
CSE 501 Midterm Exam Sample Solutions Winter 2001

1

Due Monday, February 12, at thestart of class. Not after class!

Take in a single, 5-hour period, self-timed. Time begins when you look at the next page.

You may refer to any of your notes, handouts, lecture slides, course readings, or sample solutions
to this year’s homework. You maynot discuss these questions with anyone else (other than asking
the course instructors for clarification), nor may you try to find solutions to these problems
elsewhere, e.g., on the web or from previous years’ exams or homeworks.

For short-answer questions, you shouldn’t need to write more than 100 words or so, and for most
questions a few dozen words in telegraph-ese should be sufficient.

You should turn in a hardcopy of your solutions. You may develop all or part of your solutions on-
line, as long as you print out your electronic solutions and turn them in. (Make sure you do not
develop your solutions using software that does not reasonably word-wrap long lines!)

100 points total.

1) Consider the following program fragment:

x := 1; // statement 1

if pred1() then
x := 2; // statement 2

else
if pred2() then

x := 3; // statement 3
end

print(x); // statement 4

if pred3() then
goto done;

end
end

print(x); // statement 5

done: // target of the goto

print(x); // statement 6

CSE 501 Midterm Exam Sample Solutions Winter 2001

2

a) [6 pts] Draw the control flow graph for this program frament, in proper SSA form. Draw
the def/use chains (connecting defs to uses, not statements or blocks) for thex variable of
this CFG.

b) [2 pts] What are the reaching definitions of thex arguments of statements 4, 5, and 6?

4: x4; 5: x5; 6: x6

x1 := 1

pred1()?

x2 := 2 x3 := 3

pred2()?

pred3()?

x4 := φ(x 1,x 3)

print(x 4)

x5 := φ(x 2,x 4)

print(x 5)

x6 := φ(x 4,x 5)

print(x 6)

T
F

T

T F

F

CSE 501 Midterm Exam Sample Solutions Winter 2001

3

2) Consider the following Java program fragment containing exception throws and catches (where
Exn1 andExn2 are unrelated classes, so that theExn1 catch handler only catches theExn1
throw, and vice versa):

try {
i := 0; // statement 1
try {

i := 1; // statement 2
if (...) throw new Exn1();
i := 2; // statement 3
if (...) throw new Exn2();
i := 3; // statement 4

} catch (Exn1 e1) {
i := 4; // statement 5

}
print(i);

} catch (Exn2 e2) {}

(FYI, an on-line reference manual for exceptions in Java is available at http://java.sun.com/
docs/books/jls/html/11.doc.html#44121.)

We wish to extend our compiler machinery to account for the control- and dataflow effect of
exceptions, so that we can continue to do dataflow analysis and optimizations as we have come
to know and love, even in the presence of exceptions.

CSE 501 Midterm Exam Sample Solutions Winter 2001

4

a) [6 pts] Draw the control flow graph for this fragment that correctly accounts for the possible
paths of control flow in this program (but no more paths than necessary), and that accounts
for the flow of data values through the program. You can treatnew expressions as basic
operations for which there are corresponding three-address instructions in your CFG.
Throws and catches should be turned into appropriate control flow edges, plus whatever
instructions you need to pass data. You can assume that your compiler is smart enough to
be able to track the classes of the exception objects and resolve the class-testing operations
that are implicit parts of the catch clauses, e.g. that thethrow new Exn1() exception
is the one and only exception handled by thecatch (Exn1 e1) clause.

b) [2 pts] What is the minimum set of reaching definitions for thei use in theprint(i)
statement?

s4 and s5

i := 0

...?

T F

i := 1

...?

TF

i := 2

e1 := new Exn1()

e2 := new Exn2()

i := 3

print(i)

i := 4

CSE 501 Midterm Exam Sample Solutions Winter 2001

5

c) [3 pts] Compiler writers worried that Java’s language design, where many operations could
implicitly throw exceptions (such as null pointer exceptions on all object and array
dereferences, and divide-by-zero exceptions on divide and mod operations), could lead to
poor optimization quality. Aside from the run-time cost of testing for the excepting
conditions (which often can be implemented by hardware checks, essentially for free), why
might compiler writers be worried?

Because there are a lot of additional branches in what would otherwise be straight-
line code. These branches break up basic blocks, limiting local analysis, and
making intraprocedural analyses more costly (although probably not less precise).
Catch clauses introduce merges where none used to be, which can dilute
information.

