Natural Language Processing (CSE 490U):

Featurized Language Models

Noah Smith
© 2017

University of Washington
nasmith@cs.washington.edu

January 9, 2017

1/62

What's wrong with n-grams?

Data sparseness: most histories and most words will be seen only
rarely (if at all).

What's wrong with n-grams?

Data sparseness: most histories and most words will be seen only
rarely (if at all).

Next central idea: teach histories and words how to share.

Log-Linear Models: Definitions

We define a conditional log-linear model p(Y | X) as:
») is the set of events/outputs (© for language modeling, V)

» X is the set of contexts/inputs (® for n-gram language
modeling, V"~ 1)

» ¢: X x) — R%is a feature vector function

» w € R? are the model parameters

expw - ¢(z,y)
> epw - o(z,y)

y'ey

pw(Y=y|X=2)=

Breaking It Down

exXpw - ¢(z,y)

Y expw - p(z,y)

y'ey

5/62

Breaking It Down

w(¥Y =y | X =2x)= expw - o(z,y)

> expw- ¢(x,y)
y' ey

linear score w - ¢(z,y)

6

62

Breaking It Down

EXpw - d)(xv y)

pw(Y:Z/|X:$):
Z EXpWwW - ¢(x7y)
y' ey

linear score w - ¢(z,y)

nonnegative expw - ¢(x,y)

Breaking It Down

exXpw - ¢(z,y)
> expw - ¢(x,y)

y'ey

pw(Y=y|X=2)=

linear score w - ¢(x,y)
nonnegative expw - ¢(z,y)

normalizer Z expw - d(z,y') = Zw(x)
y'ey

Breaking It Down

exXpw - ¢(z,y)
> expw - ¢(x,y)

y'ey

pw(Y=y|X=2)=

linear score w - ¢(x,y)

nonnegative expw - ¢(x,y)

normalizer Z expw - d(z,y) = Zw(x)
y'ey

“Log-linear” comes from the fact that:

logpw(Y =y | X =z)=w-¢(z,y) — log Zw(x)

constant in y

This is an instance of the family of generalized linear models.

The Geometric View

Suppose we have instance x, Y = {y1,92, Y3, Y4}, and there are
only two features, ¢ and ¢s.

A ¢2

(l‘, 3/3) o

o (L yl) ¢1

(7, yp) ®

10/62

The Geometric View

Suppose we have instance x, Y = {y1, 92, Y3, Y4}, and there are
only two features, ¢ and ¢s.

A (])2
(I, y3) o
m\ by
o (I: y4)\
(z, ?JQ) *

W@ =wipr +wapa =0

11/62

The Geometric View

Suppose we have instance x, Y = {y1, 92, Y3, Y4}, and there are
only two features, ¢ and ¢s.

A (])2
(I, y3) o
m\ by
o (I: y4)\
(z, ?JQ) *

pys) >plyr |) > plys | 2) > py2 | 7)

12 /62

The Geometric View

Suppose we have instance x, Y = {y1, 92, Y3, ya}, and there are
only two features, ¢ and ¢s.

A ¢2

(.1?, y3) L4

o ('T’ yl) ¢1

(z, ?12) *

13 /62

The Geometric View

Suppose we have instance x, Y = {y1, 92, Y3, Y4}, and there are
only two features, ¢ and ¢s.

A (])2
(I, y3) o

(z, ?JQ) *

plys | z) >p(y1 [2) > py2 [) > p(ya | @)

14 /62

Why Build Language Models This Way?

» Exploit features of histories for sharing of statistical strength
and better smoothing (Lau et al., 1993)

» Condition the whole text on more interesting variables like the
gender, age, or political affiliation of the author (Eisenstein
et al., 2011)
> Interpretability!
» Each feature ¢y controls a factor to the probability (e**).
> If1wk < 0 then ¢ makes the event less likely by a factor of

» If wi > 0 then ¢ makes the event more likely by a factor of
ek,

» If wr = 0 then ¢ has no effect.

