
CSE 501 Midterm Exam: Sketch of Some Plausible Solutions Winter 1997

1

1) [10 pts] On homework 1, I asked about dead assignment elimination and gave the following
sample solution:

8. Give an algorithm for dead assignment elimination that exploits def/use chains to work
faster than the propagation-based algorithm presented in class. What is the time
complexity of your algorithm, assuming def/use chains are already constructed? What
optimization opportunities, if any, are missed by your algorithm, compared to the best
propagation-based algorithm presented in class?

Given def/use chains, I would start at the ends of the chains (those defs with no
downstream uses), and remove these defs (if they had no side-effects). When a
def is removed, its uses on earlier defs get removed, which may make new defs
(its operands) now dead, so I recursively walk backwards up the def/use chains
removing nodes until I find some with side-effects or uses. This algorithm takes
linear time. However, in the presence of cycles in the def/use graph, I won’t
necessarily find as many dead statements as the propagation-based algorithm in
class, e.g. I won’t discover that a dead x := x + 1 statement in a loop is dead.
This is essentially because this algorithm is pessimistic rather than optimistic: I
assume that every statement is live, rather than dead, until I prove it has no uses,
which means that I can reach a worse fixpoint.

Extend my solution to work just as well as the propagation-based algorithm from class, while
still working from def/use chains. What is the time complexity of your improved algorithm?

The main opportunity missed by the basic def-use chain based algorithm is cyclic
reference patterns that do not connect to other def-use chains. To identify these
cycles we associate a single bit live/dead value with each definition. All defs are
initially dead. Starting from all nodes with side-effects (calls, returns, assignments
to globals, etc.), we march backwards from uses to defs, marking each reached
definition as live. After we’re done, all statements whose live/dead bit is dead can
be removed. Complexity: O(V+E). We accepted linear complexity as well, since
the question incorrectly asserted that the complexity of the basic algorithm was
linear (it is really O(E+V)).

2) Consider a block-structured language that supports exceptions and exception handlers. Each
begin-end block can have an associated exception handler, for example:

begin
<statements>
raise larry;
<statements>
raise the_dead;
<statements>

except
when foo, bar:

<statements>



CSE 501 Midterm Exam: Sketch of Some Plausible Solutions Winter 1997

2

when larry, moe, curley:
<statements>

when others:
<statements>

end

Exceptions are only raised explicitly via theraise statement, as shown above. Exceptions are
handled by thewhen handler attached to the nearest lexically-enclosing block; thewhen
others handler handles all otherwise unhandled exceptions. After the exception is handled,
execution continues with the statement following the begin-end block to which the handling
handler is attached.

Note: for this question, you need not worry about how the exception handling facility would be
implemented, only about how its effects on control flow would be represented.

a) [10 pts] Assuming that exceptions are always handled within the procedures where they are
raised, how would you extend the representation of a procedure to model the control flow
effects ofraise statements and exception handlers, so that iterative dataflow analysis can
still be performed?

Once the control flow is made explicit in the CFG, everything is fine. We introduce
a handler merge and block-done-merge. Connect each raise statements to the
handler merge instead of to its textual subsequent statement. After the handler
merge insert code for the handlers. Also insert branches from the end of the
“normal” block to the block-done-merge and from each of the handlers to the
block-done-merge.

b) [10 pts] Now consider the case when an exception might not be handled by the procedure
in which it originates. In this case, the exception is implicitly re-raised at the dynamically-
enclosing call site. How would you extend your solution to handle this case as well, both
on the callee and caller side?

We’ll assume that their is some mechanism (such as returning an extra/special
value) that lets the caller know that the callee has raised an exception. On the
callee-side, each procedure introduces an outermost begin/except/when block
that propagates all exceptions of its caller via this mechanism. On the caller-side,
each call-site is immediately followed by a test for a normal vs. exceptional return.
On a normal return control flow passes to the subsequent statement, exceptional
returns branch to the handler-merge for the innermost handler.

c) [10 pts] What are some of the direct and indirect benefits of knowing the set of exceptions
that might be raised by a procedure call?

We can get a direct benefit of streamlining the calling convention (eliminate check
for exceptional return in caller, possibly eliminate the need to return an extra value
from callee). Indirect benefits due to simpler control flow downstream of the call.



CSE 501 Midterm Exam: Sketch of Some Plausible Solutions Winter 1997

3

d) [15 pts] Define an interprocedural analysis to compute the set of exceptions that may be
raised by a procedure, as well as which procedures are guaranteed to return with an
exception. Discuss your method of summarization, your approach to context sensitivity,
and the like. Describe the time and space complexity of your summarization process.
Explain complications that arise due to recursion, if any.

We do a context-insensitive interprocedural analysis to compute for each
procedure the set of exceptions which may be raised when that procedure is
called. We also include a special exception _return to indicate that the procedure
returned normally. To handle recursion we initialize all summaries to the empty list
(best possible information) and then use a work-list based algorithm to iterate until
we reach fixedpoint. Time complexity O(n3), space complexity O(n2) (assuming
that the number of possible exceptions is O(n)). The intraprocedural analysis for
each procedure is a linear pass over the procedure’s CFG. As we encounter raise/
return statements we add the appropriate value to the procedures summary. For a
procedure call we add in that procedure’s summary - _return (since whether or not
the callee can return normally does not impact whether or not its caller can return
normally). An improvement would be to keep track of what handler block(s)
enclose each statement and filter the set of exceptions appropriately.

3) a) [15 pts] Define, in lattice-theoretic terms, an intraprocedural analysis for computing the set
of variables that may be used before they are defined. Define your domain of analysis,
including the interesting aspects such as the top and bottom elements and the greatest-
lower-bound function. Indicate the direction of analysis, the initial conditions at the start of
analysis, and the key flow functions. Explain how to use the results of analysis (i.e. the
information computed at program points) to report to the user which variables may be used
before they’re defined.

