
CSE 501 Final Exam Sample Solutions Winter 2001

1

DueThursday, March 15, 10:30am. Turn in to Craig Chambers or slide it under his office door.

Take over a total of6 hours, self-timed. Time begins when you look at the next page. You may have
a single pause periodin the middle of your 6-hour block, of arbitrary length. During your pause,
you are welcome to think about the exam in your head, and you can ask the course staff for
clarifications of questions, but you cannot look at the exam, your answers, or any other materials
related to this class, nor can you write down anything related to your exam, aside from taking note
of clarifications.

During your 6-hour period, you may refer to any of your notes, handouts, lecture slides, course
readings, or sample solutions to this year’s homework. You may not discuss these questions with
anyone else (other than asking the course staff for clarification), nor may you try to find solutions
to these problems elsewhere, e.g., on the web or from previous years’ exams or homeworks.

For short-answer questions, you shouldn’t need to write more than 100 words or so, and for most
questions a few dozen words in telegraph-ese should be sufficient.

You should turn in a paper copy of your solutions. You may develop all or part of your solutions
on-line, as long as you turn in a print-out. Make sure you do not develop your solutions using
software that does not reasonably word-wrap long lines.

100 points total.

Good luck!

CSE 501 Final Exam Sample Solutions Winter 2001

2

1) [3 pts] The Alpern et al. paper and the VDG paper both discuss adding selector operands toφ
nodes (calledφif nodes in the Alpern et al. paper andγ nodes in the VDG paper). Explain how
this additional operand makes these nodes amenable to optimization by common subexpression
elimination and by loop-invariant code motion.

Phi nodes with selector operands can be treated like regular nodes, not oracles
whose behavior is mysterious. So two phi nodes with the same operand dataflow
edges (including the same selector) are known to compute the same result, i.e. are
common subexpressions. Such extended phi functions also can be treated as loop
invariant expressions under the same conditions as other pure, side-effect-free
operators.

2) [2 pts] What is the difference between a strong update and a weak update? When is it safe to
perform a strong update? When is it safe to perform a weak update?

A strong update (to a variable, or a memory location, or ...) allows old information
about that variable etc. to be thrown away before the new information is added,
while a weak update requires the old information to be retained and the new
information only added. A strong update is safe only when it is known that the
variable etc. is definitely being updated. A weak update is always safe.

3) [6 pts] Draw the may-point-to graphs computed for each of the five marked program points in
the following program. You should track explicitly which pointers might be null at each
program point.

int n = 3;
int m = 4;
int* p = null;
int* q = &n;
int** r = &p;
int*** s = &r;
// point A
if randomBool() then

*r = q;
q = null;
// point B

else
q = null;
r = &q;
// point C

end
// point D
*r = &m;
int** t = *s;
// point E

CSE 501 Final Exam Sample Solutions Winter 2001

3

n

m

p

q

r

t

s

point A

null

n

m

p

q

r

t

s

point B

null

n

m

p

q

r

t

s

point C

null

n

mqt

s

point D

null

n

mqt

s

point E

null

p

pr

r

CSE 501 Final Exam Sample Solutions Winter 2001

4

4) You are asked to modify your intraprocedural constant propagation and may-point-to analyses
to handle pointers to structures with fields, in place of regular pointers. Your analyses should
be defined over a CFG. Programs use the following instructions to manipulate structures and
pointers:

p := &s // take the address of a local variable s, which is a structure

p := new // allocate a new structure on the heap, and return its address

x := p->f // read from f field of the structure pointed to by p

p->f := x // assign into the f field of the structure pointed to by p

You can assume that programs will only assign into fields that the target structures have, and
will only read the contents of fields that have been previously assigned. Allocation leaves all
fields undefined (so an assignment to a field of the newly allocated structure is required before
it can be read). There are no null pointers in this language, only undefined pointers that you can
assume won’t be referenced before assignment. Also, there is no way to assign to a field of or
otherwise reference a local variable structure directly, only indirectly through its pointer; i.e.,
there are nop.f references, onlyp->f , nor are there any direct assignments of whole
structures.

