
CSE 501 Some Plausible Solutions for the Final Exam Winter 1997

1

240 points total. Open book, open notes. Maximum 4 hours in a single block, self-timed on the
honor system. One point per minute of test time.

1) a) [10 pts] Put the following program in SSA form (you may draw a control flow graph to
illustrate your solution):

x := 0;
do {

x := x + 1;
z := x;
y := 0;
if (...) {

y := 1;
}
w := y + z;

} while (...);
print(x, y, z, w);

b) [5 pts] Why would you want a program in SSA form?

Simplify analysis. Since each variable is only assigned once, each variable name
only refers to a single value (which cannot be killed/redefined).

c) [5 pts] Why wouldn’t you want to keep programs in SSA form?

Have to maintain SSA invariant across transformations

SSA is not executable; have to translate φ nodes before code gen

x1 := 0

x3 := φ(x 1, x 2)
x2 := x 3 + 1
z1 := x 3
y1 := 0

y2 := 1

y3 := φ(y 1, y 2)
w1 := y 3 + z 1

print(x 2,y 3,z 1,w 1)



CSE 501 Some Plausible Solutions for the Final Exam Winter 1997

2

2) a) [10 pts] What is the data dependence graph, using dependencedistances, for the following
loop nest:

for i = 1 to N
for j = 1 to N

for k = 1 to N
S1: a[i,j] := a[i,j] + b[j,k] * c[i,k];
S2: c[i+1,k-1] := c[i,k] * 2;
S3: b[j,k] := b[j+3,k-2] * 5;

Tricky question due to 2D arrays acting like scalars with respect to one of the 3
loops. No one (including Dave) got this question completely right.

S1 δ 0,0,0 S1

S1 δ0,0,1+ S1

S1 δo
0,0,1+ S1

S2 δ1,0,-1 S1

S2 δ1,0,-1 S2

S2 δo
0,1+,1 S2

S1 δ0,0,0 S3

S3 δ0,3,-2 S3

S3 δ1+,0,0 S1

S3 δ1+,-3,2 S3

S3 δo
1+,0,0 S3

b) [10 pts] For the following skeleton of a loop nest:

for i = 1 to N
for j = 1 to N

for k = 1 to N
S1: ...
S2: ...

assume the data dependence graph, using dependence directions, is the following:

how would you transform this loop, using loop interchange(s), to best parallelize this loop?
Explain why your transformation is legal and works well, and why other possible
transformations (including doing nothing) are worse or illegal.

S1:

S2:

δ=,=,<

δ<,=,>



CSE 501 Some Plausible Solutions for the Final Exam Winter 1997

3

Only the j loop can be executed in parallel (i and k have loop-carried
dependencies), so we want to move the j loop to the most advantageous position.
We’ll assume that N># of available processors.

There are 6 possibilites (from outer to inner):

k,i,j; k,j,i; j,k,i: These three are illegal due to lexographically negative deps.

j,i,k: Best legal permutation for multi-processor. Deps are all lex. non-negative
 and we get N large chunks of parallel work.

i,j,k: (unchanged). Could do this and run j loop in parallel but get smaller unit of
parallelism, more synchronization barriers

i,k,j: Best legal permutation for a vector machine (inner loop is parallelized),
 but lousy for multi-processor (many small chunks of parallel work).

3) Consider the following loop fragment:

for i = 1 to N
S1: temp := ...;
...
S5: ... := ... temp ...;

end
/* temp is dead here */

a) [5 pts] What data dependences exist between statementsS1 andS5, based solely on the
references totemp ?

S1 δ= S5

S5 δ< S1

S5 δo
< S1 (not required for full credit)

b) [5 pts] Why can’t this loop be fully parallelized directly?

loop-carried dependence

c) [10 pts] What is a transformation to this program that will enable full parallelization? What
is the data dependence graph for your transformed loop?

Padua and Wolfe call it “node splitting.” We introduce a temporary array to remove
the anti-dependence:

S1: temp[i] := ...;

...

S5: ... := ... temp[i] ...;

S1 δ= S5



CSE 501 Some Plausible Solutions for the Final Exam Winter 1997

4

4) a) [5 pts] Why is it impossible for two live ranges for the same source variable to interfere?

If the live ranges interfere, then they must be simultaneously live, which implies that
the two live ranges are really part of the same (larger) live range.

b) [10 pts] A common choice for the basic unit of allocation in a register allocator is the live
range. An alternative is to convert the program to SSA form and then use variables as the
units of allocation. How do these choices differ? Give an example illustrating the
difference.

merges with defs flowing in on multiple edges. In the example below, live ranges
gives us 1 unit of allocation and SSA gives us three units.

c) [10 pts] Chaitin’s original graph-coloring register allocator combined live ranges that were
disjoint and linked by a simple assignment statement (called subsumption or coalescing),
essentially running a kind of copy propagation to merge disjoint but adjacent live ranges.
How can this merging produce better results than not merging? How can it produce worse
results?

