
Craig Chambers 1 CSE 501

CSE 501:
Implementation of Programming Languages

Main focus: program analysis and transformation

• how to represent programs?

• how to analyze programs? what to analyze?

• how to transform programs? what transformations to apply?

Study imperative, functional, and object-oriented languages

Prerequisites:

• CSE 401 or equivalent

• CSE 505 or equivalent

Reading:
Appel’s “Modern Compiler Implementation”
+ ~20 papers from literature

• “Compilers: Principles, Techniques, & Tools”,
a.k.a. the Dragon Book, as a reference

Coursework:

• periodic homework assignments

• major course project

• midterm + final

Craig Chambers 2 CSE 501

Course outline

Models of compilation/analysis

Standard optimizing transformations

Basic representations and analyses

Fancier representations and analyses

Interprocedural representations, analyses, and transformations

• for imperative, functional, and OO languages

Compiler back-end issues

• register allocation

• instruction scheduling

Run-time system issues

• garbage collection

• compiling dynamic dispatch, first-class functions, ...

Dynamic (JIT) compilation

Craig Chambers 3 CSE 501

Why study compilers?

Meeting area of programming languages, architectures

• capabilities of compilers greatly influences design of these
others

Program representation, analysis, and transformation
is widely useful beyond this “traditional” task

• software engineering tools

• DB query optimizers

• programmable graphics renderers

• safety checking of code,
e.g. in programmable/extensible systems, networks,
databases

Cool theoretical aspects, too

• lattice domains, graph algorithms, computability/complexity

Craig Chambers 4 CSE 501

Goals for language implementation

Correctness

Efficiency

• of: time, data space, code space

• at: compile-time, run-time

Support expressive, safe language features

• first-class, higher-order functions

• method dispatching

• exceptions, continuations

• reflection, dynamic code loading

• bounds-checked arrays, ...

• garbage collection

• ...

Support desirable programming environment features

• fast turnaround

• separate compilation, shared libraries

• source-level debugging

• profiling

• ...

Craig Chambers 5 CSE 501

Standard compiler organization

intermediate
form

Optimization

intermediate
form

Code Generation

target
language

intermediate
form

IntermediateInterpreter
Code Generation

Analysis
of input program

Synthesis
of output program

(front-end) (back-end)

Lexical Analysis

Syntactic Analysis

Semantic Analysis

character
stream

token
stream

abstract
syntax

tree

annotated
AST

Interpreter

Craig Chambers 6 CSE 501

Idea: compile to a portable intermediate language

Define “portable” intermediate language
(e.g. Java bytecode, MSIL, SUIF, WIL, C, ...)

Compile multiple languages into it

• each such compiler may not be much more than a front-end

Compile to multiple targets from it

• may not be much more than back-end

Maybe interpret/execute directly

Advantages:

• reuse of front-ends and back-ends

• portable “compiled” code

BUT: design of portable intermediate language is hard

• how universal?
across input language models? target machine models?

• fast interpretation and simple compilation at odds

Craig Chambers 7 CSE 501

Key questions

How are programs represented in the compiler?

How are analyses organized/structured?

Over what region of the program are analyses performed?

What analysis algorithms are used?

What kinds of optimizations can be performed?

Which are profitable in practice?

How should analyses/optimizations be sequenced/combined?

How best to compile in face of:

• pointers, arrays

• first-class functions

• inheritance & message passing

• parallel target machines

Other issues:

• speeding compilation

• making compilers portable, table-driven

• supporting tools like debuggers, profilers, garbage collect’rs

Craig Chambers 8 CSE 501

Overview of optimizations

First analyze program to learn things about it

Then transform the program based on info

Repeat...

Requirement: don’t change the semantics!

• transform input program into
semantically equivalent but better output program

Analysis determines when transformations are:

• legal

• profitable

Caveat: “optimize” a misnomer

• result is almost never optimal

• sometimes slow down some programs on some inputs
(although hope to speed up most programs on most
inputs)

Craig Chambers 9 CSE 501

Semantics

Exactly what are the semantics that are to be preserved?

Subtleties:

• evaluation order

• arithmetic properties like associativity, commutativity

• behavior in “error” cases

Some languages very precise

• programmers always know what they’re getting

Others weaker

• allow better performance (but how much?)

Semantics selected by compiler option?

Craig Chambers 10 CSE 501

Scope of analysis

Peephole : across a small number of “adjacent” instructions
[adjacent in space or time]

• trivial analysis

Local : within a basic block

• simple, fast analysis

Intraprocedural (a.k.a. global):
across basic blocks, within a procedure

• analysis more complex:
branches, merges, loops

Interprocedural :
across procedures, within a whole program

• analysis even more complex:
calls, returns

• sometimes useful

• more useful for higher-level languages

• hard with separate compilation

Whole-program :
analysis examines whole program in order to prove safety

Craig Chambers 11 CSE 501

A tour of common optimizations/transformations

arithmetic simplifications:

• constant folding

x := 3 + 4 ⇒ x := 7

• strength reduction

x := y * 4 ⇒ x := y << 2

constant propagation

x := 5 ⇒ x := 5 ⇒ x := 5
y := x + 2 y := 5 + 2 y := 7

integer range analysis

• fold comparisons based on range analysis

• eliminate unreachable code

for(index = 0; index < 10; index ++) {
if index >= 10 goto _error
a[index] := 0

}

• more generally, symbolic assertion analysis

Craig Chambers 12 CSE 501

copy propagation

x := y ⇒ x := y
w := w + x w := w + y

common subexpression elimination (CSE)

x := a + b ⇒ x := a + b
... ...
y := a + b y := x

• can also eliminate redundant memory references,
branch tests

partial redundancy elimination (PRE)

• like CSE, but with earlier expression only available along
subset of possible paths

if ... then ⇒ if ... then
... ...

x := a + b t := a + b; x := t

end else t := a + b end

... ...
y := a + b y := t

Craig Chambers 13 CSE 501

pointer/alias analysis

p := &x ⇒ p := &x ⇒ p := &x
*p := 5 *p := 5 *p := 5
y := x + 1 y := 5 + 1 y := 6

x := 5
*p := 3
y := x + 1 ⇒ ???

