CSE 501 Final Exam Answers Winter 1996

Name: Solutions

100 points total. 4 hours, self-timed. Open book, notes, text, papers, etc.

Be concise and precise in your answers.

1) [5 pts] In the C shell, a command can be prefixed veixiec to cause the shell to run that
command directly, overwriting the process of the shell. This is so you don’t have a silly shell
process hanging around while you run the subsidiary command, if the shell will just exit when
the command completes. What optimization, originally developed for languages like Scheme,
is this like?

tail call elimination

2) [6 pts] How does polyvariant specialization in partial evaluators relate to context-sensitive
interprocedural analysis?

Both analyze a callee procedure for different calling contexts. In PS, multiple
specialized versions of a procedure may be produced, while in CSIA, a single
callee procedure is usually compiled, but the callers can be optimized as if multiple
routines had been compiled.

3) [6 pts] How does context-sensitive interprocedural analysis differ filo@FA-style
interprocedural analysis? What is the big advantage of context-sensitive analysis?

k-CFA-style analyses repeat analysis of a callee blindly for each caller chain of
length k; this can lead to analysis times that are exponential in k. Context-sensitive
analysis, on the other hand, repeats analysis of a callee for each different domain
element passed by a caller. Context-sensitive analyses can be a lot better in terms
of avoiding unnecessary repeated analysis, in maximizing the available context w/
o fixing on k a priori, and in coping with recursion better.

4) [8 pts] To cope with compiling Scheme programs through C, Bartlett developed a partially-
conservative garbage collector where pointers in the heap were known (through tagging), but
pointers on the stack and in registers were ambiguous (since the actions of the C compiler were
unknown). Bartlett’s collector treated possible pointers in registers and on the stack
conservatively, but used non-conservative techniques to deal with pointers once it started

scanning the heap.

Bartlett’s system is a “mostly-copying” collector. Why is the “copying” part surprising? Why
is it only “mostly”?
It's surprising because conservative collectors aren’t normally copying, since they
can’t change any pointers unless they’re sure it's a pointer. Bartlett's system can
copy objects pointed to only by heap objects, but not objects pointed to (possibly)
from ambiguous roots on the stack or in registers. These objects must be pinned
in place.

CSE 501 Final Exam Answers Winter 1996

5) In lazy functional languages, evaluation of arguments to functions is deferred if and until the
value is actually needed in the function or one of its callees. To implement deferred evaluation,
compilers typically create a zero-argument closure whose body is the actual parameter
expression and pass the closure in as the argument; the callee invokes the closure if the formal
parameter’s value is needed.

a) [9 pts] What arethree different sources of costs that make this closure-passing
implementation strategy slower than that used in eager functional languages like Scheme
or ML?

Because of the allocation & deallocation costs of the closure, the invocation
overhead of the closure (plus checking if the closure has already been invoked, in
the case of memoized at-most-once lazy evaluation), and the cost in the caller of
making the expressions referenced in the closure be accessible when the closure
runs.

b) [6 pts] Why is the closure used to pass lazily-evaluated parameters cheaper to implement
than regular user-level first-class closure?

Because the closure is LIFO: it will be accessed only during the callee, and hence
it can be stack-allocated if desired. The enclosing environment also can be stack-
allocated.

c) [12 pts] If the closure is guaranteed to be invoked (i.e. if the formal parameter is guaranteed
to be referenced during all possible invocations of the callee), then it would be cheaper to
evaluate the expression in the caller and pass just the resulting value rather than the closure.
Strictness analysis an interprocedural analysis that identifies which formal parameters of
functions arestrict, meaning that they are guaranteed to be evaluated during execution.

CSE 501 Final Exam Answers Winter 1996

d)

Assume you are given an intraprocedural analysis that computes for each program point in
a procedure the set of variables that are definitely evaluated (later) during execution of the
procedure, but which is conservative at call sites. Now define an interprocedural strictness
analysis that extends the intraprocedural analysis. Explain the kinds of summaries you
compute for each procedure, indicate the initial settings for the summaries, tell how you use
the summary information when doing intraprocedural analysis of calls, give an efficient
strategy for traversing the call graph (you may assume that you do not need to compute the
call graph yourself), and describe how you cope with recursion without sacrificing
precision unnecessarily. Argue for the correctness (i.e. safety) of your solution (assuming
correctness of the intraprocedural strictness analysis), particularly in the presence of
recursion.

| would summarize, for each formal, whether it was strict or non-strict. Initially, all
formals are initialized to non-strict. When analyzing a call, an actual argument is
considered needed iff the corresponding formal parameter is summarized as strict.
Bottom-up processing through the call graph is best. Recursion just requires
iteration during bottom-up processing. This solution is safe, because a formal is
only marked strict when we’ve found a definite use of the formal, either directly in
the function or indirectly through a call. By starting formals as non-strict, we won'’t
hit the situation where a formal is only used in a recursive call, but we consider it
strict because we have no reason to make it non-strict. (It is interesting that we
don’t make the optimistic assumption to initialize analysis, because that would lead
to a fixpoint solution that was unsafe.)

