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What's wrong with n-grams?

Data sparseness: most histories and most words will be seen only
rarely (if at all).



What's wrong with n-grams?

Data sparseness: most histories and most words will be seen only
rarely (if at all).

Next central idea: teach histories and words how to share.



Log-Linear Models: Definitions

We define a conditional log-linear model p(Y | X) as:
» ) is the set of events/outputs (© for language modeling, V)

» X is the set of contexts/inputs (® for n-gram language
modeling, V"~ 1)

» ¢: X x) — R%is a feature vector function

» w € R? are the model parameters

expw - ¢(z,y)
> epw - o(z,y)

y'ey

pw(Y=y|X=2)=



Breaking It Down

exXpw - ¢(z,y)

Y expw - p(z,y)

y'ey
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Breaking It Down

w(¥Y =y | X =2x)= expw - o(z,y)

> expw- ¢(x,y)
y' ey

linear score  w - ¢(z,y)
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Breaking It Down

exXpw - ¢(z,y)
> expw - ¢(x,y)

y'ey

pw(Y=y|X=2)=

linear score  w - ¢(x,y)

nonnegative  expw - ¢(x,y)

normalizer Z expw - d(z,y) = Zw(x)
y'ey

“Log-linear” comes from the fact that:

logpw(Y =y | X =z)=w-¢(z,y) — log Zw(x)

constant in y

This is an instance of the family of generalized linear models.



The Geometric View

Suppose we have instance x, Y = {y1,92, Y3, Y4}, and there are
only two features, ¢ and ¢s.

A ¢2

(l‘, 3/3) o

o (L yl) ¢1

(7, yp) ®
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The Geometric View

Suppose we have instance x, Y = {y1, 92, Y3, Y4}, and there are
only two features, ¢ and ¢s.

A (])2
(I, y3) o
m\ by
o (I: y4)\
(z, ?JQ) *
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The Geometric View

Suppose we have instance x, Y = {y1, 92, Y3, ya}, and there are
only two features, ¢ and ¢s.

A ¢2

(.1?, y3) L4

o ('T’ yl) ¢1

(z, ?12) *
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The Geometric View

Suppose we have instance x, Y = {y1, 92, Y3, Y4}, and there are
only two features, ¢ and ¢s.

A (])2
(I, y3) o

(z, ?JQ) *

plys | z) >p(y1 [ 2) > py2 [ ) > p(ya | @)
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Why Build Language Models This Way?

» Exploit features of histories for sharing of statistical strength
and better smoothing (Lau et al., 1993)

» Condition the whole text on more interesting variables like the
gender, age, or political affiliation of the author (Eisenstein
et al., 2011)
> Interpretability!
» Each feature ¢y controls a factor to the probability (e**).
> If1wk < 0 then ¢ makes the event less likely by a factor of

» If wi > 0 then ¢ makes the event more likely by a factor of
ek,

» If wr = 0 then ¢ has no effect.
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Log-Linear n-Gram Models

pr i =5 | X1jo1 = x15-1)

eXpw - @(T1.5-1,7;)
_H Zw (wlj 1)

4
assuﬂ)tion H eXpW ‘ ¢(wj—n+1:j—17 x])

N i1 Zw(mjfn+1:jfl)

)4
_ 17 &P W - B(hy, 7))
jI;[l ZW(hj)
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Example

The man who knew too

much

many
little
few

hippopotamus




What Features in ¢(Xj—n+1:j—17Xj)?
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What Features in (p(Xj—n—i—l:j—lan)?

» Traditional n-gram features: “X;_; = the A X; = man”
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What Features in (b(XjfnJrl;jfl,Xj)?

» Traditional n-gram features: “X;_; = the A X; = man”
» “Gappy” n-grams: “X;_5 = the A X; = man”
» Spelling features: “X;'s first character is capitalized”

v

Class features: "X is a member of class 132"

v

Gazetteer features: "X is listed as a geographic place name”

You can define any features you want!
» Too many features, and your model will overfit ®

» Too few (good) features, and your model will not learn ®



What Features in (b(XjfnJrl;jfl,Xj)?

» Traditional n-gram features: “X;_; = the A X; = man”

» “Gappy” n-grams: “X;_5 = the A X; = man”

» Spelling features: “X;'s first character is capitalized”

» Class features: "X is a member of class 132"

» Gazetteer features: “X; is listed as a geographic place name”

You can define any features you want!
» Too many features, and your model will overfit ®

» “Feature selection” methods, e.g., ignoring features with very
low counts, can help.

» Too few (good) features, and your model will not learn ®
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“Feature Engineering”

» Many advances in NLP (not just language modeling) have
come from careful design of features.
» Sometimes “feature engineering” is used pejoratively.
» Some people would rather not spend their time on it!

