CSE 490 U Natural Language Processing Spring 2016

Dependency Parsing And Other Grammar Formalisms

Yejin Choi - University of Washington

Dependency Grammar

For each word, find one parent.

A child is dependent on the parent.

- A child is an argument of the parent.
- A child modifies the parent.

For each word, find one parent.

A child is dependent on the parent.

- A child is an argument of the parent.
- A child modifies the parent.

For each word, find one parent.

A child is dependent on the parent.

- A child is an argument of the parent.
- A child modifies the parent.

Typed Depedencies

nsubj(shot-2, i-1) root(ROOT-0, shot-2) det(elephant-4, an-3) dobj(shot-2, elephant-4)

prep(shot-2, in-5) poss(pajamas-7, my-6) pobj(in-5, pajamas-7)

Naïve CKY Parsing

 $O(n^5N^3)$ if N nonterminals

O(n⁵) combinations

Eisner Algorithm (Eisner & Satta, 1999)

This happens only once as the very final step

Without adding a dependency arc

When adding a dependency arc (head is higher)

Eisner Algorithm (Eisner & Satta, 1999)

Eisner Algorithm (Eisner & Satta, 1999)

Gives $O(n^3)$ dependency grammar parsing

Eisner Algorithm

Base case:

$$\forall t \in \{ \leq, \geq, \lhd, \rhd \}, \ \pi(i, i, t) = 0$$

Recursion:

$$\pi(i,j, \preceq) = \max_{i \leq k < j} \left(\pi(i,k, \rhd) + \pi(k+1,j, \lhd) + \phi(w_j, w_i) \right)$$

$$\pi(i,j, \trianglerighteq) = \max_{i \leq k < j} \left(\pi(i,k, \rhd) + \pi(k+1,j, \lhd) + \phi(w_i, w_j) \right)$$

$$\pi(i,j, \lhd) = \max_{i \leq k < j} \left(\pi(i,k, \lhd) + \pi(k+1,j, \unlhd) \right)$$

$$\pi(i,j, \rhd) = \max_{i < k < j} \left(\pi(i,k, \trianglerighteq) + \pi(k+1,j, \rhd) \right)$$

Final case:

$$\pi(1, n, \triangleleft \triangleright) = \max_{1 \le k \le n} \Big(\pi(1, k, \triangleleft) + \pi(k + 1, n, \triangleright) \Big)$$

CFG vs Dependency Parse I

- CFG focuses on "constituency" (i.e., phrasal/clausal structure)
- Dependency focuses on "head" relations.
- CFG includes non-terminals. CFG edges are not typed.
- No non-terminals for dependency trees. Instead, dependency trees provide "dependency types" on edges.
- Dependency types encode "grammatical roles" like
 - nsubj -- nominal subject
 - dobj direct object
 - pobj prepositional object
 - nsubjpass nominal subject in a passive voice

CFG vs Dependency Parse II

- Can we get "heads" from CFG trees?
 - Yes. In fact, modern statistical parsers based on CFGs use hand-written "head rules" to assign "heads" to all nodes.
- Can we get constituents from dependency trees?
 - Yes, with some efforts.
- Can we transform CFG trees to dependency parse trees?
 - Yes, and transformation software exists. (stanford toolkit based on [de Marneffe et al. LREC 2006])
- Can we transform dependency trees to CFG trees?
 - Mostly yes, but (1) dependency parse can capture nonprojective dependencies, while CFG cannot, and (2) people rarely do this in practice

CFG vs Dependency Parse III

- Both are context-free.
- Both are used frequently today, but dependency parsers are more recently popular.
- CKY Parsing algorithm:
 - O (N³) using CKY & unlexicalized grammar
 - O (N⁵) using CKY & lexicalized grammar (O(N⁴) also possible)
- Dependency parsing algorithm:
 - O (N⁵) using naïve CKY
 - O (N³) using Eisner algorithm
 - O (N²) based on minimum directed spanning tree algorithm (arborescence algorithm, aka, Edmond-Chu-Liu algorithm – see edmond.pdf)
- Linear-time O (N) Incremental parsing (shift-reduce parsing) possible for both grammar formalisms

Mr. Tomash will remain as a director emeritus.

A hearing is scheduled on the issue today.

- Projective dependencies: when the tree edges are drawn directly on a sentence, it forms a tree (without a cycle), and there is no crossing edge.
- Projective Dependency:

Eg:

- Projective dependencies: when the tree edges are drawn directly on a sentence, it forms a tree (without a cycle), and there is no crossing edge.
- Non-projective dependency:

- which word does "on the issue" modify?
 - We scheduled a meeting on the issue today.
 - A meeting is scheduled on the issue today.
- CFGs capture only projective dependencies (why?)

Coordination across Constituents

- Right-node raising:
 - [[She bought] and [he ate]] bananas.
- •Argument-cluster coordination:
 - I give [[you an apple] and [him a pear]].
- Gapping:
 - She likes sushi, and he sashimi
- → CFGs don't capture coordination across constituents:

Coordination across Constituents

- She bought <u>and</u> he ate bananas.
- I give you an apple and him a pear.

