
CSE 501 Final Exam Sample Solutions Winter 1998

1

1) a) [6 pts] Define an efficient, effective interprocedural analysis to compute the set of
exceptions raised by each procedure (directly or indirectly) and not handled by the
procedure (directly or indirectly), using the model of exceptions from the midterm exam.
Describe the algorithm for analyzing the body of a procedure clearly, considering its raises,
its handles, its calls, and its callers. Describe how your algorithm copes with recursion
intelligently. Is your analysis (intraprocedurally) flow-sensitive or -insensitive? Is it
context-sensitive or -insensitive?

A bottom-up summary-based analysis, computing a set of exceptions for each
procedure. The set of exceptions for a procedure is computed in a single linear
scan of the procedure, with each raise not surrounded by a corresponding handler
adding to the procedure’s raise set, and each procedure call adding all those
exceptions in its summary that aren’t handled by the calling procedure to the
caller’s summary. To handle recursion, each procedure’s exceptions list is
initialized to empty, and iteration is used to reach a fixpoint (callers are reanalyzed
whenever a procedure’s summary changes). The analysis is flow- and context-
insensitive.

b) [6 pts] Define an efficient, effective interprocedural analysis to compute the set of
exceptions possibly and definitely handled by callers of a procedure. Describe the
algorithm for analyzing the body of a procedure clearly, considering its raises, its handles,
its calls, and its callers. Describe how your algorithm copes with recursion intelligently. Is
your analysis (intraprocedurally) flow-sensitive or -insensitive? Is it context-sensitive or -
insensitive?

A top-down summary-based analysis, computing a pair of sets for each procedure
summarizing the set of possibly and definitely handled exceptions. Initialize each
procedure’s possibly handled exception set to the empty set and definitely handled
exception set to the universal set (except for main, whose definitely handled
exception set is empty). To analyze a procedure, just process each call site as
follows. Compute the call site’s exception sets by taking the enclosing procedure’s
exception sets and adding in all the exceptions handled by blocks enclosing the
call site. Then update the callee’s possibly (resp. definitely) handled exceptions set
by taking the union (resp. intersection) of the callee’s old set and the call site’s set.
(If a set changes, reanalysis of the callee is required, which handles recursion in
the normal iterative manner.) (Raises are ignored by this analysis.) The analysis is
flow- and context-insensitive.

c) [3 pts] Explain how to use the analyses to report to the programmer potentially unhandled
exceptions.

For each procedure, for all exceptions in its exceptions set (part a) not included in
its definitely handled set (part b), report the exceptions as possibly unhandled. For
all the exceptions not in the possibly handled set, the exceptions can be reported
as definitely unhandled.

(It would be nice to avoid reporting the same exception as unhandled for each
procedure it passes through.)

CSE 501 Final Exam Sample Solutions Winter 1998

2

2) a) [5 pts] Java and all other type-safe languages automatically perform array bounds checking.
Pulling together techniques discussed in class, describe an intermediate representation for
array bounds checks and an analysis and transformation that can remove unnecessary
bounds checks automatically. Illustrate your representation, analysis, and successful
transformation on the following example:

int[10] a;
for (int i = 0; i < 10; i++) {

... a[i] ...
}

I would model a bounds check as a pair of explicit comparisons of the index against
the low and high bounds of the array before the array reference. (Actually, if the low
bound is 0, then a single unsigned comparison against the high bound will catch
both negative and large indexes.) If either comparison fails, the error branch goes
off to some call of a run-time error routine. (It would be nice to be able to assert to
the compiler that the error routine doesn’t return, to improve the quality of dataflow
information after the test.

To optimize away some of these checks, I’d do integer range analysis as discussed
in class. This analysis would track a low and a high integer constant for each
integer expression. After comparisons, the outcome of the comparison can be
used to narrow the range of possible values (e.g. after the i<10 comparison
above, the upper bound for i is known to be 9). The merge operator at loops needs
to attempt to preserve as much useful information about ranges as possible while
converging quickly; my idea would be to increase the high bound to infinity or the
low bound to -infinity, based on the direction of growth from the loop entry’s range
info to the back edge’s range info. E.g. if at loop entry the range is [0..0] and at
the back edge the range is [1..1] , a non-generalizing merge would produce a
combined range of [0..1] . But since the range appears to be growing in a
positive direction after going around the loop, the high bound is extended eagerly
to infinity, producing a new range at the loop head of [0..infinity] . The loop
will then reach fixpoint.

