Parsing (Trees)

Yejin Choi - University of Washington

[Slides from Dan Klein, Michael Collins, Luke Zettlemoyer and Ray Mooney]
Topics

- Parse Trees
- (Probabilistic) Context Free Grammars
 - Supervised learning
 - Parsing: most likely tree, marginal distributions
- Treebank Parsing (English, edited text)
The move followed a round of similar increases by other lenders, reflecting a continuing decline in that market.
Penn Treebank Non-terminals

Table 1.2. The Penn Treebank syntactic tagset

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADJP</td>
<td>Adjective phrase</td>
</tr>
<tr>
<td>ADVP</td>
<td>Adverb phrase</td>
</tr>
<tr>
<td>NP</td>
<td>Noun phrase</td>
</tr>
<tr>
<td>PP</td>
<td>Prepositional phrase</td>
</tr>
<tr>
<td>S</td>
<td>Simple declarative clause</td>
</tr>
<tr>
<td>SBAR</td>
<td>Subordinate clause</td>
</tr>
<tr>
<td>SBARQ</td>
<td>Direct question introduced by wh-element</td>
</tr>
<tr>
<td>SINV</td>
<td>Declarative sentence with subject-aux inversion</td>
</tr>
<tr>
<td>SQ</td>
<td>Yes/no questions and subconstituent of SBARQ excluding wh-element</td>
</tr>
<tr>
<td>VP</td>
<td>Verb phrase</td>
</tr>
<tr>
<td>WHADVP</td>
<td>Wh-adverb phrase</td>
</tr>
<tr>
<td>WHNP</td>
<td>Wh-noun phrase</td>
</tr>
<tr>
<td>WHPP</td>
<td>Wh-prepositional phrase</td>
</tr>
<tr>
<td>X</td>
<td>Constituent of unknown or uncertain category</td>
</tr>
<tr>
<td>*</td>
<td>“Understood” subject of infinitive or imperative</td>
</tr>
<tr>
<td>0</td>
<td>Zero variant of that in subordinate clauses</td>
</tr>
<tr>
<td>T</td>
<td>Trace of wh-Constituent</td>
</tr>
</tbody>
</table>
The Penn Treebank: Size

- Penn WSJ Treebank = 50,000 sentences with associated trees
- Usual set-up: 40,000 training sentences, 2400 test sentences

An example tree:

Canadian Utilities had 1988 revenue of C$ 1.16 billion, mainly from its natural gas and electric utility businesses in Alberta, where the company serves about 800,000 customers.
Phrase Structure Parsing

- Phrase structure parsing organizes syntax into *constituents* or *brackets*.
- In general, this involves nested trees.
- Linguists can, and do, argue about details.
- Lots of ambiguity.
- Not the only kind of syntax…

```
new art critics write reviews with computers
```

```
S
  └── NPsingular
      └── VP
          ├── Determiner
          │   └── Noun
          │       └── Prepositional Phrase
          │           └── Determiner
          │               └── Noun
          │                   └── Prepositional Phrase
          └── Noun

The velocity of the seismic waves rises to . . .
```
Constituency Tests

- How do we know what nodes go in the tree?
- Classic constituency tests:
 - Substitution by proform
 - he, she, it, they, ...
 - Question / answer
 - Deletion
 - Movement / dislocation
 - Conjunction / coordination
- Cross-linguistic arguments, too
Conflicting Tests

- Constituency isn’t always clear
 - Units of transfer:
 - think about ~ penser à
 - talk about ~ hablar de
 - Phonological reduction:
 - I will go → I’ll go
 - I want to go → I wanna go
 - a le centre → au centre
- Coordination
 - He went to and came from the store.
Classical NLP: Parsing in 70s/80s

- Write symbolic or logical rules:

 Grammar (CFG) | Lexicon

 ROOT → S | NP → NP PP | NN → interest
 S → NP VP | VP → VBP NP | NNS → raises
 NP → DT NN | VP → VBP NP PP | VBP → interest
 NP → NN NNS | PP → IN NP | VBZ → raises
 ...

- Use deduction systems to prove parses from words
 - Simple 10-rule grammar: 592 parses
 - Real-size grammar: many millions of parses

- This scaled very badly, but was a popular approach in the 70’s and 80’s before corpora were available.
- Didn’t yield broad-coverage tools.
I shot [an elephant] [in my pajamas]
Attachment Ambiguity

- I cleaned the dishes from dinner
- I cleaned the dishes with detergent
- I cleaned the dishes in my pajamas
- I cleaned the dishes in the sink

The board approved [its acquisition] [by Royal Trustco Ltd.] [of Toronto] [for $27 a share] [at its monthly meeting].
Syntactic Ambiguities I

- **Prepositional phrases:**
 They cooked the beans in the pot on the stove with handles.

- **Particle vs. preposition:**
 The puppy tore up the staircase.

- **Complement structures**
 The tourists objected to the guide that they couldn’t hear.
 She knows you like the back of her hand.

- **Gerund vs. participial adjective**
 Visiting relatives can be boring.
 Changing schedules frequently confused passengers.
Syntactic Ambiguities II

- Modifier scope within NPs
 impractical design requirements
 plastic cup holder

- Multiple gap constructions
 The chicken is ready to eat.
 The contractors are rich enough to sue.

- Coordination scope:
 Small rats and mice can squeeze into holes or cracks in the wall.
Dark Ambiguities

- **Dark ambiguities**: most analyses are shockingly bad (meaning, they don’t have an interpretation you can get your mind around)

 This analysis corresponds to the correct parse of

 “*This will panic buyers!*”

- **Unknown words and new usages**
- **Solution**: We need mechanisms to focus attention on the best ones, probabilistic techniques do this
A context-free grammar is a tuple \(<N, \Sigma, S, R>\)

- \(N\): the set of non-terminals
 - Phrasal categories: S, NP, VP, ADJP, etc.
 - Parts-of-speech (pre-terminals): NN, JJ, DT, VB
- \(\Sigma\): the set of terminals (the words)
- \(S\): the start symbol
 - Often written as ROOT or TOP
 - *Not* usually the sentence non-terminal S
- \(R\): the set of rules
 - Of the form \(X \rightarrow Y_1 Y_2 \ldots Y_n\), with \(X \in N, n \geq 0, Y_i \in (N \cup \Sigma)\)
 - Examples: \(S \rightarrow NP \ VP\), \(VP \rightarrow VP \ CC \ VP\)
 - Also called rewrites, productions, or local trees
Example Grammar

\[N = \{S, \text{NP}, \text{VP}, \text{PP}, \text{DT}, \text{Vi}, \text{Vt}, \text{NN}, \text{IN}\} \]

\[S' = S \]

\[\Sigma = \{\text{sleeps, saw, man, woman, telescope, the, with, in}\} \]

\[R = \]