15 /62

Log-Linear n-Gram Models

pr i =5 | X1jo1 = x15-1)

eXpw - @(T1.5-1,7;)
_H Zw (wlj 1)

4
assuﬂ)tion H eXpW ‘ ¢(wj—n+1:j—17 x])

N i1 Zw(mjfn+1:jfl)

)4
_ 17 &P W - B(hy, 7))
jI;[l ZW(hj)

16

62

Example

The man who knew too

much

many
little
few

hippopotamus

What Features in ¢(Xj—n+1:j—17Xj)?

18 /62

What Features in (p(Xj—n—i—l:j—lan)?

» Traditional n-gram features: “X;_; = the A X; = man”

19/62

What Features in (p(Xj—n—i—l:j—lan)?

» Traditional n-gram features: “X;_; = the A X; = man”

» “Gappy” n-grams: “X;_s = the A X; = man”

20 /62

What Features in (p(Xj—n—i—l:j—lan)?

» Traditional n-gram features: “X;_; = the A X; = man”
» “Gappy” n-grams: “X;_s = the A X; = man”

> Spelling features: “X;'s first character is capitalized”

What Features in (p(Xj—n—i—l:j—lan)?

» Traditional n-gram features: “X;_; = the A X; = man”
» “Gappy” n-grams: “X;_s = the A X; = man”
> Spelling features: “X;'s first character is capitalized”

v

Class features: “X; is a member of class 132"

N
N

What Features in (p(Xj—n—i—l:j—lan)?

v

Traditional n-gram features: “X;_; = the A X; = man”

v

“Gappy” n-grams: “X;_o = the A X; = man”

v

Spelling features: “X's first character is capitalized”

v

Class features: “X; is a member of class 132"

v

Gazetteer features: “X; is listed as a geographic place name”

What Features in (b(XjfnJrl;jfl,Xj)?

» Traditional n-gram features: “X;_; = the A X; = man”
» “Gappy” n-grams: “X;_5 = the A X; = man”
» Spelling features: “X;'s first character is capitalized”

v

Class features: "X is a member of class 132"

v

Gazetteer features: "X is listed as a geographic place name”

You can define any features you want!
» Too many features, and your model will overfit ®

» Too few (good) features, and your model will not learn ®

What Features in (b(XjfnJrl;jfl,Xj)?

» Traditional n-gram features: “X;_; = the A X; = man”

» “Gappy” n-grams: “X;_5 = the A X; = man”

» Spelling features: “X;'s first character is capitalized”

» Class features: "X is a member of class 132"

» Gazetteer features: “X; is listed as a geographic place name”

You can define any features you want!
» Too many features, and your model will overfit ®

» “Feature selection” methods, e.g., ignoring features with very
low counts, can help.

» Too few (good) features, and your model will not learn ®

“Feature Engineering”

» Many advances in NLP (not just language modeling) have
come from careful design of features.

“Feature Engineering”

» Many advances in NLP (not just language modeling) have
come from careful design of features.

» Sometimes “feature engineering” is used pejoratively.

“Feature Engineering”

» Many advances in NLP (not just language modeling) have
come from careful design of features.
» Sometimes “feature engineering” is used pejoratively.
» Some people would rather not spend their time on it!

“Feature Engineering”

» Many advances in NLP (not just language modeling) have
come from careful design of features.
» Sometimes “feature engineering” is used pejoratively.
» Some people would rather not spend their time on it!
» There is some work on automatically inducing features (Della
Pietra et al., 1997).

“Feature Engineering”

» Many advances in NLP (not just language modeling) have
come from careful design of features.
» Sometimes “feature engineering” is used pejoratively.
» Some people would rather not spend their time on it!

» There is some work on automatically inducing features (Della
Pietra et al., 1997).

» More recent work in neural networks can be seen as
discovering features (instead of engineering them).

30/62

“Feature Engineering”

» Many advances in NLP (not just language modeling) have
come from careful design of features.
» Sometimes “feature engineering” is used pejoratively.
» Some people would rather not spend their time on it!

