
CSE 501 Final Exam Sample Solutions Winter 1999

1

1) [3 pts] What’s the point of modeling dataflow analyses using lattices? What arethree different
things that are gained by doing this?

Can view many different analyses in a uniform manner, helping understanding of
what’s unique and common to each

Can reason about correctness, termination, time-complexity of analyses by
formalizing analyses

Can base implementation frameworks (e.g. Sharlit, Vortex) on the theory

2) [3 pts] What is the difference between an optimistic iterative analysis and a pessimistic iterative
analysis? What is the main advantage of an optimistic analysis? What advantage might a
pessimistic analysis have?

An optimistic analysis starts by assuming the top domain element (the best
possible information) and then iterates to weaken the information until a fixpoint is
reached. A pessimistic analysis starts by assuming the bottom domain element
(the most conservative possible information) and then iterates to strengthen the
information until a fixpoint is reached. An optimistic analysis will reach at least as
good and sometimes better fixpoint than a pessimistic analysis. A pessimistic
analysis is a safe solution at all intermediate stages, even before fixpoint is
reached, so it can be stopped in the middle of iteration if analysis is taking too long
without giving up all information. Another benefit of pessimistic analysis, identified
by one of the students, is that transformations can be performed eagerly during
analysis w/o undo support, since their preconditions will never be violated by later
iterations.

3) [3 pts] In what sense does a context-insensitive analysis still provide interprocedural
information about calling context?

A context-insensitive analysis still computes a summary of all caller context
information. It simply computes a single summary for all callers, as opposed to
separate summaries for different (groups of) callers.

4) Both the Vortex compiler and the Sharlit system provide a toolkit for constructing data flow
analyzers, based partially on the model of defining the important lattice operations and the flow
functions for the problem being solved.

a) [3 pts] What does Sharlit provide in addition to this basic framework to improve the
performance of the generated analyzers?

Sharlit includes path compression facilities, to gain the advantages of basic block
summaries and even interval analysis, but in a nicely modular way.

CSE 501 Final Exam Sample Solutions Winter 1999

2

b) [3 pts] Why is it beneficial to be able to interleave transformations with analysis, as
supported by the Vortex framework? Why is this hard to do, in general?

Transformations can improve the information computed by analysis (e.g. constant
folding improves constant propagation, and branch folding improves many
analyses), without having to simulate the effect of the transformation as part of the
analysis’s flow functions.

It’s hard to do transformation while trying to reach fixpoint of an analysis, as the
transformations have to be either simulated or undoable. Non-local transformations
or transformation that have non-local effects on the control flow graph (e.g. branch
folding, code motion) are hard to handle.

5) Consider Callahan et al.’s interprocedural constant propagation algorithm to be context-
sensitive.

a) [3 pts] Explain how return jump functions are a kind of total transfer function supporting
context-sensitive analysis.

The jump function computes the return constant info given the argument constant
infos, which is a single function that can be used by all callers to compute the
constant returned from the constants passed in, for each call site separately.

b) [3 pts] Explain how you would change the algorithm to use partial transfer functions
instead.

I would maintain a mapping from argument constant infos to result constant infos,
reanalyzing the callee for each different combination of argument constant infos
encountered in the program at a call site to the procedure being summarized.

c) [3 pts] Which model is able to produce more precise summaries, or can both models
achieve the same precision (at least in theory)? Explain your answer.

The partial transfer approach can do symbolic analysis using the actual values of
the constants, computing very precise result constant info for each different tuple
of argument constant infos encountered in the program. But the total transfer
function can emulate this, e.g. producing a summary function that is essentially the
source code which can then be run on all argument constants. And the summary
can be simplified to only those parts that have an impact on the result constant info,
in most cases producing a summary function that’s much smaller than the
procedure itself.

d) [3 pts] Which approach would you choose if you wanted to support modular
interprocedural analyses, where procedures could be summarized given only the
summaries of their callees?

Total transfer functions, as these can be computed without knowing about callers.

CSE 501 Final Exam Sample Solutions Winter 1999

3

e) [4 pts] Explain how you could adapt Steensgaard-style near-linear-time analysis analysis to
build near-linear-time interprocedural constant propagation. What kinds of program
structures would this analysis handle well, and what would it do poorly on, relative to a
context-insensitive interprocedural constant propagator?