<table>
<thead>
<tr>
<th></th>
<th>NP</th>
<th>VP</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>⇒</td>
<td>NP</td>
</tr>
<tr>
<td>VP</td>
<td>⇒</td>
<td>Vi</td>
</tr>
<tr>
<td>VP</td>
<td>⇒</td>
<td>Vt</td>
</tr>
<tr>
<td>VP</td>
<td>⇒</td>
<td>VP</td>
</tr>
<tr>
<td>NP</td>
<td>⇒</td>
<td>DT</td>
</tr>
<tr>
<td>NP</td>
<td>⇒</td>
<td>NP</td>
</tr>
<tr>
<td>PP</td>
<td>⇒</td>
<td>IN</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vi</td>
<td>⇒</td>
</tr>
<tr>
<td>Vt</td>
<td>⇒</td>
</tr>
<tr>
<td>NN</td>
<td>⇒</td>
</tr>
<tr>
<td>NN</td>
<td>⇒</td>
</tr>
<tr>
<td>NN</td>
<td>⇒</td>
</tr>
<tr>
<td>DT</td>
<td>⇒</td>
</tr>
<tr>
<td>IN</td>
<td>⇒</td>
</tr>
<tr>
<td>IN</td>
<td>⇒</td>
</tr>
</tbody>
</table>

S=sentence, VP=verb phrase, NP=noun phrase, PP=prepositional phrase, DT=determiner, Vi=intransitive verb, Vt=transitive verb, NN=noun, IN=preposition
A Context-Free Grammar for English

\[R = \begin{array}{|c|c|c|} \hline \text{NP} & \text{VP} & \text{NP} \\
\hline \text{S} & \Rightarrow & \text{NP} \quad \text{VP} \\
\hline \text{VP} & \Rightarrow & \text{Vi} \\
\hline \text{VP} & \Rightarrow & \text{Vt} \quad \text{NP} \\
\hline \text{VP} & \Rightarrow & \text{VP} \quad \text{PP} \\
\hline \text{NP} & \Rightarrow & \text{DT} \quad \text{NN} \\
\hline \text{NP} & \Rightarrow & \text{NP} \quad \text{PP} \\
\hline \text{PP} & \Rightarrow & \text{IN} \quad \text{NP} \\
\hline \text{Vi} & \Rightarrow & \text{sleeps} \\
\hline \text{Vt} & \Rightarrow & \text{saw} \\
\hline \text{NN} & \Rightarrow & \text{man} \\
\hline \text{NN} & \Rightarrow & \text{woman} \\
\hline \text{NN} & \Rightarrow & \text{telescope} \\
\hline \text{DT} & \Rightarrow & \text{the} \\
\hline \text{IN} & \Rightarrow & \text{with} \\
\hline \text{IN} & \Rightarrow & \text{in} \\
\hline \end{array} \]

Example Pareses

The man sleeps

The man saw the woman with the telescope

\(S = \) sentence, \(VP = \) verb phrase, \(NP = \) noun phrase, \(PP = \) prepositional phrase, \(DT = \) determiner, \(Vi = \) intransitive verb, \(Vt = \) transitive verb, \(NN = \) noun, \(IN = \) preposition
Probabilistic Context-Free Grammars

- A context-free grammar is a tuple \(<N, \Sigma, S, R>\)
 - \(N\) : the set of non-terminals
 - Phrasal categories: S, NP, VP, ADJP, etc.
 - Parts-of-speech (pre-terminals): NN, JJ, DT, VB, etc.
 - \(\Sigma\) : the set of terminals (the words)
 - \(S\) : the start symbol
 - Often written as ROOT or TOP
 - Not usually the sentence non-terminal S
 - \(R\) : the set of rules
 - Of the form \(X \rightarrow Y_1 Y_2 \ldots Y_n\), with \(X \in N\), \(n \geq 0\), \(Y_i \in (N \cup \Sigma)\)
 - Examples: \(S \rightarrow NP \ VP\), \(VP \rightarrow VP \ CC \ VP\)
 - A PCFG adds a distribution \(q\):
 - Probability \(q(r)\) for each \(r \in R\), such that for all \(X \in N\):
 \[
 \sum_{\alpha \rightarrow \beta \in R: \alpha = X} q(\alpha \rightarrow \beta) = 1
 \]
PCFG Example

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>NP</td>
<td>VP</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>VP</td>
<td>Vi</td>
<td>0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VP</td>
<td>Vt</td>
<td>NP</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>VP</td>
<td>VP</td>
<td>PP</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>NP</td>
<td>DT</td>
<td>NN</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>NP</td>
<td>NP</td>
<td>PP</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>PP</td>
<td>P</td>
<td>NP</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vi</td>
<td>sleeps</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Vt</td>
<td>saw</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>NN</td>
<td>man</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>NN</td>
<td>woman</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>NN</td>
<td>telescope</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>DT</td>
<td>the</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>IN</td>
<td>with</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>IN</td>
<td>in</td>
<td>0.5</td>
<td></td>
</tr>
</tbody>
</table>

- Probability of a tree t with rules

\[\alpha_1 \rightarrow \beta_1, \alpha_2 \rightarrow \beta_2, \ldots, \alpha_n \rightarrow \beta_n \]

is

\[p(t) = \prod_{i=1}^{n} q(\alpha_i \rightarrow \beta_i) \]

where $q(\alpha \rightarrow \beta)$ is the probability for rule $\alpha \rightarrow \beta$.
PCFG Example