Craig Chambers 14 CSE 501

dead (unused) assignment elimination

x := y ** z
... // no use of x
x := 6

• a common clean-up after other optimizations:

x := y ⇒ x := y ⇒ x := y
w := w + x w := w + y ⇒ w := w + y

... // no use of x

partial dead assignment elimination

• like DAE, except assignment only used on some later paths

dead (unreachable) code elimination

if false goto _else
...
goto _done

_else:
...

_done:

• another common clean-up after other optimizations

Craig Chambers 15 CSE 501

loop-invariant code motion

for j := 1 to 10 ⇒ for j := 1 to 10
for i := 1 to 10 t := b[j]

a[i] := a[i] + b[j] for i := 1 to 10
a[i] := a[i] + t

induction variable elimination

for i := 1 to 10 ⇒ for p := &a[1] to &a[10]
a[i] := a[i] + 1 *p := *p + 1

• a[i] is several instructions, *p is one

loop unrolling

for i := 1 to N ⇒ for i := 1 to N by 4
a[i] := a[i] + 1 a[i] := a[i] + 1

a[i+1] := a[i+1] + 1
a[i+2] := a[i+2] + 1
a[i+3] := a[i+3] + 1

Craig Chambers 16 CSE 501

parallelization

for i := 1 to 1000 ⇒ forall i := 1 to 1000
a[i] := a[i] + 1 a[i] := a[i] + 1

loop interchange, skewing, reversal, ...

blocking/tiling

• restructuring loops for better data cache locality

Craig Chambers 17 CSE 501

inlining

l := ... ⇒ l := ... ⇒ l := ...
w := 4 w := 4 w := 4
a := area(l,w) a := l * w a := l << 2

• lots of “silly” optimizations become important after inlining

interprocedural constant propagation, alias analysis, etc.

static binding of dynamic calls

• in imperative languages, for call of a function pointer:
if can compute unique target of pointer,
can replace with direct call

• in functional languages, for call of a computed function:
if can compute unique value of function expression,
can replace with direct call

• in OO languages, for dynamically dispatched message:
if can deduce class of receiver,
can replace with direct call

• other possible optimizations even if several possible targets

procedure specialization

Craig Chambers 18 CSE 501

register allocation

instruction selection

p1 := p + 4 ⇒ ld %g3, [%g1 + 4]
x := *p1

• particularly important on CISCs

instruction scheduling

ld %g2, [%g1 + 0] ⇒ ld %g2, [%g1 + 0]
add %g3, %g2, 1 ld %g5, [%g1 + 4]
ld %g2, [%g1 + 4] add %g3, %g2, 1
add %g4, %g2, 1 add %g4, %g5, 1

• particularly important with instructions that have delayed
results, and on wide-issue machines

• vs. dynamically scheduled machines?

Craig Chambers 19 CSE 501

Optimization themes

Don’t compute it if you don’t have to

• dead assignment elimination

Compute it at compile-time if you can

• constant folding, loop unrolling, inlining

Compute it as few times as possible

• CSE, PRE, PDE, loop-invariant code motion

Compute it as cheaply as possible

• strength reduction, induction var. elimination,
parallelization, register allocation, scheduling

Enable other optimizations

• constant & copy propagation, pointer analysis

Compute it with as little code space as possible

• dead code elimination

Craig Chambers 20 CSE 501

The phase ordering problem

Typically, want to perform a number of optimizations;
in what order should the transformations be performed?

some optimizations create opportunities for other optimizations
⇒ order optimizations using this dependence

• some optimizations simplified
if can assume another opt will run later & “clean up”

but what about cyclic dependences?

• e.g. constant folding ⇔ constant propagation

what about adverse interactions?

• e.g.
common subexpression elimination ⇔ register allocation

• e.g.
register allocation ⇔ instruction scheduling

Craig Chambers 21 CSE 501

Compilation models

Separate compilation

• compile source files independently

• trivial link, load, run stages

+ quick recompilation after program changes

− poor interprocedural optimization

Link-time compilation

• delay bulk of compilation until link-time

• then perform whole-program optimizations

+ allow interprocedural & whole-program optimizations

− quick recompilation? shared precompiled libraries?

Examples: Vortex, some research optimizers/parallelizers, ...

Craig Chambers 22 CSE 501

Run-time compilation (a.k.a. dynamic, just-in-time compilation)

• delay bulk of compilation until run-time

• can perform whole-program optimizations + optimizations
based on run-time program state, execution environment

+ best optimization potential

+ can handle run-time changes/extensions to the program

− severe pressure to limit run-time compilation overhead

Examples: Java JITs, Dynamo, FX-32, Transmeta

Selective run-time compilation

• choose what part of compilation to delay to run-time

+ can balance compile-time/benefit trade-offs

Example: DyC

Hybrids of all the above

• spread compilation arbitrarily across stages

+ all the advantages, and none of the disadvantages!!

Example: Whirlwind

Craig Chambers 23 CSE 501

Engineering

Building a compiler is an engineering activity

• balance
complexity of implementation,
speed-up of “typical” programs,
compilation speed,
...

Near infinite number of special cases for optimization
can be identified

• can’t implement them all

Good compiler design, like good language design, seeks
small set of powerful, general analyses and transformations,
to minimize implementation complexity while
maximizing effectiveness

• reality isn’t always this pure...

