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Very Quick Review of Probability

» Event space (e.g., X, Y)—in this class, usually discrete
Random variables (e.g., X, Y)

Typical statement: “random variable X takes value z € X
with probability p(X = z), or, in shorthand, p(z)"

Joint probability: p(X =z,Y =vy)
Conditional probability: p(X =z | Y =y)
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Very Quick Review of Probability

» Event space (e.g., X, Y)—in this class, usually discrete
» Random variables (e.g., X, Y)
» Typical statement: “random variable X takes value x € X
with probability p(X = z), or, in shorthand, p(z)"
» Joint probability: p(X = z,Y =y)
» Conditional probability: p(X =z | Y =y)
_pX ==zY =y)
p(Y =y)
» Always true:
pX =Y =y)=pX =z]Y =y) p(Y =y)
=p(Y =y | X =2) p(X =x)
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Very Quick Review of Probability
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» Random variables (e.g., X, Y)

» Typical statement: “random variable X takes value x € X
with probability p(X = z), or, in shorthand, p(z)"

» Joint probability: p(X = z,Y =y)

» Conditional probability: p(X =z | Y =y)
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Very Quick Review of Probability

» Event space (e.g., X, Y)—in this class, usually discrete
» Random variables (e.g., X, Y)

» Typical statement: “random variable X takes value x € X
with probability p(X = z), or, in shorthand, p(z)"

» Joint probability: p(X =z,Y =y)

» Conditional probability: p(X =z | Y =y)
_pX=2Y=y)

p(Y =y)
» Always true:
pX=2Y=y)=pX=z|Y=y) pY=y)
=p(Y =y | X =2) - p(X = 1)
» Sometimes true: p(X =z,Y =y) =p(X =z) - p(Y =y)

» The difference between true and estimated probability
distributions
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Language Models: Definitions

» Vis a finite set of (discrete) symbols (® "words” or possibly
characters); V = |V
» Vs the (infinite) set of sequences of symbols from 1 whose
final symbol is ()
> p: VI 5 R, such that:
» Forany z € VI, p(z) >0
> Y X =m)=1
zeVf
(l.e., p is a proper probability distribution.)
Language modeling: estimate p from examples,
T1m = (T1, T2, ..., Tp).
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Immediate Objections

1. Why would we want to do this?

2. Are the nonnegativity and sum-to-one constraints really
necessary?

3. Is “finite V" realistic?
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Motivation: Noisy Channel Models
A pattern for modeling a pair of random variables, X and Y:

[source] — ¥ — [channel | — X
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Motivation: Noisy Channel Models
A pattern for modeling a pair of random variables, X and Y:

[source] — ¥ — [channel | — X

» Y is the plaintext, the true message, the missing information,
the output

» X is the ciphertext, the garbled message, the observable
evidence, the input

» Decoding: select y given X = x.

y* = argmaxp(y | z)

Yy

g 2018 20)

I p(z)

=argmax p(z |y) ) p(y)
y N —’ S~~~

channel model source model
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Noisy Channel Example: Speech Recognition

source | —» sequence in VI — | channel | — acoustics

» Acoustic model defines p(sounds | ) (channel)

» Language model defines p(x) (source)
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Noisy Channel Example: Speech Recognition
Credit: Luke Zettlemoyer

word sequence  log p(acoustics | word sequence)

the station signs are in deep in english -14732
the stations signs are in deep in english -14735
the station signs are in deep into english -14739

the station 's signs are in deep in english -14740
the station signs are in deep in the english -14741

the station signs are indeed in english -14757
the station 's signs are indeed in english -14760
the station signs are indians in english -14790
the station signs are indian in english -14799
the stations signs are indians in english -14807

the stations signs are indians and english -14815
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Noisy Channel Example: Machine Translation

Also knowing nothing official about, but having guessed
and inferred considerable about, the powerful new
mechanized methods in cryptography—methods which |
believe succeed even when one does not know what
language has been coded—one naturally wonders if the
problem of translation could conceivably be treated as a
problem in cryptography. When | look at an article in
Russian, | say: “This is really written in English, but it
has been coded in some strange symbols. | will now
proceed to decode.”