<table>
<thead>
<tr>
<th></th>
<th>Left</th>
<th>Right</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>NP</td>
<td>VP</td>
<td>1.0</td>
</tr>
<tr>
<td>VP</td>
<td>Vi</td>
<td></td>
<td>0.4</td>
</tr>
<tr>
<td>VP</td>
<td>Vt</td>
<td>NP</td>
<td>0.4</td>
</tr>
<tr>
<td>VP</td>
<td>VP</td>
<td>PP</td>
<td>0.2</td>
</tr>
<tr>
<td>NP</td>
<td>DT</td>
<td>NN</td>
<td>0.3</td>
</tr>
<tr>
<td>NP</td>
<td>NP</td>
<td>PP</td>
<td>0.7</td>
</tr>
<tr>
<td>PP</td>
<td>P</td>
<td>NP</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Tree 1

The man sleeps

\[
p(t_1) = 1.0 \times 0.3 \times 1.0 \times 0.7 \times 0.4 \times 1.0
\]

Tree 2

The man saw the woman with the telescope

\[
p(t_2) = 1.8 \times 0.3 \times 1.0 \times 0.7 \times 0.2 \times 0.4 \times 1.0 \times 0.3 \times 1.0 \times 0.2 \times 0.4 \times 0.5 \times 0.3 \times 1.0 \times 0.1
\]
PCFGs: Learning and Inference

- **Model**
 - The probability of a tree t with n rules $\alpha_i \rightarrow \beta_i$, $i = 1..n$

 \[
p(t) = \prod_{i=1}^{n} q(\alpha_i \rightarrow \beta_i)
 \]

- **Learning**
 - Read the rules off of labeled sentences, use ML estimates for probabilities

 \[
 q_{ML}(\alpha \rightarrow \beta) = \frac{\text{Count}(\alpha \rightarrow \beta)}{\text{Count}(\alpha)}
 \]

 - and use all of our standard smoothing tricks!

- **Inference**
 - For input sentence s, define $T(s)$ to be the set of trees whose *yield* is s (whole leaves, read left to right, match the words in s)

 \[
t^*(s) = \arg \max_{t \in T(s)} p(t)
 \]
Chomsky Normal Form

- **Chomsky normal form:**
 - All rules of the form $X \rightarrow Y Z$ or $X \rightarrow w$
 - In principle, this is no limitation on the space of (P)CFGs
 - N-ary rules introduce new non-terminals

- Unaries / empties are “promoted”
- In practice it’s kind of a pain:
 - Reconstructing n-aries is easy
 - Reconstructing unaries is trickier
 - The straightforward transformations don’t preserve tree scores
- Makes parsing algorithms simpler!
Original Grammar

S → NP VP 0.8
S → Aux NP VP 0.1
S → VP 0.1

NP → Pronoun 0.2
NP → Proper-Noun 0.2
NP → Det Nominal 0.6
Nominal → Noun 0.3
Nominal → Nominal Noun 0.2
Nominal → Nominal PP 0.5

VP → Verb 0.2
VP → Verb NP 0.5
VP → VP PP 0.3
PP → Prep NP 1.0

Lexicon:
Noun → book | flight | meal | money
 0.1 0.5 0.2 0.2
Verb → book | include | prefer
 0.5 0.2 0.3

Det → the | a | that | this
 0.6 0.2 0.1 0.1
Pronoun → I | he | she | me
 0.5 0.1 0.1 0.3
Proper-Noun → Houston | NWA
 0.8 0.2
Aux → does
 1.0
Prep → from | to | on | near | through
 0.25 0.25 0.1 0.2 0.2
Original Grammar

<table>
<thead>
<tr>
<th>Grammar</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>S → NP VP</td>
<td>0.8</td>
</tr>
<tr>
<td>S → Aux NP VP</td>
<td>0.1</td>
</tr>
<tr>
<td>S → VP</td>
<td>0.1</td>
</tr>
<tr>
<td>NP → Pronoun</td>
<td>0.2</td>
</tr>
<tr>
<td>NP → Proper-Noun</td>
<td>0.2</td>
</tr>
<tr>
<td>NP → Det Nominal</td>
<td>0.6</td>
</tr>
<tr>
<td>Nominal → Noun</td>
<td>0.3</td>
</tr>
<tr>
<td>Nominal → Nominal Noun</td>
<td>0.2</td>
</tr>
<tr>
<td>Nominal → Nominal PP</td>
<td>0.5</td>
</tr>
<tr>
<td>VP → Verb</td>
<td>0.2</td>
</tr>
<tr>
<td>VP → Verb NP</td>
<td>0.5</td>
</tr>
<tr>
<td>VP → VP PP</td>
<td>0.3</td>
</tr>
<tr>
<td>PP → Prep NP</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Chomsky Normal Form

<table>
<thead>
<tr>
<th>Grammar</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>S → NP VP</td>
<td>0.8</td>
</tr>
<tr>
<td>S → X1 VP</td>
<td>0.1</td>
</tr>
<tr>
<td>X1 → Aux NP</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Lexicon (See previous slide for full list)

<table>
<thead>
<tr>
<th>Noun</th>
<th>book</th>
<th>flight</th>
<th>meal</th>
<th>money</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prob</td>
<td>0.1</td>
<td>0.5</td>
<td>0.2</td>
<td>0.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verb</th>
<th>book</th>
<th>include</th>
<th>prefer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prob</td>
<td>0.5</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>Original Grammar</td>
<td>Chomsky Normal Form</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>------------------------------</td>
<td></td>
</tr>
<tr>
<td>S → NP VP</td>
<td>0.8</td>
<td>S → NP VP</td>
<td></td>
</tr>
<tr>
<td>S → Aux NP VP</td>
<td>0.1</td>
<td>S → X1 VP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S → VP</td>
<td>X1 → Aux NP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>NP → Pronoun</td>
<td>0.2</td>
<td>S → book</td>
<td>include</td>
</tr>
<tr>
<td>NP → Proper-Noun</td>
<td>0.2</td>
<td>S → Verb NP</td>
<td></td>
</tr>
<tr>
<td>NP → Det Nominal</td>
<td>0.6</td>
<td>S → VP PP</td>
<td></td>
</tr>
<tr>
<td>Nominal → Noun</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominal → Nominal Noun</td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominal → Nominal PP</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VP → Verb</td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VP → Verb NP</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VP → VP PP</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PP → Prep NP</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lexicon (See previous slide for full list):