3) Consider the following program fragment:

int[] a := new int[10]; // an array of ints, indexed 0..9
... // a filled in with interesting values here

// fragment starts here
i := 0;
while i < 10 then

t := a[i];
print(t);
i := i + 1;

end

In a Java-like language, the array dereferencea[i] will implicitly contain a bounds check.
The internal form might be like:

CSE 501 Midterm Exam Sample Solutions Winter 2001

6

if i < 0 || i > 9 then
throw new ArrayIndexOutOfBoundsException();

end
t := a[i];

The control flow graph for the above fragment, in internal form, could be

We would like to develop a compiler optimization to remove redundant bounds checks. Some
form of integer range analysis seems like a good basis.

i := 0

loop_head

i < 10?

i < 0?

i > 9?

t := a[i]

i := i+1

merge

rest of program

error subgraph;
uninteresting

T

T

T

F

F

F

CSE 501 Midterm Exam Sample Solutions Winter 2001

7

a) [10 pts] Define an integer range analysis over the control flow graph that will deduce that
the two bounds check conditional branches within the loop can be folded away. Define your
lattice domain (the set of elements and the ordering operation over elements), and also
identify the top and bottom lattice elements and the lattice meet operation implied by this
definition. Define your flow functions. Treat regular merges, loop-head merges, and
conditional branches as separate and distinct kinds of nodes (as in the CFG above) for
which you can write flow functions; flow functions for the two kinds of merge nodes take
a sequence of input values and produce a single output value, while the flow function for
branch nodes takes a single input value and produces a pair of output values. For the
purposes of this question, you can assume that there exists an appropriatewidening_meet
operation defined on your lattice domain; you don’t have to define it explicitly. Show the
information computed at the interesting program points by your analysis, and explain why
it proves that the bounds check conditional branches are unnecessary.

Domain = <Var → (((Int+{-∞}) × (Int+{∞})) + T), �≤map>
where map1 �≤map map2 iff

∀ v ∈ dom(map1) ∪ dom(map2).
map2(v) = T or
(lo1,hi1) = map1(v) and (lo2,hi2) = map2(v) and lo1 ≤ lo2 and hi1 ≥ hi2

(I.e., a map from each variable to a pair of integers giving that variable’s lower and
upper bounds, which can be positive or negative infinity, or to top (if the variable
has an empty range).)

[map(v) is defined to be T if v isn’t in dom(map)]

Top = {}

Bottom = {*→(-∞,∞)}

map1 meet map2 = { v→r | (v→r1) ∈ map1, (v→r2) ∈ map2, r = r1 meetElem r2 }

T meetElem r = r

r meetElem T = r

(lo1,hi1) meetElem (lo2,hi2) = (min(lo1,lo2), max(hi1,hi2))

Flow functions for straight-line code:

RAx := y op z : succ = pred − {x→*} ∪ {x→op(pred(y),pred(z)}

where e.g.
+(T,r) = T
+(r,T) = T
+((lo1,hi1), (lo2,hi2)) = (lo1 + lo2, hi1 + hi2)

[If some operand y is actually a constant k, then pred(y) is defined to be (k,k) in
these flow functions.]

RAx := y : succ = pred − {x→*} ∪ {x→pred(y)}

RAx := some other unanalyzable expr: succ = pred − {x→*} ∪ {x→(-∞,∞)}

CSE 501 Midterm Exam Sample Solutions Winter 2001

8

Flow functions for conditional branches (we will represent a branch successor that
is proven unreachable by a top map, i.e., the branch operation is folded):

RAx op y? : succtrue = pred join op((x→pred(x)), (y→pred(y))}
succfalse = pred join not-op((x→pred(x)), (y→pred(y))}

where e.g.
<((x→T),(y→r)) = {} // can make branch unreachable if either operand is T
<((x→r),(y→T)) = {}
<((x→(lo1,hi1)), (y→(lo2,hi2))) =

if lo1 ≥ hi2 then {} // make branch unreachable if always false
else {x→(lo1,min(hi1,hi2-1)), y→(max(lo2,lo1+1),hi2),allothervars→(-∞,∞)}

// try to narrow ranges of x & y

[if either x or y is a constant, then we don’t actually store new bindings for them in
the map.]

[join is the least-upper-bound function on the lattice, complementing the meet
function. we use it so that we can produce a mapping that will selectively improve
parts of the input mapping.]