» There is some work on automatically inducing features (Della
Pietra et al., 1997).

» More recent work in neural networks can be seen as
discovering features (instead of engineering them).
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“Feature Engineering”

» Many advances in NLP (not just language modeling) have
come from careful design of features.
» Sometimes “feature engineering” is used pejoratively.
» Some people would rather not spend their time on it!

» There is some work on automatically inducing features (Della
Pietra et al., 1997).

» More recent work in neural networks can be seen as
discovering features (instead of engineering them).

» But in much of NLP, there’s a strong preference for
interpretable features.
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How to Estimate w?

n-gram

¢
po(z) = H‘nglhj
j=1
Parameters: 0,
Yo e V,he (VU{O}N" !

c(hv)
c(h)

MLE: 5, =

log-linear n-gram

ﬁ expw - @(hj,x;)

-1 ZW(hj)
Wk
vk € {1,...,d}

no closed form



MLE for w

» Let training data consist of {(h;,z;)}Y,.
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MLE for w

» Let training data consist of {(h;,z;)}Y,.

» Maximum likelihood estimation is:

| w (i | by
&%Z og pw (i | hi)
e o expw - ¢(h;,v)
X
& Zu(hy)

weRd =1
= max w - ¢(hi, ;) —lo expw - ¢(h;,v
weRdZ p(hi,z; ggj pw - ¢(h;,v)

Zw(hy)
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MLE for w

» Let training data consist of {(h;,z;)}Y,.

» Maximum likelihood estimation is:

| w (i | by
&%Z og pw (i | hi)
e o expw - ¢(h;,v)
X
& Zu(hy)

weRd =1
= max w - ¢(hi, ;) —lo expw - ¢(h;,v
weRdZ p(hi,z; ggj pw - ¢(h;,v)

Zw(hy)

» This is concave in w.
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MLE for w

» Let training data consist of {(h;,z;)}Y,.

» Maximum likelihood estimation is:

| w (i | by
&?@Z og pw (i | hi)
e o expw - ¢(h;,v)
X
& Zu(hy)

weRd =1
= max w - ¢(hi, ;) —lo expw - ¢(h;,v
weRdZ p(hi,z; ggj pw - ¢(h;,v)

Zw(hy)

» This is concave in w.
» Zw(h;) involves a sum over V' terms.
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MLE for w

N

~p(hi, z;) — log Zw (h;
33“5}@2;“’ d(hi, ;) —10g Zy (i)
= fi(w)
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MLE for w

hza z -1 Zw hz
vrvneaﬂézw @ (hi, xi) — og Zy (i)
fi(w)

Hope/fear view: for each instance 1,
» increase the score of the correct output x;,
score(x;) = w - p(hy, ;)
» decrease the “softened max" score overall,
log Y, cy exp score(v)
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MLE for w

N
- p(h;, ;) — log Zw (hy;
Vrgaea}ég;w ¢(hi, ;) —log Zw (h;)
- fi(w)
Gradient view:
Vwfi=  ¢hiz) = pw(v]|hi)-¢(h,v)
veY

observed features

expected features

Setting this to zero means getting model’s expectations to match
empirical observations.
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MLE for w: Algorithms

» Batch methods (L-BFGS is popular)

» Stochastic gradient ascent/descent more common today,
especially with special tricks for adapting the step size over
time

» Many specialized methods (e.g., “iterative scaling”)
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Stochastic Gradient Descent
Goal: minimize Zi\il fi(w) with respect to w.
Input: initial value w, number of epochs T', learning rate «
Forte{1,...,T}:

» Choose a random permutation 7 of {1,..., N}.
» Forie{l,...,N}

W W —a- Vyfri)

Output: w

41/62



Avoiding Overfitting

Maximum likelihood estimation:

max Zw ¢(h;, z;) — log Zw(h;)

wGRd

> If ¢;(h,x) is (almost) always positive, we can always increase
the objective (a little bit) by increasing w; toward +oo.



Avoiding Overfitting

Maximum likelihood estimation:

max Zw ¢(h;, z;) — log Zw(h;)

WERd

> If ¢;(h,x) is (almost) always positive, we can always increase
the objective (a little bit) by increasing w; toward +o0.

Standard solution is to add a regularization term:

N

max » w-¢(h;,x;) logZeXpw (hiyv) = MlwlD

d
weRTI =y

where XA > 0 is a hyperparameter and p =2 or 1.
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MLE for w

If we had more time, we'd study this problem more carefully!

Here's what you must remember:

» There is no closed form; you must use a numerical
optimization algorithm like stochastic gradient descent.