Noun → book | flight | meal | money

| | 0.1 | 0.5 | 0.2 | 0.2 |

Verb → book | include | prefer

| | 0.5 | 0.2 | 0.3 |
Original Grammar

<table>
<thead>
<tr>
<th>RULE</th>
<th>PROBABILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>S → NP VP</td>
<td>0.8</td>
</tr>
<tr>
<td>S → Aux NP VP</td>
<td>0.1</td>
</tr>
<tr>
<td>S → VP</td>
<td>0.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RULE</th>
<th>PROBABILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP → Pronoun</td>
<td>0.2</td>
</tr>
<tr>
<td>NP → Proper-Noun</td>
<td>0.2</td>
</tr>
<tr>
<td>NP → Det Nominal</td>
<td>0.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RULE</th>
<th>PROBABILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal → Noun</td>
<td>0.3</td>
</tr>
<tr>
<td>Nominal → Nominal Noun</td>
<td>0.2</td>
</tr>
<tr>
<td>Nominal → Nominal PP</td>
<td>0.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RULE</th>
<th>PROBABILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>VP → Verb</td>
<td>0.2</td>
</tr>
<tr>
<td>VP → Verb NP</td>
<td>0.5</td>
</tr>
<tr>
<td>VP → VP PP</td>
<td>0.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RULE</th>
<th>PROBABILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>PP → Prep NP</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Chomsky Normal Form

<table>
<thead>
<tr>
<th>RULE</th>
<th>PROBABILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>S → NP VP</td>
<td>0.8</td>
</tr>
<tr>
<td>S → X1 VP</td>
<td>0.1</td>
</tr>
<tr>
<td>X1 → Aux NP</td>
<td>1.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RULE</th>
<th>PROBABILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>S → book</td>
<td>include</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RULE</th>
<th>PROBABILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>S → Verb NP</td>
<td>0.05</td>
</tr>
<tr>
<td>S → VP PP</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Lexicon

<table>
<thead>
<tr>
<th>CATEGORY</th>
<th>PROBABILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noun → book</td>
<td>flight</td>
</tr>
<tr>
<td>Verb → book</td>
<td>include</td>
</tr>
</tbody>
</table>
The Parsing Problem

critics write reviews with computers

new art critics write reviews with computers
A Recursive Parser

\[
\text{bestScore}(i,j,X)
\]

\[
\text{if (} j == i \text{)}
\]

\[
\text{return } q(X->s[i])
\]

\[
\text{else}
\]

\[
\text{return max } \max_{k,X->YZ} q(X->YZ) \times \text{bestScore}(i,k,Y) \times \text{bestScore}(k+1,j,Z)
\]

- Will this parser work?
- Why or why not?
- Memory/time requirements?
- Q: Remind you of anything? Can we adapt this to other models / inference tasks?
Dynamic Programming

- **We will store:** score of the max parse of \(x_i \) to \(x_j \) with root non-terminal \(X \)
 \[
 \pi(i, j, X)
 \]

- **So we can compute the most likely parse:**
 \[
 \pi(1, n, S) = \max_{t \in \mathcal{T}_G(s)} p(t)
 \]

- **Via the recursion:**
 \[
 \pi(i, j, X) = \max_{X \rightarrow YZ \in R, s \in \{i \ldots (j-1)\}} (q(X \rightarrow YZ) \times \pi(i, s, Y) \times \pi(s + 1, j, Z))
 \]

- **With base case:**
 \[
 \pi(i, i, X) = \begin{cases}
 q(X \rightarrow x_i) & \text{if } X \rightarrow x_i \in R \\
 0 & \text{otherwise}
 \end{cases}
 \]
The CKY Algorithm

- **Input:** a sentence $s = x_1 \ldots x_n$ and a PCFG $= \langle N, \Sigma, S, R, q \rangle$
- **Initialization:** For $i = 1 \ldots n$ and all X in N

 \[\pi(i, i, X) = \begin{cases}
 q(X \rightarrow x_i) & \text{if } X \rightarrow x_i \in R \\
 0 & \text{otherwise}
 \end{cases} \]

- For $l = 1 \ldots (n-1)$
 - For $i = 1 \ldots (n-l)$ and $j = i+l$ [iterate all phrase lengths]
 - For all X in N [iterate all phrases of length l]
 - [iterate all non-terminals]

 \[\pi(i, j, X) = \max_{X \rightarrowYZ \in R, \atop s \in \{i\ldots(j-1)\}} (q(X \rightarrow YZ) \times \pi(i, s, Y) \times \pi(s + 1, j, Z)) \]

 - also, store back pointers

 \[bp(i, j, X) = \arg \max_{X \rightarrowYZ \in R, \atop s \in \{i\ldots(j-1)\}} (q(X \rightarrow YZ) \times \pi(i, s, Y) \times \pi(s + 1, j, Z)) \]
S → NP VP 0.8
S → X1 VP 0.1
X1 → Aux NP 1.0
S → book | include | prefer
 0.01 0.004 0.006
S → Verb NP 0.05
S → VP PP 0.03
NP → I | he | she | me
 0.1 0.02 0.02 0.06
NP → Houston | NWA
 0.16 .04
Det → the | a | an
 0.6 0.1 0.05
NP → Det Nominal 0.6
Nominal → book | flight | meal | money
 0.03 0.15 0.06 0.06
Nominal → Nominal Nominal 0.2
Nominal → Nominal PP 0.5
Verb → book | include | prefer
 0.5 0.04 0.06
VP → Verb NP 0.5
VP → VP PP 0.3
Prep → through | to | from
 0.2 0.3 0.3
PP → Prep NP 1.0

Proabilistic CKY Parser

Book the flight through Houston

S :01, Verb:.5
Nominal:.03

S :.05*.5*.054
Nominal:.03

VP :.5*.5*.054
Nominal:.03

S :.03*.0135*.03
Nominal:.03

NP :.6*.6*
Nominal:.03

PP :1.0*.2*.16
Nominal:.03
Probabilistic CKY Parser

<table>
<thead>
<tr>
<th>Book</th>
<th>the</th>
<th>flight</th>
<th>through</th>
<th>Houston</th>
</tr>
</thead>
<tbody>
<tr>
<td>S: .01, Verb: .5</td>
<td>None</td>
<td>S: .05*.5*.054 = .00135</td>
<td>None</td>
<td>S: .0000216</td>
</tr>
<tr>
<td>Det: .6</td>
<td>NP: .6*.6*.15 = .054</td>
<td>None</td>
<td>NP: .6*.6*.0024 = .000864</td>
<td></td>
</tr>
<tr>
<td>Nominal: .15</td>
<td>None</td>
<td>Nominal: .5*.15*.032 = .0024</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prep: .2</td>
<td>PP: 1.0*.2*.16 = .032</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NP: .16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Parse Tree #1