CSE 501 Final Exam Sample Solutions Winter 2001

5

a) [7 pts] Define the domain of your may-point-to analysis, in lattice-theoretic terms, and also
indicate the top and bottom lattice elements (if they exist), the meet function, and the height
of the lattice. You do not need to be able to distinguish heap-allocated structures. (You
might want to follow Sorin’s checklist to make sure you’ve defined your domain fully.)

At each program point, we want to capture the set of structures each pointer might
point to, plus the set of things each field of the target structures might point to. So
we’ll define a domain for the sources of pointers (Src) as the union of the set of
variables (Var) and the set of Struct × Field pairs, where an element of Struct is
either a variable (for a stack structure) or the distinguished value HeapStruct, which
is a summary node standing for all heap-allocated structures, and where Field is
the set of field names. The domain for the targets of pointers (Dest) is Struct. Then
at each program point we compute a map from Src to set of Dest.

More precisely:

Assume Var is the set of variables in the program and Field is the set of field names
in the program.

Let set Struct = Var ∪ {HeapStruct}

Let set Src = Var ∪ (Struct × Field)

Let set Dest = Struct

Then domain MPT = <Src → pow(Dest), ≤MPT>

To make it easy to define our functions on this domain, we require the map to be a
total map, where every element of Src maps to some set, possibly the empty set.

One may-point-to set m1 is more conservative than another m2 if m1 maps each
source s to a superset of what m2 maps s to:

m1 ≤MPT m2 ⇔ ∀ s ∈ dom(m1). m1(s) ⊇ m2(s)

The top element of the MPT domain is the map from every variable and struct/field
pair to the empty set, and the bottom element is the complete map, mapping every
variable and struct/field pair to the set of all structs. The merge function computes
a map that maps each source to the union of the targets of that source in the
merging maps. The height of the lattice is |Dest| * |Src| + 1, or (|Var|+1) *
(|Var|+(|Var|+1) * |Field|) + 1, which is O(|Var|2 |Field|).

b) [5 pts] Give flow functions, expressed as constraints relatingpred and succ domain
values, for your may-point-to analysis for the four instructions listed above. Of course, your
flow functions must be monotonic.

MPTp := &s :
succ = pred - {p → *} ∪ {p → s}

MPTp := new :
succ = pred - {p → *} ∪ {p → HeapStruct}

To analyze a reference from a structure field, find out what the structures can be,
and then find out what their f fields can point to, and update the lhs to point to the
union of all that:

CSE 501 Final Exam Sample Solutions Winter 2001

6

MPTx := p->f :
succ = pred

- {x → *}
∪ {x → y | s ∈ pred(p) ∧ y ∈ pred((s,f)) }

To analyze an assignment to a structure field, if it’s a strong update (i.e., p points
to a single structure, which isn’t a heap summary node), then forget what we used
to know about the f field of this structure. Then add in the info that the f field of the
structures that p may point to now can point to what x points to:

MPTp->f := x :
succ = pred

- (if pred(p)={s} and s != HeapStruct
then {(s,f) → *} else {})

∪ {(s1,f) → s2 | s1 ∈ pred(p) ∧ s2 ∈ pred(x) }

c) [5 pts] Define the domain of your constant propagation analysis, in lattice-theoretic terms,
and also indicate the top and bottom lattice elements (if they exist), the meet function, and
the height of the lattice.

At each program point, we want to record not only a map from variables to the
standard 3-level constant propagation lattice, but also a map from fields of
structures to this lattice.

Let domain 3Level = <Constant ∪ {T3Level, ⊥3Level}, ≤3Level> be the standard
constant propagation lattice, with a top, bottom, and infinitely wide set of
incomparable constants drawn from the set Constant.

Then domain RC = <Src → 3Level, ≤RC>

To make it easy to define our functions on this domain, we require the map to be a
total map, where every element of Src maps to some element of 3Level (using top
for an element of Src that is undefined, and bottom for an element of Src that is
defined to something that’s not known to be a constant).