Integer range information can be used to constant-fold comparisons that are
known to always be true or false, such as the array bounds check before the a[i]
reference above. The range of i will be computed to be [0..9] before the array
bounds checks, which leads to both checks being constant-folded away.

b) [4 pts] Does your analysis successfully handle the following example, where the size of the
array is dynamically determined? If not, how might it be extended to handle it?

CSE 501 Final Exam Sample Solutions Winter 1998

3

int n = ...;
int[n] a;
for (int i = 0; i < n; i++) {

... a[i] ...
}

No, it doesn’t. My analysis using integer range info only handles arrays of constant
length, since it only tracks constant upper and lower bounds. It would need to be
extended to track symbolic upper and lower bounds, which is much more
complicated.

3) [5 pts] Imagine that you wish to perform context-sensitive interprocedural alias analysis, but to
save analysis & implementation time you simply wish to analyze procedures under at most two
possible input alias conditions: none of the formals and accessed non-local variables are aliased
(best possible input alias information), and all of the formals and accessed non-local variables
may be aliased (worst possible input alias information). What context sensitivity strategy
would you choose for this algorithm (e.g. some variation onk-CFA, adaptive expansion, total
transfer functions, partial transfer functions, or cartesian products)? Why is your choice a good
one?

I would choose a partial transfer function-based strategy, with each procedure
being analyzed under 0, 1, or 2 input contexts. This is a good strategy because it
only analyzes an input context if it is used in the program (unlike a total-transfer
function-based algorithm, and it shares the results of analysis across all callers
with that same calling context (unlike a k-CFA-based algorithm). There’s no need
to do either adaptive expansion or compute cartesian products.

4) Consider the following program fragment:

for i := 2 to 5
for j := 2 to 4

s1: b[i-1,j+1] := a[i-1,j]
s2: a[i+1,j] := b[i-1,j+1]

end
end

CSE 501 Final Exam Sample Solutions Winter 1998

4

a) [4 pts] Draw the iteration space for this program.

b) [4 pts] Summarize the iteration space via dependences between the two statements in the
loop body, using distance vectors.

s1 δ0,0 s2

s1 δ2,0 s2

c) [4 pts] Which if any of the loops can be parallelized? Why?

The inner (j) loop, because there are no loop-carried dependences on this loop (the
subscripts are 0).

d) [4 pts] Can the loops be interchanged legally? Why or why not?

Yes, because the dependence vectors remain lexicographically non-negative after
reordering the subscripts.

e) [3 pts] What is the most profitable sequence of loop transformations for this program, for
compiling for a generic multi-processor as discussed in class?

Do loop interchange, and then parallelize the (now) outer j loop.

j

i

s1 s2

CSE 501 Final Exam Sample Solutions Winter 1998

5

5) a) [6 pts] For the following program fragment, draw the control flow graph, illustrate the live
ranges for this graph, show which live ranges would be merged via subsumption, and draw
the final interference graph for the live ranges after subsumption.

a := ...;
if ... then

b := a+2;
a := b*4;

else
b := a;
do

a := b*3;
... := a

while ...;
end
print(a);

a := ...

b := a+2

a := b*4

b := a

a := b*3

... := a

print(a)

merged via subsumption
R1

R2

R3

R1

R2 R3

CSE 501 Final Exam Sample Solutions Winter 1998

6

b) [6 pts] For the following interference graph, apply Briggs’s extension to Chaitin’s
algorithm to perform register allocation with registersr1 , r2 , and r3 available for
allocation. Assume references to all nodes are executed with the same frequency. Show the
order in which nodes are removed from the graph during the simplification phase, and the
final allocation of each node to a register or the stack. (Whenever more than one node is
equally good for removal, pick the node with the lowest letter name.) For this example,
does Briggs’s extension avoid any spills that Chaitin’s original algorithm would incur? If
so, which one(s)?