It can produce better results by eliminating register moves (by forcing the live
ranges to be assigned to the same register). It can produce worse results by
lengthing live ranges, leading to a more constrained interference graph (fewer
nodes with higher degree), which leaves less flexibility, making it harder to avoid
spills.

5) a) [10 pts] What is a good reason why you would want to perform register allocation before
instruction scheduling?

To enable the loads/stores introduced as spill code to be scheduled

b) [10 pts] What is a good reason why you’d want to do the opposite, performing instruction
scheduling before register allocation?

Register allocation introduces false dependencies (by reusing registers) that may
inhibit scheduling.

x := ... x := ...

...x...

x1 := ... x2 := ...

x3 := φ(x1,x2)
...x3...



CSE 501 Some Plausible Solutions for the Final Exam Winter 1997

5

6) a) [10 pts] How can mark/compact or copying garbage collection make allocation faster?

All free space is contiguous, so a simple pointer bump suffices to allocate an object

b) [10 pts] How can mark/compact or copying garbage collection make subsequent pointer
dereferences in the application program go faster?

By improving locality (live objects get closer together)

7) Implementing first-class functions in a language like ML can be expensive, in general requiring
heap-allocated closure objects and heap-allocated environment objects. Say you are a language
designer who wants first-class functions but doesn’t want to incur the cost of fully-general
functions. [In this question, treat “ML” as refering to any statically-typed language with first-
class function values.]

a) [10 pts] What is a minimal restriction on ML, statically enforceable, that would avoid
having to create closures, instead enabling function values to be represented simply as a
code address as in C? What capabilities would be sacrificed with this restriction?

The bodies of nested functions cannot contain references to non-global variables
that are defined in lexically enclosing scopes. However, the bodies may still refer to
global variables, and the function values are first class (can be stored in any
variable/heap cell and returned from functions). Can easily enforce this during
name resolution phase of compilation.

b) [10 pts] What is a minimal restriction on ML, statically enforceable, that would enable all
environments to be stack-allocated? What capabilities would be sacrificed with this
restriction?

Must enforce a LIFO-usage of function values. Function values cannot be stored
into heap-allocated memory or variables defined in lexically-enclosing scopes, and
function values may not be returned as the result of a function. This can be
enforced by the typechecker. There are no restrictions on variable references in the
function’s body, and the function may still be passed as an actual parameter.

8) a) [10 pts] Say you had branch frequencies derived from profile data, giving the percentage of
executions at which a branch went to each of its successors. Give a couple of examples of
how you would exploit this information in a compiler.

In general, any part of the compiler that needs frequency guesses could benefit.
For example the scheduler could ensure that the common successor of a branch
instruction was fall-through thus improving i-cache behavior. It enables trace
scheduling (scheduling across basic block boundaries). The register allocator
could use this information for usage estimation.

b) [10 pts] Say you had counts for each call arc in a program, derived from profile data. Give
a couple of examples of how you would exploit this information in a compiler.

To guide inlining, procedure specialization.



CSE 501 Some Plausible Solutions for the Final Exam Winter 1997

6

Reduce compile time by only using high levels of optimization on frequently
executed procedures.

Improve Wall’s link-time register allocation (better guess about which variables
should be promoted to being in registers).

9) A basic analysis for object-oriented languages is class analysis, where a set of concrete classes
is associated with each variable at each program point.

a) [15 pts] Formalize an intraprocedural version of this analysis using a lattice-theoretic
framework, where you may assume you have complete knowledge of the whole program’s
class hierarchy. Define your domain (recall that a domain is defined by a set of elements
and an ordering operator over elements) whose elements are associated with each program
point, and specify (redundantly) the top & bottom elements of your domain and your lattice
meet (glb) operator to use at merge points. Indicate the direction of analysis and the initial
domain element at the start of analysis (taking into account that the procedure has formals
f 1, ...,f N). Specify a flow function for each of the following RTL instructions, derived from
a Java-like language:

x := new C; /* where C is a concrete class */

x := y;

x := y.msg(z 1, ..., z k);

x := (C) y; /* a checked narrow, succeeding if y is an instance of C or some
subclass of C, otherwise terminating the program */

First we’ll define the lattice for a single variable.

set of domain elements: Powerset of classes defined in the program

¶≤: ⊇
top: empty set

bottom: universal set

meet: ∪
Then we define the domain for the analysis by applying the n-tuple operator to the
domain I defined above (n = # of variables in procedure).

The analysis direction is forward, and the initial information maps each incoming
formal f to ⊥ if f is unconstrained and to {C|C is a subclass of specializer(f)} if f is
constrained.

Flow functions. I’ll use the notation Info2 := Info1[x := {a,b}] to denote that Info2 is
the same tuple as Info1, except for the new value of its x component. Similarly
Info(x) is the value in the x component of the Info tuple.