» Log-linear models are powerful but expensive (Zw (h;)).

» Regularization is very important; we don't actually do MLE.

» Just like for n-gram models! Only even more so, since
log-linear models are even more expressive.
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To-Do List

» Online quiz: due 11:59 pm Tuesday
» Read: Collins (2011) §2
» Al, out today, due January 18
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Special Case: Logistic Regression
Consider the case where Y = {+1, —1}.

expw - ¢(x,+1)
expw - ¢(x,+1) + expw - ¢p(z, —1)

pw(Y =+1]z) =
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Special Case: Logistic Regression
Consider the case where Y = {+1, —1}.

expw - ¢(x,+1)

pw(Y =+1]z) = expw - @(z, +1) + expw - ¢(z, —1)

= logit ™! (w - (¢(z, +1) — ¢(x, —1)))
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Special Case: Logistic Regression
Consider the case where Y = {+1, —1}.

expw - ¢(z,+1)

pw(Y =+1]z) = expw - ¢(z,+1) + expw - Pp(z, —1)

= logit ™! (w - (¢(z, +1) — ¢(x, —1)))

notation:change logit_l (W . f(ﬂj‘))
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Special Case: Logistic Regression
Consider the case where Y = {+1, —1}.

pw(Y =+1|2) = expw - ¢(z, +1)

expw - p(z,+1) + expw - ¢p(x, —1)
= logit™ (w - (¢(z, +1) — ¢(x, -1)))

notation:change logit_l (W . f(ﬂj‘))

» Should be familiar, if you know about logistic regression.
1
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Special Case: Logistic Regression
Consider the case where ) = {+1,—1}.
expw - ¢(x,+1)
expw - ¢p(x,+1) +expw - ¢p(x,—1)
= logit™" (W (¢(x, +1) — ¢z, 1))

notation:change logit_l (W . f(ﬂj‘))

pw(Y =41 |2z) =

» Should be familiar, if you know about logistic regression.
1

» When YV ={1,2,...,k}, log-linear models are often called
multinomial logistic regression.



Special Case: Classic n-Gram Language Model

Consider an n-gram language model, where X = V"l and ) = V.
Let:

| 2 d =1
> 61(h,v) = log (o)
> wp = 1

» Z(h) =) explogc(hv’) = > c(hv') = c(h)

v’ eV v’ eV
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Special Case: Classic n-Gram Language Model

Consider an n-gram language model, where X = V" and ) = V.
Let:

»d=1

> ¢1(h,v) =logc(hv)

» w; =1

» Z(h) = Z explog c(hv') = Z c(hv') = c(h)

v'ey v'ey

Alternately:

» d= V|

1 fh=hAv=29
> Ohs(h.v) :{ 0 otherwise
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{1 Regularization
This case warrants a little more discussion:

N
max w - ¢(h;, ;) logZexpw (hi,v) — A||lwl|1
weRd 4
i=1 veY
Note that:
d
Wit =" |wl
j=1

» This results in sparsity (i.e., many w; = 0).
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{1 Regularization
This case warrants a little more discussion:

N
max w - ¢(h;, ;) logZeXpw (hi,v) — A||lwl|1
weRd 4
i=1 veY
Note that:

d
Wit =" |wl
j=1

» This results in sparsity (i.e., many w; = 0).

» Many have argued that this is a good thing (Tibshirani, 1996);

it's a kind of feature selection.
» Do not confuse it with data sparseness (a problem to be
overcome)!
» This is not differentiable at w; = 0.
» Optimization: special solutions for batch (e.g., Andrew and
Gao, 2007) and stochastic (e.g., Langford et al., 2009)
settings.
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Maximum Entropy

Consider a distribution p over events in X. The Shannon entropy
(in bits) of p is defined as:

H(p)z—zp(XZw){O (X =) =0

reX logy p(X = x) otherwise

This is a measure of “randomness”; entropy is zero when p is
deterministic and log |X'| when p is uniform.

Maximum entropy principle: among distributions that fit the data,
pick the one with the greatest entropy.
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Maximum Entropy

If “fit the data” is taken to mean
Vk € {1,...,d}, Ep[¢] = Elg]

then the MLE of the log-linear family with features ¢ is the
maximum entropy solution.

This is why log-linear models are sometimes called “maxent”
models (e.g., Berger et al., 1996)
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“Whole Sentence” Log-Linear Models
(Rosenfeld, 1994)

Instead of a log-linear model for each word-given-history, define a
single log-linear model over event space V1:

expw - ¢(x)

pw(T) = T

» Any feature of the sentence could be included in this model!

> Z is deceptively simple-looking!

Zy = Z CXpWwW - (,b(:l?)

eVt