Remove g (< 3 neighbors)

Remove b (max out degree)

Remove a (< 3 neighbors)

Remove c (< 3 neighbors)

Remove d (< 3 neighbors)

Remove e (< 3 neighbors)

Remove f (< 3 neighbors)

Allocate f to r1

Allocate e to r2

Allocate d to r3

Allocate c to r2

Allocate a to r3

Allocate b to r1 **** this would have been spilled in Chaitin’s algorithm

Allocate g to r3

6) Consider the following program fragment:

r = b * b - 4 * a * c

Under local register allocation, assumingr , b, a, andc are in memory before & after the
fragment, the following assembly code may be generated (in this assembly code syntax,
destination registers are the last operand):

a

b

e f

c

d

g

CSE 501 Final Exam Sample Solutions Winter 1998

7

ld [fp+offset(b)], r1
mul r1,r1,r1
ld [fp+offset(a)], r2
shl r2,2,r2
ld [fp+offset(c)], r3
mul r2,r3,r2
sub r1,r2,r1
st r1,[fp+offset(r)]

a) [5 pts] Annotate these instructions with register actions as in Wall’s algorithm.

ld [fp+offset(b)], r1 REMOVE(b)
mul r1,r1,r1 OP1(b),OP2(b)
ld [fp+offset(a)], r2 REMOVE(a)
shl r2,2,r2 OP1(a)
ld [fp+offset(c)], r3 REMOVE(c)
mul r2,r3,r2 OP2(c)
sub r1,r2,r1 RESULT(r)
st r1,[fp+offset(r)] REMOVE(r)

b) [4 pts] Assuming that the linker decided to allocateb to r7 andr to r8 , show the result of
applying your register actions.

mul r7,r7,r1
ld [fp+offset(a)], r2
shl r2,2,r2
ld [fp+offset(c)], r3
mul r2,r3,r2
sub r1,r2,r8

7) Consider the following program fragment:

**p + (*(q+offset) << 2)

which is translated into the following assembly code, after instruction selection and register
allocation (p, q, andoffset are initially in registersr1 , r2 , andr3 , respectively, and the
result is in registerr4):

s1: ld r1,0,r4
s2: ld r4,0,r4
s3: add r2,r3,r5
s4: ld r5,0,r5
s5: shl r5,2,r5
s6: add r4,r5,r4

a) [3 pts] Assuming a simple machine model where loads interlock with the following
instruction if it uses the result of the load, identify the interlocking instruction pairs in the
program. Assuming cache hits, how many cycles does this sequence take to execute?

CSE 501 Final Exam Sample Solutions Winter 1998

8

ld r1,0,r4
ld r4,0,r4 *** interlocks with previous instruction
add r2,r3,r5
ld r5,0,r5
shl r5,2,r5 *** interlock with previous instruction
add r4,r5,r4

8 cycles

b) [4 pts] Construct the data dependence graph for this program fragment. You may assume
that alias analysis has determined that none of the loads are aliased.

c) [6 pts] Schedule these instructions using the Gibbons & Muchnick algorithm. For each
instruction chosen, show the list of candidates from which it was chosen, and indicate
which heuristic rule was used to select the particular instruction from the candidates list, as
was done in class.

Candidates: Selection: Reason:
{ s1, s3} s1: ld r1,0,r4 interlocks w/ successor
{ s2, s3} s3: add r2,r3,r5 doesn’t interlock w/ prev instr
{ s2, s4} s4: ld r5,0,r5 on longest critical path
{ s2, s5} s2: ld r4,0,r4 doesn’t interlock w/ prev inst
{ s5} s5: shl r5,2,r5 no choice
{ s6} s6: add r4,r5,r4 no choice

d) [3 pts] What are the interlocking instruction pairs in the scheduled program? How many
cycles does the scheduled program take to execute?

No interlocks. 6 cycles.

e) [5 pts] If loads required a 2-cycle delay to avoid an interlock instead of a 1-cycle delay, how
would your algorithm change? Show the results of your revised algorithm on the original
unscheduled code sequence above, identify the interlocks (& their duration), and report
how many cycles the scheduled program takes to execute.

I’d add a “doesn’t interlock w/ instruction 2 earlier” heuristic after the initial “doesn’t
interlock w/ previous instruction” heuristic and before all other heuristics.

