
CSE 501 Midterm Exam Sample Solutions Winter 1998

1

1) [5 pts] What is the difference between an optimistic iterative analysis and a pessimistic iterative
analysis? What is the main advantage of an optimistic analysis? What advantage might a
pessimistic analysis have?

An optimistic analysis starts by assuming the top domain element (the best
possible information) and then iterates to weaken the information until a fixpoint is
reached. A pessimistic analysis starts by assuming the bottom domain element
(the most conservative possible information) and then iterates to strengthen the
information until a fixpoint is reached. An optimistic analysis will reach at least as
good and sometimes better fixpoint than a pessimistic analysis. A pessimistic
analysis is a safe solution at all intermediate stages, even before fixpoint is
reached, so it can be stopped in the middle of iteration if analysis is taking too long
without giving up all information. Another benefit of pessimistic analysis, identified
by one of the students, is that transformations can be performed eagerly during
analysis w/o undo support, since their preconditions will never be violated by later
iterations.

2) Both the Vortex compiler and the Sharlit system provide a toolkit for constructing data flow
analyzers, based partially on the model of defining the important lattice operations and the flow
functions for the problem being solved.

a) [5 pts] What does Sharlit provide in addition to this basic framework to improve the
performance of the generated analyzers?

Sharlit includes path compression facilities, to gain the advantages of basic block
summaries and even interval analysis, but in a nicely modular way.

b) [5 pts] Why is it beneficial to be able to interleave transformations with analysis, as
supported by the Vortex framework? Why is this hard to do, in general?

Transformations can improve the information computed by analysis (e.g. constant
folding improves constant propagation, and branch folding improves many
analyses), without having to simulate the effect of the transformation as part of the
analysis’s flow functions.

It’s hard to do transformation while trying to reach fixpoint of an analysis, as the
transformations have to be either simulated or undoable. Non-local transformations
or transformation that have non-local effects on the control flow graph (e.g. branch
folding, code motion) are hard to handle.

3) [5 pts] Consider the following flow function for a simple assignment statement, implemented
as part of an analysis computing the set of live variables at each statement:

LVx := y op z : Info pred = Info succ ∪ {y,z} - {x}

What is wrong with this function? Give an example where this flow function computes the
wrong result.

It adds in the gen set before removing the kill set, which is backwards. It will
compute that x is not live before x := x + 1 , which is erroneous.

CSE 501 Midterm Exam Sample Solutions Winter 1998

2

4) a) [5 pts] What are some optimizations that can be done solely with may-alias information?

Bounding the set of variables potentially affected by a store through a pointer
(better side-effect analysis, for lots of analyses). Similarly, doing dead-store
elimination, if all possible targets of a stored-through pointer are dead.

Performing more precise analysis of the result of a load instruction (e.g. for
reaching definitions, constant propagation, and copy propagation), by limiting the
results to the values stored in pointed-to variables. Similarly, replacing a load with
the result of the load, if all the possible targets of the load contain the same
variable/value.

Constant-folding pointer comparison operators, for the case where two pointers are
known not to alias.

b) [5 pts] What are some optimizations that require must-alias information?

Doing a strong update of the target of a pointer store.

A load or store through a pointer can be replaced by a use or definition of the
corresponding pointed-to variable, effecting a kind of copy propagation. If replacing
a store, then this will enable strong updates.

Additionally constant-folding pointer comparison operators for the case where two
pointers are known to alias.

Of course, must-alias info can do everything that may-alias info can do, but more
precisely. Also, may-alias information where a pointer may-alias only one other
thing is essentially must-alias information, and enables all the must-alias-specific
optimizations.

5) Consider a block-structured language that supports exceptions and exception handlers. Each
begin-end block can have an associated exception handler, for example:

begin
... raise larry; ... raise the_dead; ...

except
when foo, bar: ...
when larry, moe, curley: ...
when others: ...

end

(Here theraise statements are assumed to be embedded in conditionals inside the begin-end
block, so they’re only conditionally raised in the body of the block.)

Exceptions are only raised explicitly via theraise statement, as shown above. Exceptions are
handled by thewhen handler attached to the nearest lexically-enclosing block; the optional
when others handler handles all otherwise unhandled exceptions. After the exception is
handled, execution continues with the statement following the begin-end block to which the
handling handler is attached.

Note: for this question, you need not worry about how the exception handling facility would be
implemented, only about how its effects on control flow would be represented.

CSE 501 Midterm Exam Sample Solutions Winter 1998

3

a) [5 pts] Assuming that exceptions are always handled within the procedures where they are
raised, how would you extend the representation of a procedure to model the control flow
effects ofraise statements and exception handlers, so that iterative dataflow analysis can
still be performed?

The raise statement should be implemented as an unconditional branch to the
corresponding handler block. (The body of the begin-end block as well as each
handler attached to the block ends with an unconditional branch to the end of the
block after all the handlers.)

b) [5 pts] Now consider the case when an exception might not be handled by the procedure in
which it originates. In this case, the exception is implicitly re-raised at the dynamically-
enclosing call site. How would you extend your solution to handle this case as well, both
on the callee and caller side? (You should assume that a procedure call can raise any
exception.)

In addition to the techniques of part a:

Raises that aren’t handled locally are represented as unconditional branches to the
procedure exit node.

A procedure call now has multiple successors, one for the normal non-exceptional
result as before, plus an edge to each enclosing handler, plus an edge to the
procedure exit.