I would construct the same sort of dataflow graph as Steensgaard does. I’d
introduce nodes (type variables) for variables, constants, binops, and other non-
call expressions. Variables initially are labeled with top, constant expressions are
labeled with that constant, and other non-constant r.h.s. calculations are labeled
with bottom. Then I’d put edges between nodes, unifying them, whenever I
assigned one node to another. Procedure calls cause actual nodes to be assigned
to the corresponding formal nodes, and the callee’s result assigned to the l.h.s.
variable of the call instruction. When unifying two nodes, I’d take the meet of their
labels to compute the label of the unified node. When unification was done, for
unified nodes that have constant labels, I’d propagate that constant to all nodes
that got unified together in that one blob. This algorithm should be near-linear time.

This would work fine on simple constant propagation, and even interprocedural
constant propagation. But it could mess up if one caller passes in a non-constant
argument, which unifies with the actual parameters of all other callers; if the actual
parameters of the other callers were variables that happened to contain constants
and were used after the call, the merging with other non-constant callers will pollute
the constant info.

f) [3 pts] Which of these various approaches to interprocedural constant propagation would
you recommend using in practice, to compile a C or Java program?

For simple sorts of interprocedural constant propgation, e.g. where a literal
constant is passed as an argument or result, Steensgaard should work pretty well.
If it fails, then it seems that a bottom-up total-transfer-function-based context-
sensitive algorithm would have good modular analysis properties.

6) a) [3 pts] What are some optimizations that can be done solely with may-alias information?

Bounding the set of variables potentially affected by a store through a pointer
(better side-effect analysis, for lots of analyses). Similarly, doing dead-store
elimination, if all possible targets of a stored-through pointer are dead.

Performing more precise analysis of the result of a load instruction (e.g. for
reaching definitions, constant propagation, and copy propagation), by limiting the
results to the values stored in pointed-to variables. Similarly, replacing a load with
the result of the load, if all the possible targets of the load contain the same
variable/value.

Constant-folding pointer comparison operators, for the case where two pointers are
known not to alias.

CSE 501 Final Exam Sample Solutions Winter 1999

4

b) [3 pts] What are some optimizations that require must-alias information?

Doing a strong update of the target of a pointer store.

A load or store through a pointer can be replaced by a use or definition of the
corresponding pointed-to variable, effecting a kind of copy propagation. If replacing
a store, then this will enable strong updates.

Additionally constant-folding pointer comparison operators for the case where two
pointers are known to alias.

Of course, must-alias info can do everything that may-alias info can do, but more
precisely. Also, may-alias information where a pointer may-alias only one other
thing is essentially must-alias information, and enables all the must-alias-specific
optimizations.

7) a) [6 pts] The standard analysis for identifying loop-invariant calculations might determine
that some conditional branch tests are loop-invariant. Describe a program transformation
that can hoist loop-invariant conditional tests out of loops. Illustrate its effect on an
example. What is its benefit? What is its cost?

After hoisting/copying all loop invariant calculations to the loop preheader, the loop
body can be duplicated for each invariant branch in the loop body (up to 2N loops
for N invariant branches). The loop-invariant branches are hoisted out of the loops,
turning into a decision tree to select a copy of the loop. Each loop copy would be
specialized to the particular outcomes of the invariant branches leading to that
copy, folding away the branches in the appropriate manner.

For example:

Original program:

while(...) {
A;
if (invar1) {

B;
if (invar2) {

C;
} else {

D;
}
E;

} else {
F;

}
}

Transformed program:

CSE 501 Final Exam Sample Solutions Winter 1999

5

if (invar1) {
if (invar2) {

while(...) {
A;
B;
C;
E;

}
} else {

while(...) {
A;
B;
D;
E;

}
}

} else {
while(...) {

A;
F;

}
}

The benefit of this transformation is both removing a conditional branch from the
loop and also optimizing each loop copy with more precise information about that
particular path through the loop-invariant conditionals.

The cost is code space blowup.

CSE 501 Final Exam Sample Solutions Winter 1999

6

b) [6 pts] In languages with heavy use of tightly recursive functions, “recursion-invariant”
calculations can occur, which are recomputed on each recursive call but invariant over those
calls. How might you develop an interprocedural recursion-invariant code motion
optimization? Discuss the sort of analysis you’d build, as well as how you’d transform
programs to exploit your analysis and accomplish the optimization. Would you recommend
adding your optimization to high-performance Scheme compilers?

For analysis, I’d detect recursion-invariant calculations by first building a call graph.
Then a recursion-invariant calculation is a pure, idempotent calculation all of whose
operands are (base case) outside the recursive cycle in the call graph, or (inductive
case) are themselves recursion-invariant. (The inductive case includes variables
passed down as parameters from outside the recursive cycle down to the
recursion-invariant calculation.)