Warren Weaver, 1955
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Noisy Channel Examples

v

Speech recognition

Machine translation

v

v

Optical character recognition

v

Spelling and grammar correction
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Immediate Objections

1. Why would we want to do this?

2. Are the nonnegativity and sum-to-one constraints really
necessary?

3. Is “finite V" realistic?
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Evaluation: Perplexity

Intuitively, language models should assign high probability to real
language they have not seen before.
For out-of-sample (“held-out” or “test”) data &j.n;:

> Probability of Z 1., is [ [ p(Z:)
=1
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=1
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Evaluation: Perplexity

Intuitively, language models should assign high probability to real
language they have not seen before.
For out-of-sample (“held-out” or “test”) data &j.n:

> Probability of &1, is [ [ p(Z:)
=1

m

» Log-probability of .., is Zlog2 p(&;)
i=1

» Average log-probability per word of &1.,, is

1 — B
=17 ;10g2 p(Z;)

if M =>"" |Z;| (total number of words in the corpus)
» Perplexity (relative to Z1.,) is 27

Lower is better.

26
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Understanding Perplexity

1 m
—7 > logs p(%:)
9 i=1

It's a branching factor!
» Assign probability of 1 to the test data = perplexity = 1
» Assign probability of ﬁ to every word = perplexity = |V|

» Assign probability of 0 to anything = perplexity = oo
» This motivates a stricter constraint than we had before:
» Forany & € VT, p(x) >0
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Perplexity

» Perplexity on conventionally accepted test sets is often
reported in papers.
» Generally, | won't discuss perplexity numbers much, because:

» Perplexity is only an intermediate measure of performance.

» Understanding the models is more important than
remembering how well they perform on particular train/test
sets.

» If you're curious, look up numbers in the literature; always
take them with a grain of salt!

28 /67



Immediate Objections

1. Why would we want to do this?

Are the nonnegativity and sum-to-one constraints really
necessary?

3. Is “finite V" realistic?

D@
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Is “finite V" realistic?

No
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Is “finite V" realistic?

No
no
n0
-no

notta
o

/A;
//no
(no
Ino
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The Language Modeling Problem

Input: 1., (“training data")

Output: p: VI — R

® p should be a “useful” measure of plausibility (not
grammaticality).
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A Trivial Language Model

p() = i w;‘l: }| _ cwlz;;(w)
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A Trivial Language Model

p(x) p” -

What if « is not in the training data?
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Using the Chain Rule

p(X1 =z1)
p(Xo =m0 | X1 =21)
p(X=x)=| - p(Xs =23 | X1.2 = T1:2)

p(Xe =0 | X1—1 = ®10-1)

¢
= HP(Xj =z | X1j-1 = T1;5-1)
j=1
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Unigram Model

14
p(X =x) = Hp(Xj = 2j | X1j1 = T1j-1)
Jj=1
. e e e
assugtlon ]Ipe()(‘7 _ m]) — H ex]_ ~ H 0;1;]-
=1 j=1 J=1

Maximum likelihood estimate:

;i [ [xilj = v}
Yv eV, 0, = ~
— le:n(v)
N

where N =377 | |x;|.
Also known as ‘“relative frequency estimation.”

36

67



Responses to Some of Your Questions

| speak roughly 1.3 languages.

Homeworks are mostly programming assignments. They are public,
but other than maybe some commentary, solutions won't be public.

Interested in research?
» Faculty doing NLP at UW: http://nlp.washington.edu

» Summer internship application form:
https://goo.gl/forms/mwirJD7utUMimVHI2
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http://nlp.washington.edu
https://goo.gl/forms/mwirJD7utUMimVH92
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Unigram Model

14
p(X =x) = Hp(Xj = 2j | X1j1 = T1j-1)
Jj=1
. e e e
assugtlon ]Ipe()(‘7 _ m]) — H ex]_ ~ H 0;1;]-
=1 j=1 J=1

Maximum likelihood estimate:

;i [ [xilj = v}
Yv eV, 0, = ~
— le:n(v)
N

where N =377 | |x;|.
Also known as ‘“relative frequency estimation.”
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Unigram Models: Assessment

Pros: Cons:

» “Bag of words” assumption
> Easy to understand is linguistically inaccurate

> p(the the the the) >

> Cheap p(I want ice cream)