[not-op is just the negation of op, e.g. not-< is ≥.]

Flow functions for merges:

RAmerge: succ = pred1 meet ... meet predn

RAloop-merge: succ = pred1 widening_meet ... widening_meet predn

CSE 501 Midterm Exam Sample Solutions Winter 2001

9

[This information assumes that the widening_meet operation is smart enough to
generalize the hi operand, but not the low operand, when doing a widening_meet
of (0,0) and (1,1), and then (0, 1) with (1, 2). It would also be fine for it to figure out
somehow that (0,10) is the range that i might take on at the loop head.]

Because the two bounds checks on i have unreachable true successors (info is {},
the top element), the branch operation is folded to be a no-op, passing control only
to their false successors.

b) [4 pts] For faster analysis, one might like to perform integer range analysis along def/use
chains. Why would this not be able to discover that the conditional branches are redundant?

Because there’s no way to refine the information after the i < 10 test; the i
assignments go directly to the i uses, without passing through the conditional
branches.

i := 0

loop_head

i < 10?

i < 0?

i > 9?

t := a[i]

i := i+1

merge

rest of program

error subgraph;
uninteresting

T

T

T

F

F

F

{i →(0,0)}

{i →(0,∞), t→(-∞,∞)}

{i →(10,∞), t→(-∞,∞)}
{i →(0,9), t→(-∞,∞)}

{}

{}

{i →(0,9),t→(-∞,∞)}

{i →(0,9), t→(-∞,∞)}

{i →(0,9),t→(-∞,∞)}

{i →(1,10), t→(-∞,∞)}

{}

CSE 501 Midterm Exam Sample Solutions Winter 2001

10

c) [4 pts extra credit] Can you suggest a way of extending def/use chains that would allow
analyses over them to identify these tests as redundant, without recourse to the control flow
graph?

We need to treat conditional branches as pseudo-assignments, one for each
successor edge, of their operand variables, so that the value associated with the
variable can change after the branch. Such an assignment could have the form “xi
:= χ(x j) ”, with the value of xi by default just being xj , but for analyses like this
range analysis, being something more refined.

4) [4 pts] Why are program points, for which dataflow information is computed, defined as the
edges in the graph rather than the nodes?

Because edges have a clear notion of the information at that program point.
Information at nodes is not as clear-cut, because the information is in flux across a
node. Really, the information has to be about the point before the node, or after the
node (and there can be several of those, in the case of branches and merges). To
avoid this ambiguity, we just put information at edges, where there is no ambiguity.

(Some compiler representation can still store information with nodes, but this is
only a particular implementation; logically, the information is still stored with edges,
either the edge(s) before or after the node. Some convention on how to interpret
information stored with nodes is still required to turn the physical representation
into the appropriate logical one.)

5) a) [5 pts] The general worklist algorithm for iterative dataflow analysis first initializes all
edges to top, to ensure that it converges to the best fixed point solution (if it terminates).
Despite this, explain why the safety, termination, and worst-case time complexity of the
worklist algorithm are not hurt in any way by what lattice values the edges are initialized
to (they could be initialized to any random lattice elements without hurting safety or worst-
case convergence speed).

The algorithm runs until all flow functions reach a fixed point, which is (by definition)
safe. This processing doesn’t depend on what the initial lattice values are.
Termination and complexity are based on the height of the lattice, the longest path
from the top to the bottom of the lattice. Starting from top is already the worst case,
so starting anywhere else can’t hurt the previous worst-case situation.

b) [3 pts] Explain why the worklist algorithm might not converge to the best fixed point
solution (assuming it terminates) if edges are not all initialized to top.

If the edges are initialized to some point below what would have been the original
fixed point for the standard algorithm starting from top, it may be the case that the
iteration won’t be able to refine the information back up to the best fixed point. If the
edges are all initialized to something that’s >= the original fixed point, then we’re
going to get the same good result, but we have no such guarantees otherwise.

CSE 501 Midterm Exam Sample Solutions Winter 2001

11

c) [5 pts] Explain why the safety, termination, and (if it terminates) worst-case time
complexity of the worklist algorithm do not depend in any way on the order in which nodes
are analyzed.