Once I identified recursion-invariant calculations, I’d hoist them outside the
recursion. I’d probably do this by adding a duplicate version of the calculation and
then running interprocedural common subexpression elimination (recursion-
invariant code copying). What’s that, you say? Well, it’s an optimization I just made
up which passes in additional arguments corresponding to the common
subexpressions that are to be reused in a callee. For each common subexpression
that is to be reused in the callee, add an extra argument to the callee where the
common subexpression’s result is passed in. Alternatively, I could allocate global
variables to hold the common subexpression’s result.

I’m not sure this is worth it, given all the parameter passing that can ensue. It would
have to be a really expensive calculation to be worth the overhead.

CSE 501 Final Exam Sample Solutions Winter 1999

7

8) a) [5 pts] For the following program fragment, draw the control flow graph, illustrate the live
ranges for this graph, show which live ranges would be merged via subsumption, and draw
the final interference graph for the live ranges after subsumption.

a := ...;
if ... then

b := a+2;
a := b*4;

else
b := a;
do

a := b*3;
... := a

while ...;
end
print(a);

a := ...

b := a+2

a := b*4

b := a

a := b*3

... := a

print(a)

merged via subsumption
R1

R2

R3

R1

R2 R3

CSE 501 Final Exam Sample Solutions Winter 1999

8

b) [5 pts] For the following interference graph, apply Briggs’s extension to Chaitin’s algorithm
to perform register allocation with registersr1 , r2 , and r3 available for allocation.
Assume references to all nodes are executed with the same frequency. Show the order in
which nodes are removed from the graph during the simplification phase, and the final
allocation of each node to a register or the stack. (Whenever more than one node is equally
good for removal, pick the node with the lowest letter name.) For this example, does
Briggs’s extension avoid any spills that Chaitin’s original algorithm would incur? If so,
which one(s)?

Remove g (< 3 neighbors)

Remove b (max out degree)

Remove a (< 3 neighbors)

Remove c (< 3 neighbors)

Remove d (< 3 neighbors)

Remove e (< 3 neighbors)

Remove f (< 3 neighbors)

Allocate f to r1

Allocate e to r2

Allocate d to r3

Allocate c to r2

Allocate a to r3

Allocate b to r1 **** this would have been spilled in Chaitin’s algorithm

Allocate g to r3

a

b

e f

c

d

g

CSE 501 Final Exam Sample Solutions Winter 1999

9

9) Consider doing register allocation for a machine which had independent integer and floating
point register banks. On this machine, integer and floating point arithmetic instructions still
required their operands and results to be in integer and floating point registers, respectively.
Each variable in the source program is known to be either an integer or a floating point number.

a) [4 pts] How would your register allocation algorithm change to compile for this machine?

I’d essentially have two separate interference graphs and register allocation
problems. Integer values go in one graph, and floats in the other. There is no
interaction between the two problems.

b) [4 pts] Imagine that this machine had instructions for moving the contents of an integer
register to a floating point register and vice versa, which were as cheap as regular register
move instructions. How would your register allocation algorithm change?

A cheap and easy way would be to replace “spills” with attempted moves into the
other register bank. But it’s not clear how to account for the positions of the spills
in the other bank’s interference graph. Perhaps a solution would be to use a
Chaitin-style algorithm where after inserting spill code (e.g. moves from one bank
to another), the allocation problem is restarted. Maybe first trying spills by moving
to the other bank, then in the second pass putting all spills into the stack, would
work OK.

10) Consider the following program fragment:

r = b * b - 4 * a * c

Under local register allocation, assumingr , b, a, andc are in memory before & after the
fragment, the following assembly code may be generated (in this assembly code syntax,
destination registers are the last operand):

ld [fp+offset(b)], r1
mul r1,r1,r1
ld [fp+offset(a)], r2
shl r2,2,r2
ld [fp+offset(c)], r3
mul r2,r3,r2
sub r1,r2,r1
st r1,[fp+offset(r)]

a) [4 pts] Annotate these instructions with register actions as in Wall’s algorithm.

ld [fp+offset(b)], r1 REMOVE(b)
mul r1,r1,r1 OP1(b),OP2(b)
ld [fp+offset(a)], r2 REMOVE(a)
shl r2,2,r2 OP1(a)
ld [fp+offset(c)], r3 REMOVE(c)
mul r2,r3,r2 OP2(c)
sub r1,r2,r1 RESULT(r)
st r1,[fp+offset(r)] REMOVE(r)

CSE 501 Final Exam Sample Solutions Winter 1999

10

b) [4 pts] Assuming that the linker decided to allocateb to r7 andr to r8 , show the result of
applying your register actions.