I’m also going to assume that we’re compiling a dynamically typed language (or
we’re not going to take advantage of static type declarations if we aren’t).

x := new C:

Out := In[x := {C}]



CSE 501 Some Plausible Solutions for the Final Exam Winter 1997

7

x := y;

Out := In[x := In(y)]

x := y.msg(z 1, ..., z k);

Out := In[x := ⊥]

x := (C) y;

Out := In[x := {c∈In(y) | c is a subclass of C}]

b) [15 pts] Extend this analysis to be interprocedural, flow-sensitive, context-insensitive, and
optimistic. Explain your initial conditions for analysis. Describe briefly how you organize
your worklist, and describe briefly how you process a procedure, using (a possibly modified
version of) your intraprocedural analysis above as a subroutine.

Have a summary for each procedure that contains lattice elements for local vars,
formals, and the proc’s return value. Each instance variable gets an associated
lattice element as well. Represent global variables as locals of a ‘top-scope” node.
Initally all summaries have all variables bound to T. Put “top-scope” (to handle
initialized global variables) and main nodes on worklist. Remove node from worklist
and process it using modified intra analysis until the queue is empty.

Only major change is the flow function for msg sends/proc calls.

1) do compile time method lookup using current In(y). this gives us a set of
potential callee procedures

2) Bind x to the union of the return values of the callee procedures. Add
dependency links to force reanalysis (by adding dependents to the worklist) if a
return value changes

3) Meet actuals at call-site with formals of each callee method, reanalyzing the
method by putting it on the worklist (and updating its incoming formal info) if meet
is lower in lattice than current value of formals.

Also change instance variable load/store functions to access associated lattice
element (setting up dependency links on readers).

c) [5 pts] How might context-sensitive analysis improve the quality of this analysis?

The direct benefit is improved analysis of the caller procedure, since cardinality of
the set of classes returned from the callee procedure may decrease. Indirectly we
may get less smearing of formal parameters in the callee (smaller sets of classes
for incoming formals). We might also improve the analysis of references to lexically-
enclosing variables becuase there are now multiple sets of classes (one per
contour) associated with each variable.

d) [5 pts] How might procedure specialization improve the resulting code quality even more?

Get more precise information (smaller class sets) for the formal parameters of the
procedure, thus enabling more of the messages sent to formal parameters to be
statically bound.



CSE 501 Some Plausible Solutions for the Final Exam Winter 1997

8

e) [10 pts] Some languages, such as Java, Smalltalk, and CLOS, allow new classes to be
created or dynamically loaded at run-time. How would this complicate your analysis? What
parts of your analysis could you keep, and what parts would you have to weaken or give up?

The simpliest approach would be to disable any parts of the analysis that make use
of whole program imformation. The initial info binds formals to ⊥. The flow function
for checked narrow does nothing.

We could keep interprocedural class analysis almost unchanged, after some
modifications to our intermediate language. We extend the new operation to allow
expressions in addition to class literals. The lattice is extended to track each
instance of class Class separately, with a special Class⊥ that represents an
unknown instance of class Class. We model the result of a class creation/load as
Class⊥. The result of a new operation on a class expression whose possible values
include Class⊥ is ⊥. If we have a message whose receiver is ⊥, this means that a
possibly unknown callee procedure might be invoked. A conservative
approximation of this is to assume that the procedure returns ⊥, stores ⊥ into all
global variables, and that all instance variables reachable from the message sends
actual parameters and all global variables are also bound to ⊥. Unclear how much
benefit we’d actually get from doing this analysis, but if class loading is rare, or very
localized there might be some.

f) [5 pts] How might dynamic compilation as in the Self system be exploited to limit the
impact of this language feature?

Keep dependency information about which code depends on what assumptions
about the class hierarchy and recompile the code when its assumptions are
violated.

g) [10 pts] Some languages, like Smalltalk and CLOS, allow the class of an object to be
changed at run-time as a side-effect. For instance, the RTL statement

change_class(x, C);

would side-effect the object denoted byx to be an instance of classC instead of whatever
it used to be. How would such a language feature complicate your analysis?

In the intra case, in addition to forgetting all information about exposed variables
(vars defined in lexically enclosing environments), would also need to forget info
about the actual parameters and their aliases. A conservative approach would be
to forget everything at procedure calls. Could improve on this by doing IP analysis
to determine if a particular call-site might actually do this thing. The interproc
analysis probably just needs to be modified to allow backflow along dataflow arcs
in this special case.

Actual flow function for the change_class node binds x (and all must-aliases of x)
to {C} and adds C to the class sets of all may-aliases of x.



CSE 501 Some Plausible Solutions for the Final Exam Winter 1997

9

10) [10 pts] Why is multiple inheritance difficult to implement efficiently?

Cannot use efficient (no padding) object layout and still get the property that
instance tables/virtual function tables are at a known offset.