All these properties were computed in a “flow insensitive” manner, not caring in
what order node flow functions were processed. Safety depended on running all
flow functions, in any order, until no more edge changes happened. Termination
and complexity were based on arguments about how often a given edge’s value
could be lowered (not depending in what order the various edges were lowered),
and monotonicity of each flow function in isolation.

6) Consider the following program fragment:

void P() {
int a := A;
int b := R(a);
int c := b*b*b*b*b*b;
print(c);

}

void Q() {
int i := I;
int j := R(i);
int k := j*j*j*j*j*j;
print(k);

}

int R(int x) {
int y := x*x*x*x*x*x;
return y;

}

We’d like to use interprocedural constant propagation (both of arguments and results) to fold
the expensive computations ofc , k , andy.

a) [4 pts] Give expressions to replaceA andI that will allow a context-sensitive version but
not a context-insensitive version of interprocedural constant propagation to fold thec and
k computations. Explain why your choices have this effect.

A=1, I = 2 (or any pair of different integers). Context sensitivity is necessary and
sufficient to enable each call to R to be analyzed separately, computing a distinct
result for each R call. Context insensitivity would smear the 1 and 2 values
together, not allowing any folding within R, causing R to return bottom as its result,
and therefore not allowing any folding in the callers based on the result of R.

CSE 501 Midterm Exam Sample Solutions Winter 2001

12

b) [4 pts] Give expressions to replaceA andI that will allow a context-insensitive version of
interprocedural constant propagation but not intraprocedural constant propagation to fold
thec andk computations. Explain why your choices have this effect.

A = I = 1 (or any common value). In this case, smearing doesn’t hurt, so context
insensitive interprocedural analysis is sufficient. But of course intraprocedural
analysis of P and Q based on worst-case assumptions about R (i.e., what you do
in the absence of interprocedural analysis of some form) won’t let the caller learn
anything about the results of the R calls.

c) [4 pts] Give expressions to replaceA andI that will allow they computation to be folded if
using procedure specialization but not any kind of inter- or intraprocedural analysis.
Explain why your choices have this effect.

A=1, I = 2 (or any pair of different integers). Here interprocedural analysis, whether
context sensitive or not, will have to form a single lattice element to describe x for
use when compiling the single copy of R, and the smearing will prevent the y
computation from being folded. But procedure specialization can make two
separate copies of R, one for calls where x is 1, and a separate one for calls where
x is 2, allowing each copy to be optimized independently, and successfully.

7) You wish to compute a program’s call graph. You decide to perform a summary-based
interprocedural analysis. Your analysis computes, for each procedure, a summary listing the set
of direct callee procedures. One can then assemble the whole program’s call graph from all the
summaries.

a) [4 pts] Assuming that there are no first-class function values (e.g. Scheme lambdas or C
function pointers) or dynamically dispatched messages, can you compute each procedure’s
summary flow-insensitively, or is flow-sensitive analysis required? Explain your answer.

Flow insensitive analysis is sufficient, since all one needs to do is scan through
each procedure to find its calls, in any order.

b) [4 pts] In what way(s) would the problem become hard in the face of calls of first-class,
computed functions?

One would need to compute what the possible functions are that each function
expression might evaluate to in a call statement. This probably requires some sort
of dataflow analysis to be effective, which is flow-sensitive, and perhaps an
interprocedural problem in its own right.

8) We studied algorithms for identifying loop-invariant assignment statements and then moving
them outside the loop.

a) [6 pts] Explain how to extend the rules to determine whether or not a statement of the form

x := *p

CSE 501 Midterm Exam Sample Solutions Winter 2001

13

is loop-invariant (ignore whether or not one could move such a statement). You can assume
access to may-point-to information (from which you can derive must-point-to information)
at each program point.

This stmt is loop-invariant if its rhs (*p) always computes the same value on each
execution, and it has the same side-effects each time (i.e., *p is idempotent). This
is true if p is loop-invariant (so that it always points to the same memory location
each execution of the loop, even if statically there are multiple possible targets),
and all the variables p may point to are loop-invariant (so that we get the same
value back from the load each time). If p might be null or some other broken pointer
value, then if *p is loop-invariant by this definition, dereferencing p will cause the
same trap each time the loop is executed.

b) [6 pts] Explain how to extend the rules to determine whether or not a statement of the form

*p := x

is loop-invariant (ignore whether or not one could move such a statement). You can assume
access to may-point-to information (from which you can derive must-point-to information)
at each program point.