Pick most probable parse, i.e. take max to combine probabilities of multiple derivations of each constituent in each cell.
Probabilistic CKY Parser

Pick most probable parse, i.e. take max to combine probabilities of multiple derivations of each constituent in each cell.
Memory

- How much memory does this require?
 - Have to store the score cache
 - Cache size: \(|\text{symbols}|*n^2\) doubles

- Pruning: Beam Search
 - \(\text{score}[X][i][j]\) can get too large (when?)
 - Can keep beams (truncated maps \(\text{score}[i][j]\)) which only store the best \(K\) scores for the span \([i,j]\)

- Pruning: Coarse-to-Fine
 - Use a smaller grammar to rule out most \(X[i,j]\)
 - Much more on this later…
How much time will it take to parse?

- For each diff \((j - i) \leq n\)
 - For each \(i \leq n\)
 - For each rule \(X \rightarrow YZ\)
 - For each split point \(k\)
 - Do constant work

Total time: \(|\text{rules}|n^3\)

Something like 5 sec for an unoptimized parse of a 20-word sentences
Time: Practice

- Parsing with the vanilla treebank grammar:

 - ~ 20K Rules (not an optimized parser!)
 - Observed exponent: 3.6

- Why’s it worse in practice?
 - Longer sentences “unlock” more of the grammar
 - All kinds of systems issues don’t scale
Other Dynamic Programs

Can also compute other quantities:

- **Best Inside**: score of the max parse of w_i to w_j with root non-terminal X

- **Best Outside**: score of the max parse of w_0 to w_n with a gap from w_i to w_j rooted with non-terminal X
 - see notes for derivation, it is a bit more complicated

- Sum Inside/Outside: Do sums instead of maxes
Why Chomsky Normal Form?

Inference:
- Can we keep N-ary (N > 2) rules and still do dynamic programming?
- Can we keep unary rules and still do dynamic programming?

Learning:
- Can we reconstruct the original trees?
CNF + Unary Closure

We need unaries to be non-cyclic

- Calculate \textit{closure} \(\text{Close}(R) \) for unary rules in \(R \)
 - Add \(X \rightarrow Y \) if there exists a rule chain \(X \rightarrow Z_1, Z_1 \rightarrow Z_2, \ldots, Z_k \rightarrow Y \) with
 \[q(X \rightarrow Y) = q(X \rightarrow Z_1) \times q(Z_1 \rightarrow Z_2) \times \ldots \times q(Z_k \rightarrow Y) \]
 - If no unary rule exist for \(X \), add \(X \rightarrow X \) with \(q(X \rightarrow X) = 1 \) for all \(X \) in \(N \)

- Rather than zero or more unaries, always exactly one
- Alternate unary and binary layers
- What about \(X \rightarrow Y \) with different unary paths (and scores)?
The CKY Algorithm

- **Input:** a sentence $s = x_1 .. x_n$ and a PCFG $= <N, \Sigma, S, R, q>$
- **Initialization:** For $i = 1 \ldots n$ and all X in N
 \[
 \pi(i, i, X) = \begin{cases}
 q(X \rightarrow x_i) & \text{if } X \rightarrow x_i \in R \\
 0 & \text{otherwise}
 \end{cases}
 \]
- For $l = 1 \ldots (n-1)$
 - For $i = 1 \ldots (n-l)$ and $j = i+l$
 - For all X in N
 \[
 \pi(i, j, X) = \max_{X \rightarrow YZ \in R, \ s \in \{i \ldots (j-1)\}} (q(X \rightarrow YZ) \times \pi(i, s, Y) \times \pi(s+1, j, Z))
 \]
- also, store back pointers
 \[
 bp(i, j, X) = \arg \max_{X \rightarrow YZ \in R, \ s \in \{i \ldots (j-1)\}} (q(X \rightarrow YZ) \times \pi(i, s, Y) \times \pi(s+1, j, Z))
 \]
CKY with Unary Closure

- **Input:** a sentence $s = x_1 \ldots x_n$ and a PCFG = $<N, \Sigma, S, R, q>$
- **Initialization:** For $i = 1 \ldots n$:
 - Step 1: for all X in N:
 $\pi(i, i, X) = \begin{cases} q(X \to x_i) & \text{if } X \to x_i \in R \\ 0 & \text{otherwise} \end{cases}$
 - Step 2: for all X in N:
 $\pi_U(i, i, X) = \max_{X \to Y \in \text{Close}(R)} (q(X \to Y) \times \pi(i, i, Y))$
- For $l = 1 \ldots (n-1)$
 - Step 1: (Binary)
 - For all X in N
 $\pi_B(i, j, X) = \max_{X \to Y Z \in R, s \in \{i \ldots (j - 1)\}} (q(X \to Y Z) \times \pi_U(i, s, Y) \times \pi_U(s + 1, j, Z))$
 - Step 2: (Unary)
 - For all X in N
 $\pi_U(i, j, X) = \max_{X \to Y \in \text{Close}(R)} (q(X \to Y) \times \pi_B(i, j, Y))$
((S (NP-SBJ The move)
 (VP followed
 (NP (NP a round)
 (PP of
 (NP (NP similar increases)
 (PP by
 (NP other lenders))
 (PP against
 (NP Arizona real estate loans)))))
 ,
 (S-ADV (NP-SBJ *)
 (VP reflecting
 (NP (NP a continuing decline)
 (PP-LOC in
 (NP that market)))))
 .))
Treebank Grammars

- Need a PCFG for broad coverage parsing.
- Can take a grammar right off the trees (doesn’t work well):

\[
\begin{align*}
\text{ROOT} & \rightarrow S \\
S & \rightarrow \text{NP VP} \\
\text{NP} & \rightarrow \text{PRP} \\
\text{VP} & \rightarrow \text{VBD ADJP} \\
\text{He} & \rightarrow \text{was} \\
\text{right} & \rightarrow \text{JJ}
\end{align*}
\]

- Better results by enriching the grammar (e.g., lexicalization).
- Can also get reasonable parsers without lexicalization.
Grammar encodings: Non-black states are active, non-white states are accepting, and bold transitions are phrasal. FSAs for a subset of the rules for the category NP.
Treebank Grammar Scale

- Treebank grammars can be enormous
 - As FSAs, the raw grammar has ~10K states, excluding the lexicon
 - Better parsers usually make the grammars larger, not smaller
Typical Experimental Setup

- Corpus: Penn Treebank, WSJ

- Accuracy – F1: harmonic mean of per-node labeled precision and recall.

