CSE 490 U Natural Language Processing Spring 2016

Frame Semantics
Yejin Choi

Frames

"Case for Case"

Theory:

Frame Semantics (Fillmore 1968)

Resources:

- VerbNet(Kipper et al., 2000)
- FrameNet (Fillmore et al., 2004)
- PropBank (Palmer et al., 2005)
- NomBank

Statistical Models:

Task: Semantic Role Labeling (SRL)

Frame Semantics

- Frame: Semantic frames are schematic representations of situations involving various participants, props, and other conceptual roles, each of which is called a frame element (FE)
- These include events, states, relations and entities.
- ✓ **Frame**: "The case for case" (Fillmore 1968)
 - 8k citations in Google Scholar!
- ✓ Script: knowledge about situations like eating in a restaurant.
 - "Scripts, Plans, Goals and Understanding: an Inquiry into Human Knowledge Structures" (Schank & Abelson 1977)
- ✓ Political Framings: George Lakoff's recent writings on the framing of political discourse.

C4C: Capturing Generalizations over Related Predicates & Arguments

verb	BUYER	GOODS	SELLER	MONEY	PLACE
Buy	subject	object	from	for	at
Sell	to	object	subject	for	at
Cost II	ndirect object	subject		object	at
Spend	subject	on		object	at

Case Grammar -> Frames

- Valency: Predicates have arguments (optional & required)
 - Example: "give" requires 3 arguments:
 - Agent (A), Object (O), and Beneficiary (B)
 - Jones (A) gave money (O) to the school (B)
- Frames:
 - commercial transaction frame: Buy/Sell/Pay/Spend
 - Save <good thing> from <bad situation>
 - Risk <valued object> for <situation>|<purpose>|<beneficiary>|<motivation>
- Collocations & Typical predicate argument relations
 - Save whales from extinction (not vice versa)
 - Ready to risk everything for what he believes
- Representation Challenges: What matters for practical NLP?
 - POS? Word order? Frames (typical predicate arg relations)?

Thematic (Semantic) Roles

- AGENT the volitional causer of an event
 - The waiter spilled the soup
- EXPERIENCER the experiencer of an event
 - John has a headache
- FORCE the non-volitional causer of an event
 - The wind blows debris from the mall into our yards.
- THEME the participant most directly affected by an event
 - Only after Benjamin Franklin broke the ice ...
- RESULT the end product of an event
 - The French government has built a regulation-size baseball diamond ...

Thematic (Semantic) Roles

- INSTRUMENT an instrument used in an event
 - He turned to poaching catfish, stunning them with a shocking device ...
- BENEFICIARY the beneficiary of an event
 - Whenever Ann makes hotel reservations for her boss ...
- SOURCE the origin of the object of a transfer event
 - I flew in from Boston
- GOAL the destination of an object of a transfer event
 - I drove to Portland
- Can we read semantic roles off from PCFG or dependency parse trees?

Semantic roles # Grammatical roles

- Agent the volitional causer of an event
 - usually "subject", sometimes "prepositional argument", ...
- Theme the participant directly affected by an event
 - usually "object", sometimes "subject", ...
- Instrument an instrument (method) used in an event
 - usually prepositional phrase, but can also be a "subject"
- John broke the window.
- John broke the window with a rock.
- The rock broke the window.
- The window broke.
- The window was broken by John.

Ergative Verbs

Ergative verbs

- subject when intransitive = direct object when transitive.
- "it broke the window" (transitive)
- "the window broke" (intransitive).
- Most verbs in English are not ergative (the subject role does not change whether transitive or not)
 - "He ate the soup" (transitive)
 - "He ate" (intransitive)
- Ergative verbs generally describe some sort of "changes" of states:
 - Verbs suggesting a change of state break, burst, form, heal, melt, tear, transform
 - Verbs of cooking bake, boil, cook, fry
 - Verbs of movement move, shake, sweep, turn, walk
 - Verbs involving vehicles drive, fly, reverse, run, sail

FrameNet

Frames

"Case for Case"

Theory:

Frame Semantics (Fillmore 1968)

Resources:

- VerbNet(Kipper et al., 2000)
- FrameNet (Fillmore et al., 2004)
- PropBank (Palmer et al., 2005)
- NomBank

Statistical Models:

Task: Semantic Role Labeling (SRL)

Words in "change_position_on _a_scale" frame:

VERBS:	dwindle	move	soar	escalation	shift
advance	edge	mushroom	swell	explosion	tumble
climb	explode	plummet	swing	fall	
decline	fall	reach	triple	fluctuation	ADVERBS:
decrease	fluctuate	rise	tumble	gain	increasingly
diminish	gain	rocket		growth	
dip	grow	shift	NOUNS:	hike	
double	increase	skyrocket	decline	increase	
drop	jump	slide	decrease	rise	