This stmt is loop-invariant if its rhs (x) is loop-invariant, and it has the same side-
effects each time. This statement will update the same variable each time if p is
loop-invariant. (We do not need to require p to be known statically to have a
singleton may-point-to set; any ambiguity just means that we may not be able to
infer that the target of the store is loop-invariant. We also do not need to worry
about whether the target of p is loop-invariant, since (if unique) we’re strongly
updating it to be loop-invariant for downstream uses.)

CSE 501 Midterm Exam Sample Solutions Winter 2001

14

c) [8 pts] Consider the situation where a conditional branch has been identified as having a
loop-invariant predicate. Discuss how you might hoist such a branch out of the loop,
describing sufficient conditions for safe motion, and identifying the opportunities that
might arise to further optimize the loop body, e.g. identifying additional loop-invariant
computations, after the conditional branch and any associated statements are hoisted out of
the loop.

I would want to hoist an entire if-then-else “subtree”. In the form of a control flow
graph, a subtree takes the form of a connected region of the CFG with a single
entry (the conditional branch) and a single exit (the merge at the bottom). I would
want the whole CFG to contain only loop-invariant statements, all of which would
be legal to hoist out of the loop (imposing domination and dataflow restrictions as
discussed in class). If so, I could just move the whole subgraph to the loop
preheader. If I have moved such a subgraph, then instructions downstream of the
“subtree” that used to have multiple definitions in the loop (e.g. one on each of the
true and false branches) now may have all definitions outside of the loop, allowing
them to become loop-invariant computations. In SSA form, the phi functions after
the merge at the bottom of the loop-invariant subgraph should also be moved as
part of the subgraph, leaving stmts after the phi nodes dependent on a single
definition (the phi stmt) that is now outside the loop.

Another possibility would be to hoist just the if test outside the loop, with the whole
loop replicated on both the true and false branches of the if. Within each copy of
the loop, only one of the true and false branches of the original if would be retained;
this could be implemented simply by folding the original if in each copy of the loop
given the information implied by the truth or falsity of the if predicate guarding that
copy of the loop.

9) [6 pts] Consider the following program fragment, with may-point-to information (from which
must-point-to information can be deduced) computed at the start of this fragment as given:

// may-point-to == {p->x, q->y, q->z}
v := 3;
w := 4;
x := 5;
y := 6;
z := 7;

do {
w := y * y; // statement 1
*p := v; // statement 2
w := x * x; // statement 3
*q := 8; // statement 4

} while pred();

CSE 501 Midterm Exam Sample Solutions Winter 2001

15

print(w);

For each of statements 1-4, identify whether the statement is loop-invariant, whether it can be
hoisted above the loop, and whether it can be sunk below the loop (moved right after the loop
exit, before the print). (For the purposes of this question, do not perform any dead assignment
elimination.) You might wish to construct the CFG, perhaps in SSA form, and then identify def/
use chains, in order to help answer this question. Explain your answers.

First, here’s the CFG + DFG (for w, x, y, and z; all other DFG edges go from the
assignments outside the loop to inside) for the loop body:

stmt loop-invariant? hoisted above? sunk below?

S1 no: multiple reaching defs
for y not all outside loop

no, not loop-invariant no, not loop-invariant

loop_head

pred()?

T F

w := y * y

*p := v

w := x * x

*q := 8

CSE 501 Midterm Exam Sample Solutions Winter 2001

16

10) [4 pts] Dynamic profile information, such as the execution count of each program point on a
previous run of the program, can be exploited by compilers to improve the quality of their
optimizations. How might such information be used to make loop-invariant code motion more
effective?

If profile data suggests that the loop is rarely executed, then hoisting loop-invariant
computations that don’t dominate the loop exit can be suppressed. Alternatively, if profile data
suggests that the loop is frequently executed, then such hoisting can be encouraged.

S2 yes: p and v are loop-
invariant

yes: dominates exit and
doesn’t change dataflow

of x references

no: would change value
read in following stmt

S3 yes: x is loop-invariant (its
single definition is itself a
loop-invariant statement)

no: would change value of
w read below loop due to
earlier non-loop-invariant

definition of w

yes: dominates exit and
doesn’t change dataflow

of w references

S4 yes: q is loop-invariant no: could change value of
y read in first loop

statement on first iteration

no: could change value of
y read in first loop

statement on subsequent
iterations

stmt loop-invariant? hoisted above? sunk below?

