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Homework Assignment #1 Sample Solutions

Due Monday 1/22, at the start of lecture

1. For the following control flow graph, for the purposes of a forward data flow analysis (such as
available expressions), show the dominator tree, identify any loops, and for each loop, identify
the loop head node and the loop entry, exit, and back edges. Is this graph reducible?

Dominator tree:

Loop 1: nodes: 1, 3, 5, 6, 7, 9; head node: 3; back edge: 1→3; loop entry edge: 2→3; loop
exit edges: 7→10, 9→8

Loop 2: nodes: 5, 6; head node: 6, back edge: 5→6; loop entry edge: 3→6; loop exit edge:
6→9

The graph is reducible.

2. Repeat problem 1 for purposes of a backwards data flow analysis (such as live variables).
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Reversed control flow graph:

Dominator tree:

Loop: nodes: 5, 6; head node: 6, back edge: 5→6; loop entry edge: 9→6; loop exit edge:
6→3

(There’s also a larger strongly connected component, but it has two loop head nodes, so it’s
not a true natural loop: nodes: 1, 3, 5, 6, 7, 9; head nodes: 7, 10; back edges (i.e., in-loop
edges to a head): 1→9, 9→7; loop entry edges: 10→7, 8→9; loop exit edge: 3→2)

The graph is not reducible.

3. Build the DAG representation of the following basic block (where variables whose names
start witht are assumed not to be referenced outside of the basic block). You should perform
common subexpression elimination as part of this process, exploiting commutativity of
operators. You should mark which nodes in the DAG are stored in which user variables at the
end of the block.

t1 := x * 5
x := x + 1
y := x
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t2 := x * 5
y := 5 * y

(Final assignments to source variables in bold.)

4. Why can we not simply apply this same DAG-construction algorithm over the whole
procedure body, across basic blocks?

Because we’d lose track of the control dependence conditions under which different
computations are executed. E.g. operations may appear redundant (i.e., common
subexpressions), but be executed in different control conditions (e.g. inside of different
conditionals), and so we can’t just combine them into a single operation without some sort of
extra work. Also, the BB algorithm didn’t address constructing cyclic graphs, as would be
needed to represent loops, although it could be extended to handle loops without too much
trouble. Stay tuned for the VDG representation, which can be thought of as one way to extend
the DAG model to the whole procedure.

5. Consider the case where a forward analysis’s flow functions for each kind of statement are
represented in terms of constant KILL and GEN bit-vectors. Thus, each flow function has the
form out = in - KILL + GEN, with KILL and GEN being constants independent ofin or out.
The combined effect of a whole basic block of instructions can be calculated by applying each
instruction’s flow function in turn, starting with the in bit-vector at the start of the basic block,
and computing the out vector at the end of the basic block. I.e., for instructioni of the basic
block, outi = ini - KILL i + GENi, and for all instructions other than the first,ini = outi-1.
However, in this special case where KILL and GEN do not depend onin, it is possible to
compute a single summary flow function with constant KILL and GEN bit-vectors, of the
form outn = in1 - SUMMARY-KILL + SUMMARY-GEN (where in1 andoutn are the points
before and after the basic block, respectively).

Give a pair of simple inductive equations for computing the SUMMARY-KILLi and
SUMMARY-GENi bit-vectors, representing the summary KILL and GEN bit-vectors for the
first i instructions of a basic block, in terms of the SUMMARY-KILLi-1 and SUMMARY-
GENi-1 bit-vectors (ifi>1) and the KILLi and GENi bit-vectors for the flow function of theith
instruction, 1≤ i ≤ n. SUMMARY-KILL and SUMMARY-GEN for the whole basic block are
then SUMMARY-KILLn and SUMMARY-GENn, respectively.

SUMMARY-KILLi = SUMMARY-KILLi-1 ∪ KILLi

SUMMARY-GENi = SUMMARY-GENi-1 - KILLi ∪ GENi
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where SUMMARY-KILL0 and SUMMARY-GEN0 are∅

(Note that SUMMARY-KILLi = SUMMARY-KILLi-1 - GENi-1 ∪ KILLi looks more correct than
the above equation, but they have the same end effect.)

