set, for faster iterating

Another example: constant propagation

Goal: data flow analysis that implements constant propagation

What info computed for each program point?

\(I\) is a conservative approximation to true info \(I_{\text{true}}\) iff:
\[
\begin{align*}
\text{CP}_{x} &= \text{N} \\
\text{CP}_{x} &= y + z \\
\text{CP}_{*p} &= *q + *x
\end{align*}
\]

Merge function?

Direction of analysis?

Initial info, at what program point(s)? Can use bit vectors?
Example

```
x := 5
v := 2

x := x + 1
w := 3
y := x * 2
z := y + 5

w := w * v

w := w * v
```

May vs. must info

Some kinds of info imply guarantees: must info
Some kinds of info imply possibilities: may info

- the complement of may info is must not info

<table>
<thead>
<tr>
<th></th>
<th>May</th>
<th>Must</th>
</tr>
</thead>
<tbody>
<tr>
<td>desired info</td>
<td>small set</td>
<td>big set</td>
</tr>
<tr>
<td>safe</td>
<td>overly big set</td>
<td>overly small set</td>
</tr>
<tr>
<td>GEN</td>
<td>add everything that might be true</td>
<td>add only if guaranteed true</td>
</tr>
<tr>
<td>KILL</td>
<td>remove only if guaranteed wrong</td>
<td>remove everything possibly wrong</td>
</tr>
<tr>
<td>MERGE</td>
<td>∪</td>
<td>∩</td>
</tr>
</tbody>
</table>

Another example: live variables

Want the set of variables that are live at each pt. in program

- live: might be used later in the program

Supports dead assignment elimination, register allocation

What info computed for each program point?
May or must info?
I is a conservative approximation to true info I_{true} iff:

$$LV_x := y + z$$

$$LV_{*p} := q + z$$

Merge function?
Direction of analysis?
Initial info, at what program point(s)?
Can use bit vectors?

Example

```
x := 5
y := x * 2

x := x + 3
... y ...
```

```
x := x + 10
```