» There is some work on automatically inducing features (Della
Pietra et al., 1997).

» More recent work in neural networks can be seen as
discovering features (instead of engineering them).

» But in much of NLP, there’s a strong preference for
interpretable features.

31/62

How to Estimate w?

n-gram

¢
po(z) = H‘nglhj
j=1
Parameters: 0,
Yo e V,he (VU{O}N" !

c(hv)
c(h)

MLE: 5, =

log-linear n-gram

ﬁ expw - @(hj,x;)

-1 ZW(hj)
Wk
vk € {1,...,d}

no closed form

MLE for w

» Let training data consist of {(h;,z;)}Y,.

33/62

MLE for w

» Let training data consist of {(h;,z;)}Y,.

» Maximum likelihood estimation is:

| w (i | by
&%Z og pw (i | hi)
e o expw - ¢(h;,v)
X
& Zu(hy)

weRd =1
= max w - ¢(hi, ;) —lo expw - ¢(h;,v
weRdZ p(hi,z; ggj pw - ¢(h;,v)

Zw(hy)

34 /62

MLE for w

» Let training data consist of {(h;,z;)}Y,.

» Maximum likelihood estimation is:

| w (i | by
&%Z og pw (i | hi)
e o expw - ¢(h;,v)
X
& Zu(hy)

weRd =1
= max w - ¢(hi, ;) —lo expw - ¢(h;,v
weRdZ p(hi,z; ggj pw - ¢(h;,v)

Zw(hy)

» This is concave in w.

35/62

MLE for w

» Let training data consist of {(h;,z;)}Y,.

» Maximum likelihood estimation is:

| w (i | by
&?@Z og pw (i | hi)
e o expw - ¢(h;,v)
X
& Zu(hy)

weRd =1
= max w - ¢(hi, ;) —lo expw - ¢(h;,v
weRdZ p(hi,z; ggj pw - ¢(h;,v)

Zw(hy)

» This is concave in w.
» Zw(h;) involves a sum over V' terms.

36 /62

MLE for w

N

~p(hi, z;) — log Zw (h;
33“5}@2;“’ d(hi, ;) —10g Zy (i)
= fi(w)

37 /62

MLE for w

hza z -1 Zw hz
vrvneaﬂézw @ (hi, xi) — og Zy (i)
fi(w)

Hope/fear view: for each instance 1,
» increase the score of the correct output x;,
score(x;) = w - p(hy, ;)
» decrease the “softened max" score overall,
log Y, cy exp score(v)

38 /62

MLE for w

N
- p(h;, ;) — log Zw (hy;
Vrgaea}ég;w ¢(hi, ;) —log Zw (h;)
- fi(w)
Gradient view:
Vwfi= ¢hiz) = pw(v]|hi)-¢(h,v)
veY

observed features

expected features

Setting this to zero means getting model’s expectations to match
empirical observations.

39 /62

MLE for w: Algorithms

» Batch methods (L-BFGS is popular)

» Stochastic gradient ascent/descent more common today,
especially with special tricks for adapting the step size over
time

» Many specialized methods (e.g., “iterative scaling”)

40 /62

Stochastic Gradient Descent
Goal: minimize Zi\il fi(w) with respect to w.
Input: initial value w, number of epochs T', learning rate «
Forte{1,...,T}:

» Choose a random permutation 7 of {1,..., N}.
» Forie{l,...,N}

W W —a- Vyfri)

Output: w

41/62

Avoiding Overfitting

Maximum likelihood estimation:

max Zw ¢(h;, z;) — log Zw(h;)

wGRd

> If ¢;(h,x) is (almost) always positive, we can always increase
the objective (a little bit) by increasing w; toward +oo.

Avoiding Overfitting

Maximum likelihood estimation:

max Zw ¢(h;, z;) — log Zw(h;)

WERd

> If ¢;(h,x) is (almost) always positive, we can always increase
the objective (a little bit) by increasing w; toward +o0.