One reaching-constant map m1 is more conservative than another m2 if m1 maps
each source s to a more conservative 3Level element than m2:

m1 ≤RC m2 ⇔ ∀ s ∈ dom(m1). m1(s) ≤3Level m2(s)

The top element of the RC domain is the map from every variable and struct/field
pair to T3Level, and the bottom element is the map from every variable and struct/
field pair to ⊥3Level. The merge function computes a map that maps each source to
the meet of the 3Level lattice elements of that source in the merging maps. The
height of the lattice is 2 * |Src| + 1, or 2 * (|Var|+(|Var|+1) * |Field|) + 1, which is
O(|Var| |Field|).

d) [5 pts] Give flow functions, expressed as constraints relatingpred and succ domain
values, for your constant propagation analysis for the four instructions listed above. Your
analysis should be able to track the flow of constants through structure fields, at least for
local variable structures. Your analysis can refer to the results of the may-point-to analysis
using the variablespred MPT andsucc MPT.

CSE 501 Final Exam Sample Solutions Winter 2001

7

RCp := &s :
succ = pred - {p → *} ∪ {p → ⊥3Level}

RCp := new :
succ = pred - {p → *} ∪ {p → ⊥3Level}

To analyze a reference to field f of structures pointed to by p, find out what the
structures might be, then the constants that might be in their f fields, then update
the lhs with the meet of all these possible constants:

RCx := p->f :
succ = pred - {x → *} ∪ {x → k}
where k = Meet { k’ | s ∈ pred MPT(p) ∧ k’ = pred((s,f)) }

To analyze an update of field f of structures pointed to by p, replace the old info
about the structure field contents with new info. In the case of a strong update, the
new info is just the constant info for the rhs. For a weak update, we have to meet
the new constant info with the previous constant info for that field:

RCp->f := x :
succ = pred

- {(s,f) → * | s ∈ pred MPT(p) }
∪ {(s,f) → k | s ∈ pred MPT(p) ∧

k = (if pred MPT(p)={s’} and s’ != HeapStruct
then pred(x) else pred(x) meet pred((s,f))) }

e) [4 pts] Show the may-points-to and constant propagation information constructed by your
analyses at each of the four program points labeled in the following program:

// s1 and s2 declared as local variable structures

p1 := &s1
p1->x := 4
p2 := &s2
p1->n := p2
p2->x := 5
p3 := p2

// point A

while randBool() do

// point B (t and x not in scope)

t := new
x := p3->x
t->x := x * 2
p3->n := t
p3 := t

// point C (t and x are in scope)

end

CSE 501 Final Exam Sample Solutions Winter 2001

8

// point D (t and x not in scope)

z1 := p1->x * p1->x
z2 := p2->x * p2->x
z3 := p3->x * p3->x

(I have omitted from MPT any Src elements that map to the empty set, and from
RC any Src elements that map to T.)

point A:

MPT = { p1→{s1}, p2→{s2}, p3→{s2}, (s1,n)→{s2} }

RC = { p1→⊥, p2→⊥, p3→⊥, (s1,x)→4, (s1,n)→⊥, (s2,x)→5 }

point B:

MPT = { p1→{s1}, p2→{s2}, p3→{s2,HeapStruct},
(s1,n)→{s2}, (s2,n)→{HeapStruct}, (HeapStruct,n)→{HeapStruct} }

RC = { p1→⊥, p2→⊥, p3→⊥,
(s1,x)→4, (s1,n)→⊥, (s2,x)→5, (s2,n)→⊥,
(HeapStruct,x)→⊥, (HeapStruct,n)→⊥ }

point C:

MPT = { p1→{s1}, p2→{s2}, p3→{HeapStruct}, t→{HeapStruct},
(s1,n)→{s2}, (s2,n)→{HeapStruct}, (HeapStruct,n)→{HeapStruct} }

RC = { p1→⊥, p2→⊥, p3→⊥, t→⊥, x→⊥,
(s1,x)→4, (s1,n)→⊥, (s2,x)→5, (s2,n)→⊥,
(HeapStruct,x)→⊥, (HeapStruct,n)→⊥ }

point D: same as point B

f) [1 pt] Which of thez1 , z2 , andz3 calculations above can be folded based on your analysis
results?

z1 and z2

5) You are building a compiler that does inlining, in a top-down fashion (i.e., when a call site is
encountered during compilation of a procedure, the inliner will decide whether to inline the
callee procedure). Since the language you’re compiling supports arbitrary recursion, you need
to figure out how to prevent infinite inlining through recursive procedures.

a) [3 pts] What is a clean way to do this, while still allowing useful inlining? (An arbitrary cut-
off after a fixed amount of inlining is not a clean way.)