One can solve this problem with either a forward ‘must-be-defined’ analysis or by
using a slight modification of live variables (a backwards pass). We’ll take the
second alternative.
Domain: set of variables
Top: empty set
Bottom: universal set
≤: ⊆
glb: set union
flow function: OUTn = IN - defs(n) ∪ uses(n)

Any variables remaining in the set on procedure entry are potentially used before
defined.



CSE 501 Midterm Exam: Sketch of Some Plausible Solutions Winter 1997

4

b) [15 pts] How would you extend this analysis to operate interprocedurally, so that e.g.
potential uses of global variables before they are assigned could be determined (assume that
globals are not all initialized by default at program start-up)? Discuss your method of
summarization, your approach to context sensitivity, your modification to the flow function
for procedure calls to exploit interprocedural information, and the like. Describe the time
and space complexity of your summarization process. Explain complications that arise due
to recursion, if any.

One cheesy way out is to make a supergraph and do part a. You only got partial
credit for this.

We’ll do a context-insensitive interprocedural analysis using a work-list based
approach to deal with recursion. We first compute for each procedure the set of
global variables that it definitely defines, using the definitely-must-def analysis that
I didn’t define in part a). We extend its flow function for procedural calls to union in
the definite-defs from the summaries of its callee procedures. Given these
summaries we then use the same work-list-based, context-insensitive IP algorithm
to run the live variables analysis I did define in a). Extend its flow function to kill the
definitely defined variables of callee procedures and add in their used-before-
defined variables. Any variables live at the entry to main are those that we want to
warn the user about.

4) [10 pts] Why has no one developed a context-sensitive interprocedural MOD analysis?

Because knowing the calling context has no impact on the set of global variables
modified by the procedure. (Unless as some of you pointed out, we are also doing
IP constant prop, or IP alias analysis. But you didn’t have to get this tricky to get
full credit)

5) [10 pts] Describe a program transformation that can hoist loop-invariant conditional tests out
of loops. Illustrate its effect on an example. What is its benefit? What is its cost?

Key idea is to hoist the test out of the loop and then create two copies of the loop,
one specialized for the test being true, one specialized for the test being false.
Benefits are runtime savings of executing the test only once, and that each loop
body is smaller, thus possibly helping i-cache behavior. Costs are that there are two
copies of the loop, thus increasing overall code space, and the minor cost of
executing the test once (only matters if the test didn’t originally dominate all loop
exits). Also, this scheme is exponential in the number of tests hoisted.

6) a) [10 pts] What are some optimizations that can be done solely with may-alias information?

One really does optimization based on the converse of may-alias information
(must-not-be-aliased). This info allows one to be less conservative at pointer
assignments in analyses that map variables to values like available expressions
and available constants; one only has to kill info about variables that might be
aliased.



CSE 501 Midterm Exam: Sketch of Some Plausible Solutions Winter 1997

5

b) [10 pts] What are some optimizations that require must-alias information?

Strong updates of information CSE, constant folding etc. through pointers.

7) [10 pts] The presence of pointer assignments can hurt the quality of information computed by
dataflow analyses. We’ve discussed several compiler analyses that can reduce the negative
impact of such assignments. What can language designers do to reduce the impact of such
pointer assignments?

A number of possible answers including static type safety, disallowing taking the
address of local variables, disallowing user-level pointers entirely.

8) a) [10 pts] The Steensgaard near-linear-time alias analysis paper uses a type-inference
framework based on unification to produce OK results quickly. In order to get this faster
time bound, what are the key sources of loss of precision that are incurred?

A number of possible answers. What we were really looking for was imprecise
treatment of structures and backflow along dataflow edges. (formals to actuals, lhs
to rhs).

b) [10 pts] Computing a flow-insensitive interprocedural summary is also near-linear-time
(assuming processing a statement takes near-constant time). What is the relationship
between regular flow-insensitive summaries and Steensgaard’s work?

It took us several tries to figure this our ourselves, so we accepted almost anything
that seemed plausible and didn’t say something completely false (it was OK to
believe the question’s incorrect assertion that flow-insensitive IP summaries are
also near-linear time). We believe that the relationship is that flow-insensitive IP
summary based algorithms are more precise since they don’t have the back-flow
problem. However in the presence of recursion the summary based analysis
actually has a complexity of something like O(n3) while Steensgaard remains
nearly-liner time.

c) [15 pts] Pick another flow-sensitive dataflow analysis problem that we’ve discussed in class
that might profitably be cast in this near-linear-time analysis framework. How would you
model it? What kinds of programs would be analyzed effectively by this alternative
framework, and what kinds of programs wouldn’t?

Constant propagation is probably the best answer here. This might work well for
programs using an array library like LINPACK, where strides/sizes are passed as
parameters or if routines called with constants are only called from one call site.



CSE 501 Midterm Exam: Sketch of Some Plausible Solutions Winter 1997

6

9) [10 pts] The Wilson & Lam paper describes a context-sensitive pointer analysis. How might
this context-sensitive analysis be used to drive procedure specialization? What would be the
benefit?

Note that procedure specialization means creating multiple compiled versions of a
procedure, each one specialized to a particular set of callers.
We use the partial transfer functions to tell us what specializations to create and
how to connect callers to callees. The benefit is that each specialized procedure
has more precise alias information about its formals. We probably want to try and
be selective about which specializations are actually generated, either by using
profile data or static estimates of execution frequency of each procedure or by
estimating the benefit of the specialization.