- Here: also size – number of symbols in grammar.
 - Passive / complete symbols: NP, NP^S
 - Active / incomplete symbols: NP → NP CC •
How to Evaluate?
PARSEVAL Example

Correct Tree T

```
S
  VP
    Verb
      book
    NP
      Det
        the
      Nominal
    PP
      Prep
        through
      NP
        Houston
```

Computed Tree P

```
S
  VP
    Verb
      book
    NP
      Det
        the
      Nominal
    PP
      Prep
        through
      Noun
        Houston
```

Constituents: 11
Correct Constituents: 10

Recall = 10/11 = 90.9%

Precision = 10/12 = 83.3%

F₁ = 87.4%
Evaluation Metric

- PARSEVAL metrics measure the fraction of the constituents that match between the computed and human parse trees. If P is the system’s parse tree and T is the human parse tree (the “gold standard”):
 - Recall = (# correct constituents in P) / (# constituents in T)
 - Precision = (# correct constituents in P) / (# constituents in P)

- Labeled Precision and labeled recall require getting the non-terminal label on the constituent node correct to count as correct.

- F1 is the harmonic mean of precision and recall.
 - F1 = (2 * Precision * Recall) / (Precision + Recall)
Performance with Vanilla PCFGs

- Use PCFGs for broad coverage parsing
- Take the grammar right off the trees

```
ROOT → S
  S → NP VP .
NP → PRP
VP → VBD ADJP
  VBD → was
  ADJP → JJ
      JJ → right
```

Model
Baseline

<table>
<thead>
<tr>
<th>Model</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>72.0</td>
</tr>
</tbody>
</table>

[Charniak 96]
Conditional Independence?

- Not every NP expansion can fill every NP slot
 - A grammar with symbols like “NP” won’t be context-free
 - Statistically, conditional independence too strong
Non-Independence

- Independence assumptions are often too strong.

- Example: the expansion of an NP is highly dependent on the parent of the NP (i.e., subjects vs. objects).
- Also: the subject and object expansions are correlated!
Grammar Refinement

- Structure Annotation [Johnson ’98, Klein&Manning ’03]
- Lexicalization [Collins ’99, Charniak ’00]
- Latent Variables [Matsuzaki et al. 05, Petrov et al. ’06]
The Game of Designing a Grammar

- Annotation refines base treebank symbols to improve statistical fit of the grammar
- Structural annotation

```
S
 /   \
/     \ \
NP^S  VP  \\
 |     /  \ \
|    PRP VBD NP^VP
|   /   /    \
|  She  heard DT NN
|       /   \
|      the noise
```
Vertical Markovization

- Vertical Markov order: rewrites depend on past k ancestor nodes. (cf. parent annotation)
Horizontal Markovization

Order 1

Order ∞

Horizontal Markov Orde

Symbols

Horizontal Markov Order
Vertical and Horizontal

- Raw treebank: $v=1, h=\infty$
- Johnson 98: $v=2, h=\infty$
- Collins 99: $v=2, h=2$
- Best F1: $v=3, h=2v$

<table>
<thead>
<tr>
<th>Model</th>
<th>F1</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>$v=h=2v$</td>
<td>77.8</td>
<td>7.5K</td>
</tr>
</tbody>
</table>
Unlexicalized PCFG Grammar Size

<table>
<thead>
<tr>
<th>Vertical Order</th>
<th>Horizontal Markov Order</th>
<th>$h = 0$</th>
<th>$h = 1$</th>
<th>$h \leq 2$</th>
<th>$h = 2$</th>
<th>$h = \infty$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$v = 1$ No annotation</td>
<td></td>
<td>71.27</td>
<td>72.50</td>
<td>73.46</td>
<td>72.96</td>
<td>72.62</td>
</tr>
<tr>
<td></td>
<td>(854)</td>
<td>(3119)</td>
<td>(3863)</td>
<td>(6207)</td>
<td>(9657)</td>
<td></td>
</tr>
<tr>
<td>$v \leq 2$ Sel. Parents</td>
<td></td>
<td>74.75</td>
<td>77.42</td>
<td>77.77</td>
<td>77.50</td>
<td>76.91</td>
</tr>
<tr>
<td></td>
<td>(2285)</td>
<td>(6564)</td>
<td>(7619)</td>
<td>(11398)</td>
<td>(14247)</td>
<td></td>
</tr>
<tr>
<td>$v = 2$ All Parents</td>
<td></td>
<td>74.68</td>
<td>77.42</td>
<td>77.81</td>
<td>77.50</td>
<td>76.81</td>
</tr>
<tr>
<td></td>
<td>(2984)</td>
<td>(7312)</td>
<td>(8367)</td>
<td>(12132)</td>
<td>(14666)</td>
<td></td>
</tr>
<tr>
<td>$v \leq 3$ Sel. GParents</td>
<td></td>
<td>76.50</td>
<td>78.59</td>
<td>79.07</td>
<td>78.97</td>
<td>78.54</td>
</tr>
<tr>
<td></td>
<td>(4943)</td>
<td>(12374)</td>
<td>(13627)</td>
<td>(19545)</td>
<td>(20123)</td>
<td></td>
</tr>
<tr>
<td>$v = 3$ All GParents</td>
<td></td>
<td>76.74</td>
<td>79.18</td>
<td>79.74</td>
<td>79.07</td>
<td>78.72</td>
</tr>
<tr>
<td></td>
<td>(7797)</td>
<td>(15740)</td>
<td>(16994)</td>
<td>(22886)</td>
<td>(22002)</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2: Markovizations: F_1 and grammar size.
Tag Splits

- Problem: Treebank tags are too coarse.
- Example: Sentential, PP, and other prepositions are all marked IN.
- Partial Solution:
 - Subdivide the IN tag.