Standard solution is to add a regularization term:

N

max » w-¢(h;,x;) logZeXpw (hiyv) = MlwlD

d
weRTI =y

where XA > 0 is a hyperparameter and p =2 or 1.

43 /62

MLE for w

If we had more time, we'd study this problem more carefully!

Here's what you must remember:

» There is no closed form; you must use a numerical
optimization algorithm like stochastic gradient descent.

» Log-linear models are powerful but expensive (Zw (h;)).

» Regularization is very important; we don't actually do MLE.

» Just like for n-gram models! Only even more so, since
log-linear models are even more expressive.

44 /62

To-Do List

» Online quiz: due 11:59 pm Tuesday
» Read: Collins (2011) §2
» Al, out today, due January 18

45 /62

References |

Galen Andrew and Jianfeng Gao. Scalable training of £1-regularized log-linear models.
In Proc. of ICML, 2007.

Adam Berger, Stephen Della Pietra, and Vincent Della Pietra. A maximum entropy
approach to natural language processing. Computational Linguistics, 22(1):39-71,
1996.

Michael Collins. Log-linear models, MEMMs, and CRFs, 2011. URL
http://www.cs.columbia.edu/~mcollins/crf.pdf.

Stephen Della Pietra, Vincent Della Pietra, and John Lafferty. Inducing features of
random fields. |IEEE Transactions on Pattern Analysis and Machine Intelligence, 19
(4):380-393, 1997.

Jacob Eisenstein, Amr Ahmed, and Eric P Xing. Sparse additive generative models of
text. In Proc. of ICML, 2011.

Joshua Goodman. Classes for fast maximum entropy training. In Proc. of ICASSP,
2001.

John Langford, Lihong Li, and Tong Zhang. Sparse online learning via truncated
gradient. In NIPS, 2009.

Raymond Lau, Ronald Rosenfeld, and Salim Roukos. Trigger-based language models:
A maximum entropy approach. In Proc. of ICASSP, 1993.

Roni Rosenfeld. Adaptive Statistical Language Modeling: A Maximum Entropy
Approach. PhD thesis, Carnegie Mellon University, 1994.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society. Series B (Methodological), pages 267=288, 1996.

46 /62

http://www.cs.columbia.edu/~mcollins/crf.pdf

Extras

47 /62

Special Case: Logistic Regression
Consider the case where Y = {+1, —1}.

expw - ¢(x,+1)
expw - ¢(x,+1) + expw - ¢p(z, —1)

pw(Y =+1]z) =

48 /62

Special Case: Logistic Regression
Consider the case where Y = {+1, —1}.

expw - ¢(x,+1)

pw(Y =+1]z) = expw - @(z, +1) + expw - ¢(z, —1)

= logit ™! (w - (¢(z, +1) — ¢(x, —1)))

49 /62

Special Case: Logistic Regression
Consider the case where Y = {+1, —1}.

expw - ¢(z,+1)

pw(Y =+1]z) = expw - ¢(z,+1) + expw - Pp(z, —1)

= logit ™! (w - (¢(z, +1) — ¢(x, —1)))

notation:change logit_l (W . f(ﬂj‘))

50 /62

Special Case: Logistic Regression
Consider the case where Y = {+1, —1}.

pw(Y =+1|2) = expw - ¢(z, +1)

expw - p(z,+1) + expw - ¢p(x, —1)
= logit™ (w - (¢(z, +1) — ¢(x, -1)))

notation:change logit_l (W . f(ﬂj‘))

» Should be familiar, if you know about logistic regression.
1

51/62

Special Case: Logistic Regression
Consider the case where) = {+1,—1}.
expw - ¢(x,+1)
expw - ¢p(x,+1) +expw - ¢p(x,—1)
= logit™" (W (¢(x, +1) — ¢z, 1))

notation:change logit_l (W . f(ﬂj‘))

pw(Y =41 |2z) =

» Should be familiar, if you know about logistic regression.
1

» When YV ={1,2,...,k}, log-linear models are often called
multinomial logistic regression.