- Frame := the set of words sharing a similar predicateargument relations
- Predicate can be a verb, noun, adjective, adverb
- The same word with multiple senses can belong to multiple frames

Roles in "change_position_on _a_scale" frame

	Core Roles	
ATTRIBUTE	The ATTRIBUTE is a scalar property that the ITEM possesses.	
DIFFERENCE	The distance by which an ITEM changes its position on the scale.	
FINAL_STATE	A description that presents the ITEM's state after the change in the ATTRIBUTE's value as an independent predication.	
FINAL_VALUE	The position on the scale where the ITEM ends up.	
INITIAL_STATE	A description that presents the ITEM's state before the change in the ATTRIBUTE's value as an independent predication.	
INITIAL_VALUE	The initial position on the scale from which the ITEM moves	
ITEM	away. The entity that has a position on the scale.	
VALUE_RANGE	A portion of the scale, typically identified by its end points, along which the values of the ATTRIBUTE fluctuate.	
Some Non-Core Roles		
DURATION	The length of time over which the change takes place.	
SPEED	The rate of change of the VALUE.	
GROUP	The GROUP in which an ITEM changes the value of an	
	ATTRIBUTE in a specified way.	

Example

ATTRIBUTE	[Oil] rose [in price] [by 2%].
DIFFERENCE FINAL_STATE	[It] has increased [to having them 1 day a month].
FINAL_VALUE INITIAL_STATE	[Microsoft shares] fell [to 7 5/8].
INITIAL_VALUE	[cancer incidence] fell [by 50%] [among men].
ITEM VALUE_RANGE	 a steady increase [from 9.5] [to 14.3] [in dividends].
DURATION SPEED GROUP	a [5%] [dividend] increase

Find "Item" roles?

ATTRIBUTE	[Oil] rose [in price] [by 2%].
DIFFERENCE FINAL_STATE	[It] has increased [to having them] [1 day a month].
FINAL_VALUE INITIAL_STATE	[Microsoft shares] fell [to 7 5/8].
INITIAL_VALUE	[cancer incidence] fell [by 50%] [among men].
ITEM VALUE_RANGE	 a steady increase [from 9.5] [to 14.3] [in dividends].
	■ a [5%] [dividend] increase
DURATION	
SPEED GROUP	

Find "Difference" & "Final_Value" roles?

ATTRIBUTE	[Oil] rose [in price] [by 2%].
DIFFERENCE FINAL_STATE	 [It] has increased [to having them] [1 day a month].
FINAL_VALUE	[Microsoft shares] fell [to 7 5/8].
INITIAL_STATE INITIAL_VALUE	 [cancer incidence] fell [by 50%] [among men]
ITEM VALUE_RANGE	a steady increase [from 9.5] [to 14.3] [in dividends].
DURATION	a [5%] [dividend] increase

SPEED

GROUP

FrameNet (2004)

- Project at UC Berkeley led by Chuck Fillmore for developing a database of frames, general semantic concepts with an associated set of roles.
- Roles are specific to frames, which are "invoked" by the predicate, which can be a verb, noun, adjective, adverb
 - JUDGEMENT frame
 - Invoked by: V: blame, praise, admire; N: fault, admiration
 - Roles: JUDGE, EVALUEE, and REASON
- Specific frames chosen, and then sentences that employed these frames selected from the British National Corpus and annotated by linguists for semantic roles.
- Initial version: 67 frames, 49,013 sentences, 99,232 role fillers

PropBank (proposition bank)

PropBank := proposition bank (2005)

- Project at Colorado led by Martha Palmer to add semantic roles to the Penn treebank.
- Proposition := verb + a set of roles
- Annotated over 1M words of Wall Street Journal text with existing gold-standard parse trees.
- Statistics:
 - 43,594 sentences 99,265 propositions
 - 3,324 unique verbs 262,281 role assignments

PropBank argument numbering

- Numbered roles, rather than named roles.
 - Arg0, Arg1, Arg2, Arg3, ...
- Different numbering scheme for each verb sense.
- The general pattern of numbering is as follows.
- Arg0 = "Proto-Agent" (agent)
- Arg1 = "Proto-Patient" (direct object / theme / patient)
- Arg2 = indirect object (benefactive / instrument / attribute / end state)
- Arg3 = start point (benefactive / instrument / attribute)
- Arg4 = end point

Different "frameset" for each verb sense

- Mary left the room.
- Mary left her daughter-in-law her pearls in her will.