» Good enough for » Data sparseness; high
information retrieval variance in the estimator
(maybe) » “Out of vocabulary”

problem
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Markov Models = n-gram Models

(X =m)=[[p(Xj=2;| X151 =2151)
j=1

l
assumption
= [T po(X) =25 | Xjoni1j1 = Tjns1j-1)
j=1

(n — 1)th-order Markov assumption = n-gram model
» Unigram model is the n =1 case
» For a long time, trigram models (n = 3) were widely used

» 5-gram models (n = 5) are not uncommon now in MT
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Estimating n-Gram Models

unigram  bigram trigram

¢ ¢ ¢
po(x) = H 9%’ H 9$j|xj71 H ijlxjfﬂj—l
j=1 j=1 j=1

Parameters: 0, 0o Opjvrror
Yv eV Yoe Vv e VU{O} WveV, v, v eVu{O}
MLE: c(v) c(v'v) c(v"v'v)
c(v') c(vv")

General case:

L
H01j|m]’7n+1:j71 ev\ha Yo eV,he(Vu{On"!
7=1
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The Problem with MLE

» The curse of dimensionality: the number of parameters grows
exponentially in n

» Data sparseness: most n-grams will never be observed, even if
they are linguistically plausible

» No one actually uses the MLE!

43 /67



Smoothing

A few years ago, I'd have spent a whole lecture on this! ®

» Simple method: add A > 0 to every count (including
zero-counts) before normalizing
» What makes it hard: ensuring that each 8 € AV
» Otherwise, perplexity calculations break
» Longstanding champion: modified Kneser-Ney smoothing
(Chen and Goodman, 1998)

» Stupid backoff: reasonable, easy solution when you don't care
about perplexity (Brants et al., 2007)
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Interpolation

If p and g are both language models, then so is
ap + (1 —a)q

for any a € [0, 1].
» This idea underlies many smoothing methods

» Often a new model ¢ only beats a reigning champion p when
interpolated with it

» How to pick the "hyperparameter” «?
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Algorithms To Know

» Score a sentence
» Train from a corpus x1.,

» Sample a sentence given 6
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n-gram Models: Assessment

Pros:
» Easy to understand

» Cheap (with modern
hardware; Lin and Dyer,
2010)

» Good enough for machine
translation, speech
recognition, ...

Cons:
» Markov assumption is
linguistically inaccurate
» (But not as bad as
unigram models!)
» Data sparseness; high
variance in the estimator

» “Out of vocabulary”
problem

47 /67



Dealing with Out-of-Vocabulary Terms

» Define a special OOV or “unknown” symbol UNK. Transform
some (or all) rare words in the training data to UNK.

» @ You cannot fairly compare two language models that apply
different UNK treatments!

» Build a language model at the character level.
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To-Do List

» Collins (2011); Jurafsky and Martin (2016)
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Relative Frequency Estimation is the MLE
(Unigram Model)

The maximum likelihood estimation problem:

max p@(xl:n)
fcAlVI
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Relative Frequency Estimation is the MLE
(Unigram Model)

Logarithm is a monotonic function.

max pg(T1.,) = eXp max 10gpe(w1n)
ocAVI oc AV
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Relative Frequency Estimation is the MLE
(Unigram Model)

Each sequence is an independent sample from the model.

n
max logpg(xi1.,) = max lo x;
Dax logpg(@in) = max ggpe( i)
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Relative Frequency Estimation is the MLE
(Unigram Model)

Plug in the form of the unigram model.

n n ¢
max log Hpg (xz;) = max log H H Oz,
i=1

gcAlVI ocAVI -
i=1j5=1
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Relative Frequency Estimation is the MLE
(Unigram Model)

Log of product equals sum of logs.

n ¢ n ¥
max logH H Ofz;), = max Z Z log Oz,
i=1 j=1

Vv \Z
ocAlVI 1= eV

56
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Relative Frequency Estimation is the MLE
(Unigram Model)

Convert from tokens to types.

n 4
a logb,... = a log 6
921&}\{’\22 B = geami Corn(v) log b
i=1 j=1 vey
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Relative Frequency Estimation is the MLE
(Unigram Model)

Convert to a minimization problem (for consistency with
textbooks).