Keep track at each program point the stack of functions that have already been
inlined, plus the outer function being compiled. Then don’t allow inlining of any
function that is already present in this stack.

CSE 501 Final Exam Sample Solutions Winter 2001

9

b) [3 pts] How can you extend your solution to allow a limited amount of inlining of recursive
functions, akin to loop unrolling?

Allow up to k occurrences of the function in the inlining stack before blocking
inlining, where k is the unrolling factor of the recursion. k=1 is the no-inlining-of-
recursive-calls case above.

6) The standard definition of intraprocedural class analysis generates singleton class sets for
instructions likex := new Class , initializes other variables to the universal set of all
classes, takes the union of class sets at merge points, narrows class sets along the successor
branches of instructions likeif x instanceof Class goto L , and uses class sets when
trying to optimize method calls orinstanceof tests. This analysis is typically defined over
the CFG.

a) [3 pts] In what way(s) would the algorithm perform better over def/use chains?

As with constant propagation, each edge directly connects defs to uses, so the
analysis will propagate less information on each edge and more directly to the
places that use it.

b) [3 pts] In what way(s) would the algorithm perform more poorly over def/use chains?

It would lose the ability to narrow class sets at instanceof tests, since such points
are not explicit in the def/use chains.

c) [3 pts] Where have you seen this weakness of def/use-chain-based analyses before? What
general property of an analysis leads to this weakness?

We saw it on the midterm, w.r.t. range analysis. The general situation is an analysis
where the outcome of a conditional branch, or really any computation other than
an assignment to a variable, has an indirect effect that improves the information
known about the variable.

7) You want to develop a tool that makes it easier to understand Java programs. In particular, you’d
like to be able to click on a method call, and have your tool pop up a menu of the set of methods
that might be invoked by that call. You want to have as few false positives as possible.

a) [3 pts] Briefly describe how you would use the results of class hierarchy analysis to
compute the set of possible called methods at a call site.

CHA will tell me the set of classes that the receiver might be, based on the set of
classes in the program that are subclasses of the receiver’s declared type. For
each of these classes I can find the method that will be called by this method call
site. I take the union of these methods, and report them to the user.

CSE 501 Final Exam Sample Solutions Winter 2001

10

b) [3 pts] Would adding interprocedural, context-insensitive class analysis be useful? If so,
briefly describe how you would exploit the results of such an analysis in your tool.

Yes, since it could be used to narrow down the set of possible receiver classes. I’d
run the analysis, and then use the (hopefully smaller) set of possible receiver
classes to refine the set of possible callee methods.

c) [3 pts] Would adding context-sensitivity be useful? If so, briefly describe how you would
exploit the results of such an analysis in your tool.

Yes, in exactly the same way that interprocedural analysis would. I also could build
a more sophisticated tool that lets the user navigate the calling-context-based call-
graph of the program, in part 8a below, and ask questions about call sites within a
particular version of the program.

d) [3 pts] Would adding procedure specialization be useful? If so, briefly describe how you
would exploit the results of such a transformation in your tool.

No, procedure specialization wouldn’t help, except as a way to visualize and
manipulate the calling-context-based call-graph as in part 7c above.

8) Consider the following Java program:

class A {
public static A f(A x, int n) {

A y = new B();
A z = new C();
if (n > 0) {

A w = f(y, n-1); // call site 1
z = f(w, 0); // call site 2

}
return z;

}
public static void main(String[] args) {

A a = new A();
f(a, 5); // call site 3

}
};
class B extends A {};
class C extends A {};

CSE 501 Final Exam Sample Solutions Winter 2001

11

a) [4 pts] Show the results for interprocedural context-insensitive class analysis of this
program. Show the call graph, with all edges labeled by call site number, and show the
contents of the argument, result, and local variable class sets (ignoring primitive types and
arrays). Ignore constructor calls.

main a {A}

f x {A,B,C}

y

z

w

result

{B}

{C}

{C}

{C}

➂

➀ ➁

CSE 501 Final Exam Sample Solutions Winter 2001

12

b) [5 pts] Repeat, but using the context-sensitive Cartesian Product Algorithm. Nodes in your
call graph should correspond to procedures under some particular calling context; there can
be multiple nodes for a single source procedure in this context-sensitive call graph.