mul r7,r7,r1
ld [fp+offset(a)], r2
shl r2,2,r2
ld [fp+offset(c)], r3
mul r2,r3,r2
sub r1,r2,r8

11) Consider the following program fragment:

**p + (*(q+offset) << 2)

which is translated into the following assembly code, after instruction selection and register
allocation (p, q, andoffset are initially in registersr1 , r2 , andr3 , respectively, and the
result is in registerr4):

s1: ld r1,0,r4
s2: ld r4,0,r4
s3: add r2,r3,r5
s4: ld r5,0,r5
s5: shl r5,2,r5
s6: add r4,r5,r4

a) [3 pts] Assuming a simple machine model where loads interlock with the following
instruction if it uses the result of the load, identify the interlocking instruction pairs in the
program. Assuming cache hits, how many cycles does this sequence take to execute?

ld r1,0,r4
ld r4,0,r4 *** interlocks with previous instruction
add r2,r3,r5
ld r5,0,r5
shl r5,2,r5 *** interlock with previous instruction
add r4,r5,r4

8 cycles

b) [3 pts] Construct the data dependence graph for this program fragment. You may assume
that alias analysis has determined that none of the loads are aliased.

s1: ld

s2: ld

s3: add

s4: ld

s5: shl

s6: add

CSE 501 Final Exam Sample Solutions Winter 1999

11

c) [4 pts] Schedule these instructions using the Gibbons & Muchnick list-scheduling
algorithm and heuristics. For each instruction chosen, show the list of candidates from
which it was chosen, and indicate which heuristic rule was used to select the particular
instruction from the candidates list, as was done in class.

Candidates: Selection: Reason:
{ s1, s3} s1: ld r1,0,r4 interlocks w/ successor
{ s2, s3} s3: add r2,r3,r5 doesn’t interlock w/ prev instr
{ s2, s4} s4: ld r5,0,r5 on longest critical path
{ s2, s5} s2: ld r4,0,r4 doesn’t interlock w/ prev inst
{ s5} s5: shl r5,2,r5 no choice
{ s6} s6: add r4,r5,r4 no choice

d) [3 pts] What are the interlocking instruction pairs in the scheduled program? How many
cycles does the scheduled program take to execute?

No interlocks. 6 cycles.

e) [5 pts] If loads required a 2-cycle delay to avoid an interlock instead of a 1-cycle delay, how
would your algorithm change? Show the results of your revised algorithm on the original
unscheduled code sequence above, identify the interlocks (& their duration), and report
how many cycles the scheduled program takes to execute.

I’d add a “doesn’t interlock w/ instruction 2 earlier” heuristic after the initial “doesn’t
interlock w/ previous instruction” heuristic and before all other heuristics.

The schedule doesn’t change, only one of the reasons:

Candidates: Selection: Reason:
{ s1, s3} s1: ld r1,0,r4 interlocks w/ successor
{ s2, s3} s3: add r2,r3,r5 doesn’t interlock w/ prev instr
{ s2, s4} s4: ld r5,0,r5 doesn’t i-lock w/ 2 prev instr
{ s2, s5} s2: ld r4,0,r4 doesn’t interlock w/ prev inst
{ s5} s5: shl r5,2,r5 no choice
{ s6} s6: add r4,r5,r4 no choice

s1: ld r1,0,r4
s3: add r2,r3,r5
s4: ld r5,0,r5
s2: ld r4,0,r4
s5: shl r5,2,r5 **** one-cycle interlock w/ s4
s6: add r4,r5,r4 [would have an interlock w/ s2, but previous

interlock put in enough delay]

7 cycles

CSE 501 Final Exam Sample Solutions Winter 1999

12

12) [4 pts] To provide garbage collection for a system that compiled Scheme to C, Joel Bartlett
developed a partially-conservative garbage collector where pointers in the heap were known
(via explicit tagging), but pointers on the stack and in registers were ambiguous (since the
actions of the C compiler were unknown). Bartlett’s collector treated possible pointers in
registers and on the stack conservatively, but used non-conservative techniques to deal with
pointers once it started scanning the heap.

Bartlett’s system is a “mostly-copying” collector. Why is the “copying” part surprising? Why
is it only “mostly”?

It’s surprising because conservative collectors aren’t normally copying, since they
can’t change any pointers unless they’re sure it’s a pointer. Bartlett’s system can
copy objects pointed to only by heap objects, but not objects pointed to (possibly)
from ambiguous roots on the stack or in registers. These objects must be pinned
in place.