Special Case: Classic n-Gram Language Model

Consider an n-gram language model, where X = V"l and) = V.
Let:

| 2 d =1
> 61(h,v) = log (o)
> wp = 1

» Z(h) =) explogc(hv’) = > c(hv') = c(h)

v’ eV v’ eV

53 /62

Special Case: Classic n-Gram Language Model

Consider an n-gram language model, where X = V" and) = V.
Let:

»d=1

> ¢1(h,v) =logc(hv)

» w; =1

» Z(h) = Z explog c(hv') = Z c(hv') = c(h)

v'ey v'ey

Alternately:

» d= V|

1 fh=hAv=29
> Ohs(h.v) :{ 0 otherwise

54 /62

{1 Regularization
This case warrants a little more discussion:

N
max w - ¢(h;, ;) logZexpw (hi,v) — A||lwl|1
weRd 4
i=1 veY
Note that:
d
Wit =" |wl
j=1

» This results in sparsity (i.e., many w; = 0).

{1 Regularization
This case warrants a little more discussion:

N
max w - ¢(h;, ;) logZeXpw (hi,v) — A||lwl|1
weRd 4
i=1 veY
Note that:

d
Wit =" |wl
j=1

» This results in sparsity (i.e., many w; = 0).

» Many have argued that this is a good thing (Tibshirani, 1996);

it's a kind of feature selection.

{1 Regularization
This case warrants a little more discussion:

N

max > w - ¢(hi,z;) —log Y expw - ¢(h;,v) — A|w|s
weRd £
i=1 veY
Note that:
d
wili =Y |uwj]
j=1

» This results in sparsity (i.e., many w; = 0).
» Many have argued that this is a good thing (Tibshirani, 1996);

it's a kind of feature selection.
» Do not confuse it with data sparseness (a problem to be

overcome)!

{1 Regularization
This case warrants a little more discussion:

N
max > w - ¢(hi,z;) —log Y expw - ¢(h;,v) — A|w|s
weRd £

i=1 veY

Note that:

d
Wit =" |wl
j=1

» This results in sparsity (i.e., many w; = 0).
» Many have argued that this is a good thing (Tibshirani, 1996);
it's a kind of feature selection.
» Do not confuse it with data sparseness (a problem to be
overcome)!

» This is not differentiable at w; = 0.

{1 Regularization
This case warrants a little more discussion:

N
max w - ¢(h;, ;) logZeXpw (hi,v) — A||lwl|1
weRd 4
i=1 veY
Note that:

d
Wit =" |wl
j=1

» This results in sparsity (i.e., many w; = 0).

» Many have argued that this is a good thing (Tibshirani, 1996);

it's a kind of feature selection.
» Do not confuse it with data sparseness (a problem to be
overcome)!
» This is not differentiable at w; = 0.
» Optimization: special solutions for batch (e.g., Andrew and
Gao, 2007) and stochastic (e.g., Langford et al., 2009)
settings.

62

Maximum Entropy

Consider a distribution p over events in X. The Shannon entropy
(in bits) of p is defined as:

H(p)z—zp(XZw){O (X =) =0

reX logy p(X = x) otherwise

This is a measure of “randomness”; entropy is zero when p is
deterministic and log |X'| when p is uniform.

Maximum entropy principle: among distributions that fit the data,
pick the one with the greatest entropy.

60 /62

Maximum Entropy

If “fit the data” is taken to mean
Vk € {1,...,d}, Ep[¢] = Elg]

then the MLE of the log-linear family with features ¢ is the
maximum entropy solution.

This is why log-linear models are sometimes called “maxent”
models (e.g., Berger et al., 1996)

61 /62

“Whole Sentence” Log-Linear Models
(Rosenfeld, 1994)

Instead of a log-linear model for each word-given-history, define a
single log-linear model over event space V1:

expw - ¢(x)

pw(T) = T

» Any feature of the sentence could be included in this model!

> Z is deceptively simple-looking!

Zy = Z CXpWwW - (,b(:l?)

eVt