[8 pts EXTRA CREDIT]: Define an abstract interpretation to perform intraprocedural
strictness analysis. Use the following abstract syntax:

Expr ::= const | wvar |
(primop Expr 4 ... Expr n |
(if EXPr test EXPr then EXPr eise) |
(fn Expr 1 ... Expr n)

Compute for each expression the set of variables definitely evaluated by the expression.
This can then be used to ask the body of a lambda which of the formals of the lambda is
definitely needed. An expression’s value is needed if it is returned from the lambda, if it is
the true argument af (or needed on both then and else branches) anid tferesult is
needed, if it is the argument of a primitive operator likavhose result is needed. An
argument to a regular function cafh(above) is not needed, assuming only intraprocedural
analysis.
F: Expr — 2V&
F [[const]] = {}
F [[var]] = {var}
F [[(primop Expr 1 ... Expr n) 11 = F [[Expr 1]] O ... O F [[Expr 4]]
FIGf EXPr test EXPr then EXPr eise)11 =

F[EXpr st 11 O (F [[EXPr then 11 n F[[EXPr gise 1)

FI(fn Expr o ..Expr)]1={}

CSE 501 Final Exam Answers Winter 1996

6) a) [10 pts] To schedule instructions well on a current superscalar machine, the scheduler must

b)

take into account the resource conflicts of the machine’s functional units when striving to
issue multiple instructions simultaneously. Consider a hypothetical machine that can issue
two instructions in the same cycle, as long as the first instruction is an integer ALU
instruction or a memory load or store and the second instruction is a floating point ALU
instruction or a branch. (Hardware interlocks will delay the second instruction to the second
cycle if the pair of instructions doesn’t match this pattern.) How would you modify the
heuristics in a list scheduler to try to schedule code for this machine?

This superscalar constraint is a kind of interlock. The first heuristic in choosing
which candidate instruction to emit next is that it not interlock with the previous
instruction. So we simply keep track of which instruction (column A or column B)
we're trying to issue, and choose an instruction in that category, if possible. If
multiple choices remain, then we go on to all the other standard heuristics of list
schedulers.

[10 pts] More advanced code scheduling strategies can move instructions from one basic
block to another, e.g. to separate loads from their downstream uses to better fit pipelined
machines, to better pack instructions into groups for superscalar issue, etc. Describe the sort
of dependence information you would want to gather to be able to determine when it was
legal to move an instruction from one place to another. Make sure it’s possible to move an
instruction from below an if's merge to above its corresponding branch.

I'd want both data and control dependence information. It would be legal to move
an instruction as long as it didn’t violate either data or control dependence info.
We’'d need to ensure that instructions downstream of the if’s merge are not control-
dependent on the if’s branch, only the then and else branch’s instructions are.

Control dependence trees are a special representation for capturing the relative
control dependence of basic blocks. In this representation, it becomes easy to tell
when two blocks have the same control dependences, aiding in doing this sort of
cross-block code scheduling.

CSE 501 Final Exam Answers Winter 1996

7) Copying & compacting garbage collectors support fast allocation, conceptually just an
instruction to bump the end-of-allocated-space pointer and a second compare-and-branch
sequence to test whether we've run out of space. But for systems with very high allocation rates,
e.g. in ML where even activation records are heap-allocated, we might like to optimize the
compare-and-branch tests by coalescing multiple compares into a single comparison for a
bunch of allocations.

a) [13 pts] Design an intraprocedural analysis to coalesce checks. What do you compute at
each program point? [Hint: you want to know how much space you need to ensure is free
for all the downstream allocations whose out-of-space checks have been eliminated.] What
direction is analysis? What are the interesting flow functions? What is the merge function?
What is the height of your lattice? How do you achieve termination of your analysis? Under
what circumstances can checks be coalesced? What prevents checks from being coalesced?

I'd do a backwards analysis, computing at each program point an upper bound on
how much space is needed for later (unchecked) allocations. | start out needing 0
space at the end of the procedure. Whenever | hit an allocation, | add the size of
allocation, if it's known, and remove the check. If it's an array being allocated of
unknown size, | insert a check for the size of the array + what I've computed so far,
and then reset my counter back to zero before the array allocation. At function calls,
| generate a check for the space | need after the call, and then reset my counter to
zero. The merge function is max. Since the height of the Nat lattice is pretty big, |
can’t reasonably do this analysis around loops, so at loop heads | generate a check
for whatever space is required and then reset the space-needed value to zero.
(Loop heads thereby reach fixpoint at zero space needed.) Checks will be
coalesced along non-looping paths that do not contain function calls or unknown-
size array allocations.

b) [9 pts] Extend your coalescing analysis to work interprocedurally. Now what circumstances
can be handled? Why might this interprocedural analysis be a bad idea?

This will let me be less conservative around function calls. | compute the space
needed by the called function as a summary. | initialize all summaries to zero (to
support recursive calls). | do a bottom-up analysis, w/o being dumb at function calls
but rather using whatever the function consumes. When | encounter a procedure
that’s invoked recursively, since I've already assumed it needed zero unchecked
space, | insert the appropriate check at the beginning of the procedure, and thus
match my assumed summary value of zero. Function calls no longer pose an
obstacle to this analysis; only loops, recursion, and unknown-size array accesses
block check coalescing.

This analysis could be problematic, since small changes to the implementation of
some procedures might force complete recomputation of how much space is
needed.

CSE 501 Final Exam Answers Winter 1996

c) [6 pts] What is the main reason why ML heap-allocates activation records?

Because it has first-class functions whose environments require heap allocation in
general, so it's easy just to make the whole a.r. heap-allocated. ML also has first-
class continuations, which essentially require pieces of the call stack to be
preserved even after their creating procedure returns.