[These techniques support the right control flow properties, but are not directly
executable. In addition, some mechanism needs to be implemented to actually
represent which exception is being raised, and how a raised exception is passed
to the appropriate handler.]

c) [5 pts] Imagine that you can define an interprocedural analysis to compute the set of
expressions that might be raised by a procedure call. What are some direct and indirect
benefits of this information?

[Uh, that should be “exceptions” above, not “expressions”.]

Direct benefits would be reductions in the exception routing support mechanisms,
e.g. fewer or no exceptions would need to be tested for after a procedure call
returns. Also, unreachable handlers can be dead-code eiliminated.

Indirect benefits include the simplified control flow due to removing edges
corresponding to exceptions that can’t be raised, which can improve the speed &
precision of analyses.

CSE 501 Midterm Exam Sample Solutions Winter 1998

4

6) [10 pts] The standard analysis for identifying loop-invariant calculations might determine that
some conditional branch tests are loop-invariant. Describe a program transformation that can
hoist loop-invariant conditional tests out of loops. Illustrate its effect on an example. What is
its benefit? What is its cost?

After hoisting/copying all loop invariant calculations to the loop preheader, the loop
body can be duplicated for each invariant branch in the loop body (up to 2N loops
for N invariant branches). The loop-invariant branches are hoisted out of the loops,
turning into a decision tree to select a copy of the loop. Each loop copy would be
specialized to the particular outcomes of the invariant branches leading to that
copy, folding away the branches in the appropriate manner.

For example:

Original program:

while(...) {
A;
if (invar1) {

B;
if (invar2) {

C;
} else {

D;
}
E;

} else {
F;

}
}

Transformed program:

if (invar1) {
if (invar2) {

while(...) {
A;
B;
C;
E;

}
} else {

while(...) {
A;
B;

CSE 501 Midterm Exam Sample Solutions Winter 1998

5

D;
E;

}
}

} else {
while(...) {

A;
F;

}
}

The benefit of this transformation is both removing a conditional branch from the
loop and also optimizing each loop copy with more precise information about that
particular path through the loop-invariant conditionals.

The cost is code space blowup.

7) [15 pts] The Tiger language supports lexically nested procedures. As we discussed in class, this
poses some complications for tracking definitions and uses of local and non-local variables.
Define an interprocedural summary-based analysis that would enable reasonably precise
tracking of possible uses and definitions of local and non-local variables. Is your analysis a
summary of callees or callers or both? Is your analysis flow-sensitive or -insensitive? Context-
sensitive or -insensitive? Computed bottom-up or top-down or neither? How do you handle
recursion? How are the results of your analysis used to avoid making some worst-case
assumptions?

I’d compute USE and MOD for each procedure, listing all non-local variables USEd
or MODified by the procedure (and its callees). The information about a procedure
ignoring callees is easy to compute in a single linear scan through the procedure.
To handle a call site, the callee’s two summaries are computed, variables in the
summaries that are local to the caller are dropped, and the remaining variables
(which are non-local to the caller) are added to the caller’s two summaries.

The analysis is a summary of callees.

The analysis is flow-insensitive.

The analysis is context-insensitive.

The analysis is computed bottom-up. Recursion requires iteration, starting with the
best possible info (empty USE and MOD sets).

Given a callee’s USE and MOD sets, optimizations in the caller use those variables
in the sets that are visible in the caller to avoid worst-case assumptions about e.g.
live vars and about modified vars at the call site, just as for application of the USE
and MOD sets discussed in lecture.

CSE 501 Midterm Exam Sample Solutions Winter 1998

6

8) a) [5 pts] In what sense does a context-insensitive analysis still provide interprocedural
information about calling context?

A context-insensitive analysis still computes a summary of all caller context
information. It simply computes a single summary for all callers, as opposed to
separate summaries for different (groups of) callers.

b) [15 pts] Describe how you would extend Callahan et al.’s interprocedural constant
propagation algorithm discussed in class to be context-sensitive, using the model of partial
transfer functions. What are your input and output domains? How do you construct an input
domain element in callee terms from the information available before the call site in the
caller? How do you compute the output domain element from the input domain element?
How do you map back from the callee’s output domain element to the caller’s information
after the call?

Basically, I’d define calling context to be which of the formals are constants, and if
constant what constant values, and reanalyze the callee procedure for each
different calling context. This is in contrast to Callahan et al.’s context-insensitive
algorithm which computes only a single summary over all calling contexts.

Input domain: Tuple(ConstPropLattice), i.e. an element of the classic 3-level
constant propagation lattice for each formal parameter.

Output domain: ConstPropLattice.

The input domain element used for a call site is just the tuple of constant-
propagation domain elements corresponding to the actual parameters at the call
site.

Computing the output domain element from the input domain element is just doing
constant propagation & folding of the callee, using any of the jump function
strategies in the paper, including some choice of jump function to compute the
output domain element for the return value.

The output domain element is mapped back in the caller as the result of the
message without change.

c) [5 pts] Why does it not make sense for an interprocedural USE analysis to be context-
sensitive?

Because USE analysis is a bottom-up analysis, and doesn’t depend on any caller
information. Only for analyses that depend on calling context does it make sense
to investigate context-sensitive algorithms.

d) [5 pts] What is the difference between context-sensitive analysis and procedure
specialization? Would it be useful to perform context-sensitive analysis without performing
procedure specialization?

Context-sensitive analysis is a kind of procedure specialization at analysis time, but
it doesn’t (on its own) generate multiple compiled versions of procedures. It can
easily be useful to do context-sensitive analysis w/o procedure specialization, to
provide result information for callers that depends on that caller’s argument
context, unsmeared by other callers of the same callee.