Frameset leave.01 "move away from":

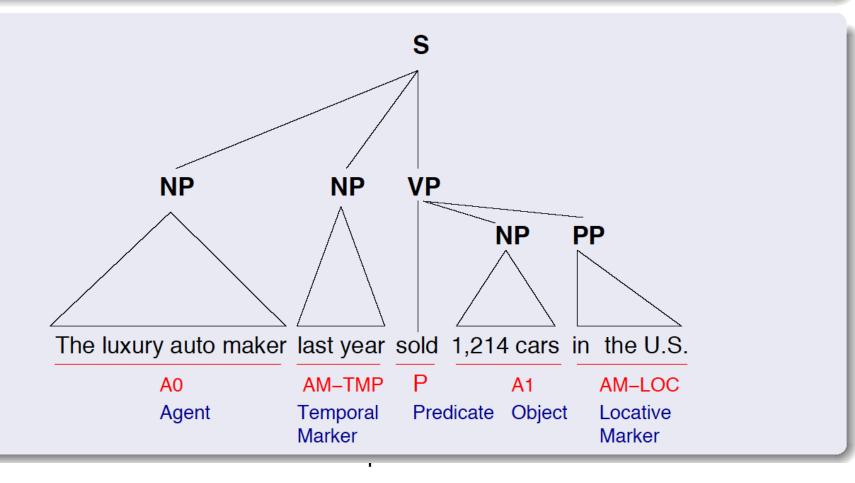
Arg0: entity leaving

Arg1: place left

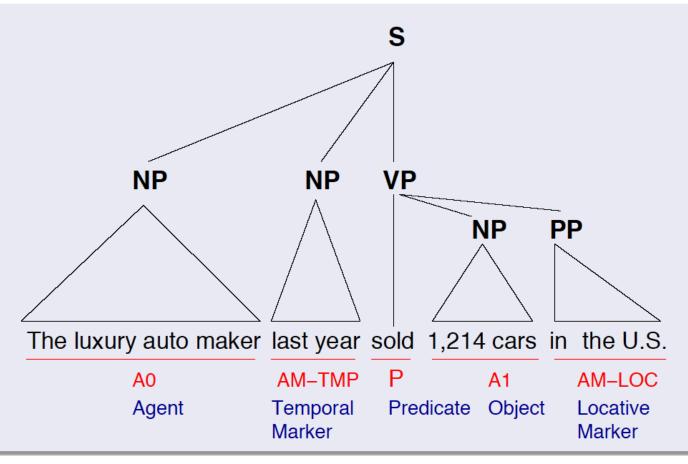
Frameset leave.02 "give":

Arg0: giver

Arg1: thing given

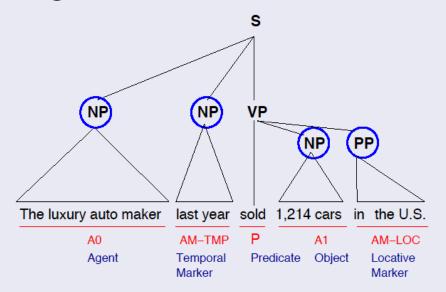

Arg2: beneficiary

Semantic Role Labeling


Semantic Role Labeling (Task)

- Shallow meaning representation beyond syntactic parse trees
- Question Answering
 - "Who" questions usually use Agents
 - "What" question usually use Patients
 - "How" and "with what" questions usually use Instruments
 - "Where" questions frequently use Sources and Destinations.
 - "For whom" questions usually use Beneficiaries
 - "To whom" questions usually use Destinations
- Machine Translation Generation
 - Semantic roles are usually expressed using particular, distinct syntactic constructions in different languages.
- Summarization, Information Extraction

SRL $\stackrel{def}{=}$ detecting basic event structures such as who did what to whom, when and where [IE point of view]



SRL $\stackrel{def}{=}$ identify the *arguments* of a given verb and assign them semantic labels describing the *roles* they play in the predicate (i.e., identify predicate argument structures) [CL point of view]

Linguistic nature of the problem

Argument identification is strongly related to syntax

- Role labeling is a semantic task
 - e.g., selectional preferences should play an important role

SRL as Parse Node Classification

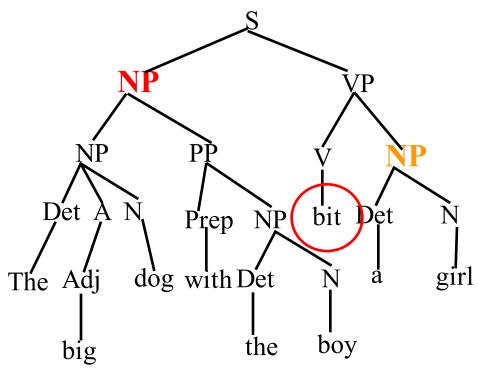
- Assume that a syntactic parse is available
- Treat problem as classifying parse-tree nodes.
- Can use any machine-learning classification method.

 Critical issue is engineering the right set of features for the classifier to use.

Color Code:

not-a-role

agent


patient

source

destination

instrument

beneficiary