main a {A}

f x {A}

y

z

w

result

{B}

{C}

{C}

{C}

f x {B}

y

z

w

result

{B}

{C}

{C}

{C}

f x {C}

y

z

w

result

{B}

{C}

{C}

{C}

➀

➀ ➀

➂

➁

➁ ➁

CSE 501 Final Exam Sample Solutions Winter 2001

13

9) a) [5 pts] For the following program fragment, show the control flow graph, the live ranges of
variables, and the interference graph, using live ranges as the units of allocation.

a := ...
b := ...
if ... then

c := ...
do

d := c * a
c := d * d

until ...
b := d

end
print(b)

a := ...

b := ...

c := ...

d := c * a

c := d * d

b := d

print(b)

a

b

d

c

CSE 501 Final Exam Sample Solutions Winter 2001

14

b) [5 pts] For the following interference graph, execute Briggs’ extension to Chaitin’s
algorithm to allocate registers, assuming 2 registers are available. Assume all nodes are
equally frequently referenced in the underlying program, so that out-degree is the sole
criterion for spill node selection. IMPORTANT: To ensure that there is a single correct
solution, when simplifying or spilling, if more than one node is equally applicable, pick the
node with the first label alphabetically, and when picking registers for nodes, if both
registers are available, assign registers pulling from the following not-so-random sequence:
r1, r2, r1, r2, r1, r2, ..., i.e., the first time you have to pick a register with no constraints, pick
r1, and the second time you have to pick a register with no constraints, pick r2, and so on.
Show your work, as we did in class.

Stack (grows downwards) Register Assignment (computed bottom-up)

C r1

(blocked) E r2

B r1

A r2

D (unconstrained) r1

F r1

G r1

H (unconstrained) r2

(blocked) I spilled

J r2

K (unconstrained) r1

A

B

C

D

E

F

G

I

J

K

H

CSE 501 Final Exam Sample Solutions Winter 2001

15

10) Consider the problem of scheduling the following basic block for a target machine where a load
or a multiply takes 2 cycles, interlocking with the following instruction for a cycle if that
instruction uses the result of the load or multiply.

➀ x := *p
➁ y := x*x
➂ z := x+y
➃ u := *q
➄ v := u+5
// p , q, z , and v live at this point

a) [2 pts] Identify the interlocks (if any) in this schedule.

after instructions 1, 2, and 4

b) [3 pts] Show the data dependence graph for these statements.

c) [4 pts] Perform the list scheduling algorithm to construct a different schedule. At each step
in the algorithm, identify the candidate instructions, the best instruction selected, and the
heuristic rules (if any) that pruned instructions out of the candidate set on the way to
selecting the best instruction. If more than one instruction is equally good (or bad), indicate
the other instructions that could have been selected as best.

Candidates Best Reason(s)

1,4 1 3

2,4 4 1

2,5 2 1

3,5 5 1

3 3 --

➀

➁

➂

➄

➃

CSE 501 Final Exam Sample Solutions Winter 2001

16

d) [1 pt] Show the new schedule (writing out the instructions explictly), and identify the
interlocks (if any) in the new schedule.

➀ x := *p
➃ u := *q
➁ y := x*x
➄ v := u+5
➂ z := x+y

No interlocks!

11) a) [3 pts] Programs in my newly designed language have a high allocation rate and death rate.
Programs are heavily interactive, and I don’t want to be embarrassed by pauses due to
garbage collection. What kind of automatic GC should I use, and why?

A generational copying GC, e.g. generation scavenging, should be good, since it
typically has low pause times, it has good memory locality and supports fast
allocation due to copying (and thereby compacting) live data, and its generational
nature will enable it to collect the space of the dying objects quickly. (This presumes
that the objects that are dying are young objects, which might not be the case, e.g.
if there was some FIFO pattern of use of objects.)

b) [3 pts] Programs in my other language have very low allocation rates, and relatively small
heap memory demands, but programs run a long time and must have no storage leaks. I
want to minimize the overall execution time of my programs, but I am not particularly
concerned if there are periodic pauses for garbage collection (programs in my language are
batch programs, not interactive ones). What kind of automatic GC should I use, and why?

A stop-the-world mark/sweep collector seems best, since it has low overhead and
doesn’t suffer from storage leaks in the face of cycles (unlike reference counting).