Compare above to:

- She bought <u>and</u> ate bananas.
- She bought bananas and apples.
- She bought bananas and he ate apples.

The Chomsky Hierarchy

The Chomsky Hierarchy

Type	Common Name	Rule Skeleton	Linguistic Example
0	Turing Equivalent	$\alpha \to \beta$, s.t. $\alpha \neq \epsilon$	HPSG, LFG, Minimalism
1	Context Sensitive	$\alpha A\beta \rightarrow \alpha \gamma \beta$, s.t. $\gamma \neq \epsilon$	
_	Mildly Context Sensitive		TAG, CCG
2	Context Free	$A ightarrow \gamma$	Phrase-Structure Grammars
3	Regular	$A \rightarrow xB \text{ or } A \rightarrow x$	Finite-State Automata

- Head-Driven Phrase Structure Grammar (HPSG) (Pollard and Sag, 1987, 1994)
- Lexical Functional Grammar (LFG) (Bresnan, 1982)
- Minimalist Grammar (Stabler, 1997)
- Tree-Adjoining Grammars (TAG) (Joshi, 1969)
- Combinatory Categorial Grammars (CCG) (Steedman, 1986)

Mildly Context-Sensitive Grammar Formalisms

I. Tree Adjoining Grammar (TAG)

TAG Lexicon (Supertags)

- Tree-Adjoining Grammars (TAG) (Joshi, 1969)
- "... super parts of speech (supertags): almost parsing" (Joshi and Srinivas 1994)
- POS tags enriched with syntactic structure
- also used in other grammar formalisms (e.g., CCG)

TAG Lexicon (Supertags)

Example: TAG Lexicon

Example: TAG Derivation

Example: TAG Derivation

Example: TAG Derivation

TAG rule 1: Substitution

TAG rule 2: Adjunction

Derivation tree: $\begin{array}{c} \alpha 1 \\ \beta 1 \end{array}$

(1) Can handle long distance dependencies

(2) Cross-serial Dependencies

dat Jan Piet Marie de kinderen zag helpen laten zwemmen

- Dutch and Swiss-German
- Can this be generated from context-free grammar?

anbn: Cross-serial dependencies

Elementary trees:

Deriving aabb

Tree Adjoining Grammar (TAG)

- TAG: Aravind Joshi in 1969
- Supertagging for TAG: Joshi and Srinivas 1994
- Pushing grammar down to lexicon.
- With just two rules: substitution & adjunction
- Parsing Complexity:
 - O(N^7)

- Xtag Project (TAG Penntree) (http://www.cis.upenn.edu/~xtag/)
- Local expert!
 - Fei Xia @ Linguistics (https://faculty.washington.edu/fxia/)

II. Combinatory Categorial Grammar (CCG)

Categories

- Categories = types
 - Primitive categories
 - N, NP, S, etc
 - Functions
 - a combination of primitive categories
 - S/NP, (S/NP) / (S/NP), etc
 - V, VP, Adverb, PP, etc

Application

- forward application: x/y y → x
- backward application: y x\y → x
- Composition
 - forward composition: x/y y/z → x/z
 - backward composition: y\z x\y → x\z
 - (forward crossing composition: $x/y y/z \rightarrow x/z$)
 - (backward crossing composition: $x y y/z \rightarrow x/z$)
- Type-raising
 - forward type-raising: x → y / (y\x)
 - backward type-raising: x → y \ (y/x)
- Coordination <&>
 - x conj x → x

Combinatory Rules 1: Application

- Forward application ">"
 - X/Y Y → X
 - \blacksquare (S\NP)/NP NP \rightarrow S\NP
- Backward application "<"</p>
 - Y X\Y → X
 - NP S\NP → S

Function

- likes := (S\NP) / NP
 - A transitive verb is a function from NPs into predicate S. That is, it accepts two NPs as arguments and results in S.
- Transitive verb: (S\NP) / NP
- Intransitive verb: S\NP
- Adverb: (S\NP) \ (S\NP)
- Preposition: (NP\NP) / NP
- Preposition: ((S\NP)\(S\NP)) / NP

CCG Derivation:

$$\frac{NP}{NP} \frac{\text{likes musicals}}{\frac{S\backslash NP)/NP}{NP}} > \frac{S\backslash NP}{S}$$

CFG Derivation:

- Application
 - forward application: x/y y → x
 - backward application: y x\y → x
- Composition
 - forward composition: $x/y y/z \rightarrow x/z$
 - backward composition: y\z x\y → x\z
 - forward crossing composition: $x/y y/z \rightarrow x/z$
 - backward crossing composition: x\y y/z → x/z
- Type-raising
 - forward type-raising: x → y / (y\x)
 - backward type-raising: x → y \ (y/x)
- Coordination <&>
 - x conj x → x