<table>
<thead>
<tr>
<th>Annotation</th>
<th>F1</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>v=h=2v</td>
<td>78.3</td>
<td>8.0K</td>
</tr>
<tr>
<td>SPLIT-IN</td>
<td>80.3</td>
<td>8.1K</td>
</tr>
</tbody>
</table>
Other Tag Splits

- **UNARY-DT**: mark demonstratives as \(DT^U \) ("the X" vs. "those")
- **UNARY-RB**: mark phrasal adverbs as \(RB^U \) ("quickly" vs. "very")
- **TAG-PA**: mark tags with non-canonical parents ("not" is an \(RB^Vp \))
- **SPLIT-AUX**: mark auxiliary verbs with –AUX [cf. Charniak 97]
- **SPLIT-CC**: separate "but" and "&" from other conjunctions
- **SPLIT-%**: "%" gets its own tag.

<table>
<thead>
<tr>
<th>F1</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>80.4</td>
<td>8.1K</td>
</tr>
<tr>
<td>80.5</td>
<td>8.1K</td>
</tr>
<tr>
<td>81.2</td>
<td>8.5K</td>
</tr>
<tr>
<td>81.6</td>
<td>9.0K</td>
</tr>
<tr>
<td>81.7</td>
<td>9.1K</td>
</tr>
<tr>
<td>81.8</td>
<td>9.3K</td>
</tr>
</tbody>
</table>
A Fully Annotated (Unlex) Tree

```
ROOT
  |  
S^ROOT-v
    |  
""S  NP^S-B
      |  
DT-U^NP  VBZ^BE^VP  NP^VP-B
      |  |
     "This  is  panic  buying

```

Some Test Set Results

<table>
<thead>
<tr>
<th>Parser</th>
<th>LP</th>
<th>LR</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magerman 95</td>
<td>84.9</td>
<td>84.6</td>
<td>84.7</td>
</tr>
<tr>
<td>Collins 96</td>
<td>86.3</td>
<td>85.8</td>
<td>86.0</td>
</tr>
<tr>
<td>Unlexicalized</td>
<td>86.9</td>
<td>85.7</td>
<td>86.3</td>
</tr>
<tr>
<td>Charniak 97</td>
<td>87.4</td>
<td>87.5</td>
<td>87.4</td>
</tr>
<tr>
<td>Collins 99</td>
<td>88.7</td>
<td>88.6</td>
<td>88.6</td>
</tr>
</tbody>
</table>

- Beats “first generation” lexicalized parsers.
- Lots of room to improve – more complex models next.
The Game of Designing a Grammar

- Annotation refines base treebank symbols to improve statistical fit of the grammar
- Structural annotation [Johnson ’98, Klein and Manning 03]
- Head lexicalization [Collins ’99, Charniak ’00]
Problems with PCFGs

- If we do no annotation, these trees differ only in one rule:
 - VP → VP PP
 - NP → NP PP
- Parse will go one way or the other, regardless of words
- We addressed this in one way with unlexicalized grammars (how?)
- Lexicalization allows us to be sensitive to specific words

- If we do no annotation, these trees differ only in one rule:
 - VP → VP PP
 - NP → NP PP
- Parse will go one way or the other, regardless of words
- We addressed this in one way with unlexicalized grammars (how?)
- Lexicalization allows us to be sensitive to specific words
Problems with PCFGs

- What’s different between basic PCFG scores here?
- What (lexical) correlations need to be scored?
Add "headwords" to each phrasal node
- Headship not in (most) treebanks
- Usually use *(handwritten) head rules*, e.g.:
 - NP:
 - Take leftmost NP
 - Take rightmost N*
 - Take rightmost JJ
 - Take right child
 - VP:
 - Take leftmost VB*
 - Take leftmost VP
 - Take left child

Lexicalize Trees!
Lexicalized PCFGs?

- Problem: we now have to estimate probabilities like

 $\text{VP(saw)} \rightarrow \text{VBD(saw)} \text{ NP-C(her)} \text{ NP(today)}$

- Never going to get these atomically off of a treebank

- Solution: break up derivation into smaller steps
Complement / Adjunct Distinction

warning - can be tricky, and most parsers don’t model the distinction

- **Complement**: defines a property/argument (often obligatory), ex: [capitol [of Rome]]
- **Adjunct**: modifies / describes something (always optional), ex: [quickly ran]
- A Test for Adjuncts: [X Y] --> can claim X and Y
 - [they ran and it happened quickly] vs. [capitol and it was of Rome]
Lexical Derivation Steps

- **Main idea:** define a linguistically-motivated Markov process for generating children given the parent

 1. **Step 1:** Choose a head tag and word
 2. **Step 2:** Choose a complement bag
 3. **Step 3:** Generate children (incl. adjuncts)
 4. **Step 4:** Recursively derive children

[Collins 99]
Lexicalized CKY

```
bestScore(i, j, X, h)
    if (j = i+1)
        return tagScore(X, s[i])
    else
        return
            max max score(X[h]->Y[h] Z[h']) *
            k,h', X->YZ bestScore(i,k,Y, h) *
            max score(X[h]->Y[h'] Z[h]) *
            k,h', X->YZ bestScore(i,k,Y, h') *
            max bestScore(k+1,j,Z, h')
```

still cubic time?
Pruning with Beams

- The Collins parser prunes with per-cell beams [Collins 99]
 - Essentially, run the \(O(n^5) \) CKY
 - If we keep \(K \) hypotheses at each span, then we do at most \(O(nK^2) \) work per span (why?)
 - Keeps things more or less cubic

- Also: certain spans are forbidden entirely on the basis of punctuation (crucial for speed)

<table>
<thead>
<tr>
<th>Model</th>
<th>(F_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naïve Treebank Grammar</td>
<td>72.6</td>
</tr>
<tr>
<td>Klein & Manning ’03</td>
<td>86.3</td>
</tr>
<tr>
<td>Collins 99</td>
<td>88.6</td>
</tr>
</tbody>
</table>
The Game of Designing a Grammar

- Annotation refines base treebank symbols to improve statistical fit of the grammar
 - Parent annotation [Johnson ’98]
 - Head lexicalization [Collins ’99, Charniak ’00]
 - Automatic Grammar Refinement?
Manual Annotation

- Manually split categories
 - NP: subject vs object
 - DT: determiners vs demonstratives
 - IN: sentential vs prepositional

- Advantages:
 - Fairly compact grammar
 - Linguistic motivations

- Disadvantages:
 - Performance leveled out
 - Manually annotated
Learning Latent Annotations

Latent Annotations:
- Brackets are known
- Base categories are known
- Hidden variables for subcategories

Can learn with EM: like Forward-Backward for HMMs.
Automatic Annotation Induction

- **Advantages:**
 - **Automatically learned:**
 - Label *all* nodes with latent variables.
 - Same number k of subcategories for all categories.