The schedule doesn’t change, only one of the reasons:

s1: ld

s2: ld

s3: add

s4: ld

s5: shl

s6: add

CSE 501 Final Exam Sample Solutions Winter 1998

9

Candidates: Selection: Reason:
{ s1, s3} s1: ld r1,0,r4 interlocks w/ successor
{ s2, s3} s3: add r2,r3,r5 doesn’t interlock w/ prev instr
{ s2, s4} s4: ld r5,0,r5 doesn’t i-lock w/ 2 prev instr
{ s2, s5} s2: ld r4,0,r4 doesn’t interlock w/ prev inst
{ s5} s5: shl r5,2,r5 no choice
{ s6} s6: add r4,r5,r4 no choice

s1: ld r1,0,r4
s3: add r2,r3,r5
s4: ld r5,0,r5
s2: ld r4,0,r4
s5: shl r5,2,r5 **** one-cycle interlock w/ s4
s6: add r4,r5,r4 [would have an interlock w/ s2, but previous

interlock put in enough delay]

7 cycles

f) [5 pts] Say you were scheduling for a very simple & idealized superscalar machine which
can issue & execute two instructions in parallel in each cycle. The scheduler must choose
pairs of instructions, such that the two instructions are independent. A load instruction in
one instruction pair interlocks with an instruction in the following pair if the instruction in
the following pair uses the result of the load. Explain how you’d modify the Gibbons &
Muchnick algorithm for this target machine. Show the results of your algorithm when
applied to the original unscheduled code sequence above, and identify the interlocks and
the total number of cycles needed for execution.

When choosing from the available candidates, two instructions should be chosen
(if only one candidate is available, then a nop candidate should be added). The
same heuristics can be used to choose among the candidates, where the test for
interlocking with the previous instruction checks both instructions of the previous
pair.

Candidates: Selection: Reason:
{ s1, s3} s1: ld r1,0,r4; s3: add r2,r3,r5 no choice
{ s2, s4} s2: ld r4,0,r4; s4: ld r5,0,r5 no choice
{ s5} s5: shl r5,2,r5; nop no choice
{ s6} s6: add r4,r5,r4; nop no choice

s1: ld r1,0,r4; s3: add r2,r3,r5
s2: ld r4,0,r4; s4: ld r5,0,r5 ** interlocks w/ prev instr
s5: shl r5,2,r5; nop ** interlocks w/ prev instr
s6: add r4,r5,r4; nop

6 cycles

Better solutions were presented by several students, where only one non-nop
instruction is selected for a pair if it doesn’t interlock with the previously generated
instruction pair while all other candidates do.

CSE 501 Final Exam Sample Solutions Winter 1998

10

Candidates: Selection: Reason:
{ s1, s3} s1: ld r1,0,r4; s3: add r2,r3,r5 no choice
{ s2, s4} s4: ld r5,0,r5; nop doesn’t i-lock
{ s2, s5} s2: ld r4,0,r4; nop doesn’t i-lock
{ s5} s5: shl r5,2,r5; nop no choice
{ s6} s6: add r4,r5,r4; nop no choice

s1: ld r1,0,r4; s3: add r2,r3,r5
s4: ld r5,0,r5; nop
s2: ld r4,0,r4; nop
s5: shl r5,2,r5; nop
s6: add r4,r5,r4; nop

No interlocks. 5 cycles.

8) [5 pts] To provide garbage collection for a system that compiled Scheme to C, Joel Bartlett
developed a partially-conservative garbage collector where pointers in the heap were known
(via explicit tagging), but pointers on the stack and in registers were ambiguous (since the
actions of the C compiler were unknown). Bartlett’s collector treated possible pointers in
registers and on the stack conservatively, but used non-conservative techniques to deal with
pointers once it started scanning the heap.

Bartlett’s system is a “mostly-copying” collector. Why is the “copying” part surprising? Why
is it only “mostly”?

It’s surprising because conservative collectors aren’t normally copying, since they
can’t change any pointers unless they’re sure it’s a pointer. Bartlett’s system can
copy objects pointed to only by heap objects, but not objects pointed to (possibly)
from ambiguous roots on the stack or in registers. These objects must be pinned
in place.