Combinatory Rules 4: Coordination

■ X conj X → X

 Alternatively, we can express coordination by defining conjunctions as functions as follows:

and := (X\X) / X

$$\frac{\mathsf{Marcel}}{\mathsf{NP}} \ \frac{\mathsf{conjectured}}{(\mathsf{S}\backslash\mathsf{NP})/\mathsf{NP}} \ \frac{\mathsf{and}}{(\mathsf{X}\backslash\mathsf{X})/\mathsf{X}} \ \frac{\mathsf{proved}}{(\mathsf{S}\backslash\mathsf{NP})/\mathsf{NP}}$$

$$\frac{\text{and}}{(X\backslash X)/X}$$
 $\frac{\text{proved}}{(S\backslash NP)/NP}$

completeness $\overline{\mathsf{NP}}$

- Application
 - forward application: x/y y → x
 - backward application: y x\y → x

- Application
 - forward application: x/y y → x
 - backward application: y x\y → x

- Application
 - forward application: x/y y → x
 - backward application: y x\y → x

Composition

- forward composition: x/y y/z → x/z
- backward composition: y\z x\y → x\z
- forward crossing composition: $x/y y/z \rightarrow x/z$
- backward crossing composition: x\y y/z → x/z
- Type-raising
 - forward type-raising: x → y / (y\x)
 - backward type-raising: x → y \ (y/x)
- Coordination <&>
 - x = x conj $x \rightarrow x$

$$\frac{\mathsf{Marcel}}{\mathsf{NP}} \ \, \frac{\mathsf{conjectured}}{(\mathsf{S} \backslash \mathsf{NP}) / \mathsf{NP}} \ \, \frac{\mathsf{and}}{(\mathsf{X} \backslash \mathsf{X}) / \mathsf{X}} \ \, \frac{\mathsf{might}}{(\mathsf{S} \backslash \mathsf{NP}) / ((\mathsf{S} \backslash \mathsf{NP}))} \ \, \frac{\mathsf{prove}}{(\mathsf{S} \backslash \mathsf{NP}) / \mathsf{NP}} \ \, \frac{\mathsf{completeness}}{\mathsf{NP}}$$

- Application
 - forward application: x/y y → x
 - backward application: y x\y → x
- Composition
 - forward composition: x/y y/z → x/z
 - backward composition: y\z x\y → x\z
 - forward crossing composition: x/y y\z → x\z
 - backward crossing composition: x\y y/z → x/z

```
\frac{\text{Marcel NP}}{\text{NP}} = \frac{\text{conjectured}}{(S \setminus NP)/NP} = \frac{\text{and}}{(X \setminus X)/X} = \frac{\text{might}}{(S \setminus NP)/((S \setminus NP))} = \frac{\text{prove}}{(S \setminus NP)/NP} >_{B} = \frac{\text{completeness}}{NP} = \frac{(S \setminus NP)/NP}{(S \setminus NP)/NP} >_{B} = \frac{(S \setminus NP)/NP}{(S \setminus NP)/NP} >_{B}
```

- Application
 - forward application: x/y y → x
 - backward application: y x\y → x
- Composition
 - forward composition: x/y y/z → x/z
 - backward composition: y\z x\y → x\z
 - forward crossing composition: $x/y y/z \rightarrow x/z$
 - backward crossing composition: x\y y/z → x/z

- Application
 - forward application: x/y y → x
 - backward application: y x\y → x
- Composition
 - forward composition: x/y y/z → x/z
 - backward composition: y\z x\y → x\z
 - forward crossing composition: $x/y y/z \rightarrow x/z$
 - backward crossing composition: x\y y/z → x/z

Type-raising

- forward type-raising: x → y / (y\x)
- backward type-raising: x → y \ (y/x)
- Coordination <&>
 - x conj x → x

Combinatory Rules 3: Type-Raising

- Turns an argument into a function
- Forward type-raising: X → T / (T\X)
- Backward type-raising: X → T \ (T/X)

For instance...

- Subject type-raising: NP → S / (S \ NP)
- Object type-raising: NP → (S\NP) \ ((S\NP) / NP)

Combinatory Rules 3: Type-Raising

- Application
 - forward application: x/y y → x
 - backward application: y x\y → x
- Type-raising
 - forward type-raising: x → y / (y\x)
 - backward type-raising: x → y \ (y/x)
 - Subject type-raising: NP → S / (S \ NP)
 - Object type-raising: NP → (S\NP) \ ((S\NP) / NP)
- Coordination <&>
 - x conj x → x

Combinatory Rules 3: Type-Raising

$$\frac{I}{NP} \frac{\text{dislike}}{(S \backslash NP)/NP} \frac{\text{and}}{CONJ} \frac{\text{Mary}}{NP} \frac{\text{likes}}{(S \backslash NP)/NP} \frac{\text{musicals}}{NP}$$

$$\frac{S/(S \backslash NP)}{S/(S \backslash NP)} > B$$

$$\frac{S/NP}{S/NP} > B$$

Combinatory Categorial Grammar (CCG)

the

syntactic.

CCG: Steedman in 1986

Pushing grammar down to lexicon.

With just a few rules: application, composition, type-raising

We've looked at only syntactic part of CCG

A lot more in the semantic part of CCG (using lambda calculus)

- Parsing Complexity:
 - O(N^6)
- Local expert!
 - Luke Zettlemoyer (https://www.cs.washington.edu/people/faculty/lsz)