- **Disadvantages:**
 - Grammar gets too large
 - Most categories are oversplit while others are undersplit.

<table>
<thead>
<tr>
<th>Model</th>
<th>$F1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klein & Manning ’03</td>
<td>86.3</td>
</tr>
<tr>
<td>Matsuzaki et al. ’05</td>
<td>86.7</td>
</tr>
</tbody>
</table>
Adaptive Splitting Results

<table>
<thead>
<tr>
<th>Model</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previous</td>
<td>88.4</td>
</tr>
<tr>
<td>With 50% Merging</td>
<td>89.5</td>
</tr>
</tbody>
</table>

Graph showing parsing accuracy (F1) vs. total number of grants with different models:
- 50% Merging
- Hierarchical Training
- Flat Training

Previous: 88.4
With 50% Merging: 89.5
Final Results

<table>
<thead>
<tr>
<th>Parser</th>
<th>F1 ≤ 40 words</th>
<th>F1 all words</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klein & Manning ’03</td>
<td>86.3</td>
<td>85.7</td>
</tr>
<tr>
<td>Matsuzaki et al. ’05</td>
<td>86.7</td>
<td>86.1</td>
</tr>
<tr>
<td>Collins ’99</td>
<td>88.6</td>
<td>88.2</td>
</tr>
<tr>
<td>Charniak & Johnson ’05</td>
<td>90.1</td>
<td>89.6</td>
</tr>
<tr>
<td>Petrov et. al. 06</td>
<td>90.2</td>
<td>89.7</td>
</tr>
</tbody>
</table>
“Grammar as Foreign Language” (deep learning)

Vinyals et al., 2015

John has a dog ➔

\[
\begin{align*}
\text{S} & \quad \text{NP} \\
\quad & \quad \text{VP} \\
\qquad & \quad \text{NNP} \quad \text{VBZ} \\
\quad & \quad \text{NP} \\
\qquad & \quad \text{DT} \quad \text{NN}
\end{align*}
\]

John has a dog ➔

\[
(S \text{ (NP NNP) }_{\text{NP}} \text{ (VP VBZ (NP DT NN) }_{\text{NP}} \text{) }_{\text{VP}} \text{) }_{\text{S}}
\]

- Linearize a tree into a sequence
- Then parsing problem becomes similar to machine translation
 - Input: sequence
 - Output: sequence (of different length)
- Encoder-decoder LSTMs (Long short-term memory networks)
“Grammar as Foreign Language” (deep learning)

Vinyals et al., 2015

John has a dog

```
S
  NP
    NNP
  VP
    VBZ
    NP
      DT
      NN

(S (NP NNP )_{NP} (VP VBZ (NP DT NN )_{NP} )_{VP} . )_{S}
```

- Penn treebank (~40K sentences) is too small to train LSTMs
- Create a larger training set with 11M sentences automatically parsed by two state-of-the-art parsers (and keep only those sentences for which two parsers agreed)
<table>
<thead>
<tr>
<th>Parser</th>
<th>Training Set</th>
<th>WSJ 22</th>
<th>WSJ 23</th>
</tr>
</thead>
<tbody>
<tr>
<td>baseline LSTM+D</td>
<td>WSJ only</td>
<td>< 70</td>
<td>< 70</td>
</tr>
<tr>
<td>LSTM+A+D</td>
<td>WSJ only</td>
<td>88.7</td>
<td>88.3</td>
</tr>
<tr>
<td>LSTM+A+D ensemble</td>
<td>WSJ only</td>
<td>90.7</td>
<td>90.5</td>
</tr>
<tr>
<td>baseline LSTM</td>
<td>BerkeleyParser corpus</td>
<td>91.0</td>
<td>90.5</td>
</tr>
<tr>
<td>LSTM+A</td>
<td>high-confidence corpus</td>
<td>93.3</td>
<td>92.5</td>
</tr>
<tr>
<td>LSTM+A ensemble</td>
<td>high-confidence corpus</td>
<td>93.5</td>
<td>92.8</td>
</tr>
<tr>
<td>Petrov et al. (2006) [12]</td>
<td>WSJ only</td>
<td>91.1</td>
<td>90.4</td>
</tr>
<tr>
<td>Zhu et al. (2013) [13]</td>
<td>WSJ only</td>
<td>N/A</td>
<td>90.4</td>
</tr>
<tr>
<td>Petrov et al. (2010) ensemble</td>
<td>WSJ only</td>
<td>92.5</td>
<td>91.8</td>
</tr>
<tr>
<td>Zhu et al. (2013) [13]</td>
<td>semi-supervised</td>
<td>N/A</td>
<td>91.3</td>
</tr>
<tr>
<td>McClosky et al. (2006) [16]</td>
<td>semi-supervised</td>
<td>92.4</td>
<td>92.1</td>
</tr>
<tr>
<td>Huang & Harper (2010) ensemble</td>
<td>semi-supervised</td>
<td>92.8</td>
<td>92.4</td>
</tr>
</tbody>
</table>
Final Results (Accuracy)

<table>
<thead>
<tr>
<th>Language</th>
<th>Method</th>
<th>≤ 40 words F1</th>
<th>all F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENG</td>
<td>Charniak&Johnson ‘05 (generative)</td>
<td>90.1</td>
<td>89.6</td>
</tr>
<tr>
<td></td>
<td>Split / Merge</td>
<td>90.6</td>
<td>90.1</td>
</tr>
<tr>
<td>GER</td>
<td>Dubey ‘05</td>
<td>76.3</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Split / Merge</td>
<td>80.8</td>
<td>80.1</td>
</tr>
<tr>
<td>CHN</td>
<td>Chiang et al. ‘02</td>
<td>80.0</td>
<td>76.6</td>
</tr>
<tr>
<td></td>
<td>Split / Merge</td>
<td>86.3</td>
<td>83.4</td>
</tr>
</tbody>
</table>

Still higher numbers from reranking / self-training methods