What is the chief advantage of this SUMMARY flow function over the original flow
functions?

It allows the effect of a whole basic block to be computed with a single flow function (that runs
a lot faster than the sequence of per-instruction flow functions). This is useful during iterative
analysis where we can recompute the effect of a basic block several times.

6. Define a data flow analysis that can be used to compute two sets of variables for each
procedure: those which are definitely not defined before use, and those which may not be
defined before use; these sets can be used to provide extra error checking of programs. Strive
for the highest quality information while maintaining safety. Use a lattice-theoretic formalism
to define your analysis. Argue that your analysis terminates. Explain how to use the
information computed by your analysis to construct the two sets specified above for output to
the user.

It is possible to construct either a forward or a reverse dataflow problem to answer this
question. We sketch out both possibilities; either one is a sufficient answer. We’ll assume that
any formal parameters are initialized via explicit assignments in the flow graph.

The first approach is to perform a forward dataflow analysis computing for each program
point a set of definitely defined variables and a set of possibly defined variables. After these
sets are computed, we can then examine all of the uses in the program and report any errors. A
variable is definitely not defined before it is used when the variable does not appear in the
possibly defined variable set associated with the program point immediately preceding a
statement in which the variable is used. A variable may not be defined before it is used if at the
program point proceeding a statement in which it is used it is not an element of the definitely
defined variable set. Note that a read through a pointer must be considered to be a use of
every variable, due to the lack of more detailed pointer analysis.

To simplify the formal definition we’ll define two lattices, and then use the 2-Tuple constructor
to compose them into a single lattice.

Definitely Defined Variables:

Elements: Pow(Variables), where Variables is the set of all variables in the CFG

≤: ⊆

meet: ∩

top: Variables

bottom: ∅

Flow Functions:

Fx := … Infosucc= Infopred∪ {x}
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F*x := … Infosucc = Infopred

Possibly Defined Variables:

Elements: Pow(Variables)

≤: ⊇

meet: ∪

top: ∅

bottom: Variables

Flow Functions:

Fx := … Infosucc= Infopred∪ {x}

F*x := … Infosucc = Infopred∪ Variables = Variables

The flow functions are monotonic and the lattices are finite height, so the analysis will
terminate. (Each individual lattice has height O(N); when we compose them into a 2-Tuple we
still have a O(N) height lattice. Each flow function can run in O(N) time (or less). So, we get
an O(N3) analysis to compute the sets. The post-pass to examine the sets and produce
warnings can run in O(N2) time (O(N) statements, O(N) work for each (O(N) for reads
through a pointer).)

Alternatively, one could define a reverse dataflow analysis that computes the set of possibly
live and definitely live variables at each program point. All variables that are definitely live at
the flow graph entry point are definitely used before they are defined; all variables that are
possibly live at the flow graph entry point may be used before they are defined.

Just as before, we’ll define two lattices and then combine them using the 2-Tuple operator:

Definitely Live Variables:

Elements: Pow(Variables)

≤: ⊆

meet: ∩

top: Variables

bottom: ∅

Example Flow Functions:

Fx := y + z Infosucc= Infopred - {x} ∪ {y,z}

F*x := y + z Infosucc = Infopred - Variables∪ {y,z} = {y,z}

Fx := *y + *z Infosucc = Infopred- {x} ∪ ∅ = Infopred- {x}

F*x := *y + *z Infosucc = Infopred - Variables∪ ∅ = ∅

Possibly Live Variables:
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Elements: Pow(Variables)

≤: ⊇

meet: ∪

top: ∅

bottom: Variables

Example Flow Functions:

Fx := y + z Infosucc= Infopred - {x} ∪ {y,z}

F*x := y + z Infosucc = Infopred - ∅ ∪ {y,z} = Infopred∪ {y,z}

Fx := *y + *z Infosucc = Infopred- {x} ∪ Variables = Variables

F*x := *y + *z Infosucc = Infopred - ∅ ∪ Variables = Variables

Termination and complexity are identical to the forward analysis.