[nax, Cay., (V) log O,y = nin — > Car(v) log b
vEY vEV
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Relative Frequency Estimation is the MLE
(Unigram Model)

Lagrange multiplier to convert to a less constrained problem.

in —S ¢ log 0
min > cay, (v)logh,
veY

= max min — Z Czy., (V) 1og 0, — 1t (1 - Z 0U>

>0 4
= OeRYy  wev veEY

= min max — Z Cay., (V) log 0y — 1 (1 - Z 9,,)

VI >0
OeR, H= veY veEY

Intuitively, if Z 0, gets too big, u will push toward +oc.

veY
For more about Lagrange multipliers, see Dan Klein's tutorial (reference at the end of

these slides).
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Relative Frequency Estimation is the MLE
(Unigram Model)

Use first-order conditions to solve for @ in terms of p.

min max — Z Cxy., (V) log 6y — (1 - Z 0U>

OER‘EVOl n=0 vey vey
fixin for all v, set: 0 = 0
& i ' 00,
_ _le:n(v)
= 701) + n

97) — le:n ('U)
"
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Relative Frequency Estimation is the MLE
(Unigram Model)

Plug in for each 6,.

min max — Z Cay., (V) 10g 0, — 1 (1 — Z 91,)

VI >0
OERy K=" ey

veY
:m&X—ZC (U)logw_u ]__ZL"(U)
MZO ’UEV o M ’UGV /‘I’

Remember: |Yv € V, 0, = M

"
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Relative Frequency Estimation is the MLE
(Unigram Model)

Rearrange terms (alog ¢ = aloga —alogb and N = Z Cay. (V).

veV
max — Z c (U) ].Og Cwlzn (U) —u 1 _ Z Cwl:n (U)
,U«ZO L1:n M M
veY veV

= 1323,8{— ;jcwl:n (U) log Caq.p (’U) + Nlog'u — i + N
v

Czlzn (/U)
1%

Remember: |Vv € V, 0, =
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Relative Frequency Estimation is the MLE
(Unigram Model)

Use first-order conditions to solve for .

max — Z lezn (U) log Czl:n (,U) + N]Og/,b - ILI/ + N

#20 veY
0
set: 0 = —
op
N
=— -1
7
p=N
lezn (U)

Remember: |Yv € V, 0, =

I
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Relative Frequency Estimation is the MLE
(Unigram Model)

Plug in for u.

rggg}( — ;} Cay., (V) 10gcg,, (V) + Nlogp —pu+ N
v

- = Z C‘El:n (’U) log Czl:n (’U) + N log N
veEV

_ le:n (’U) _ C:I:l:n (U)
Yv eV, 0, = B =

. and that’s the relative frequency estimate!
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Language Models as (Weighted) Finite-State Automata

(Deterministic) finite-state automaton:
> Set of k states S

> Initial state sp € S
» Final states F C S

» Alphabet ¥
» Transitions 6 : S x X — S

A length ¢ string x is in the language of the automaton iff there is
a path (sg, ..., sg) such that s, € F and

l
Nllsi = 8(si-1,2)]]

i=1
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Language Models as (Weighted) Finite-State Automata

(Deterministic) finite-state automaton:

» Set of k states S histories
> Initial state sp € S O
» Final states F C S histories ending in ()
» Alphabet ¥ %

» Transitions § : S x X = S xR+
A weighted FSA defines a weight for every transition; e.g.,
w(h,v,0(h,v)) = Oy
A length / string x is in the language of the automaton iff there is
a path (so,...,s¢) such that s, € F and

¢
Nllsi = 6(si-1, )]
i=1
The score of the string is the product of transition weights.

l

score(x) H w(h;, z;, 6(hi, ;)
i=1
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Class-Based Language Models

Brown et al. (1992)

Suppose we have a hard clustering of V, cl: V — {1,...,k},
where k£ < |V|.

n-gram class-based
l 12
pe(w) = Helewj*fH’lij*l HH:L‘j|c|(xj)’7c|(:r:j)\cl(xj,1)
j=1 j=1
Parameters: 0, Olci(v) Yils
YweV,he VU{ON™! WweV Vi,j e {l,...,k}
c(hv) c(v) c(4)

MLE:

c(h) c(cl(v)) c(ji)
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